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Abstract. Text-rich structured data become more and more ubiquitous
on the Web and on the enterprise databases by encoding heterogeneous
structural relationships between entities such as people, locations, or or-
ganizations and the associated textual information. For analyzing this
type of data, existing topic modeling approaches, which are highly tai-
lored toward document collections, require manually-defined regulariza-
tion terms to exploit and to bias the topic learning towards structure
information. We propose an approach, called Topical Relational Model,
as a principled approach for automatically learning topics from both
textual and structure information. As a topic model, we show that our
approach is effective in exploiting heterogeneous structure information,
outperforming a state-of-the-art approach that requires manually-tuned
regularization.

1 Introduction

We study the problem of learning on text-rich structured data that shares these
main characteristics: it describes interconnected objects (relational) of differ-
ent types (heterogeneous) that are associated with textual attributes (text-rich).
Examples include graph-structured RDF data forming connected resource de-
scriptions and relational database records containing textual values that are
connected via foreign keys.

For dealing with text, topic modeling (TM) approaches have shown to be
effective, which recently, have also been extended to deal with the combination
of textual and structured data. For instance, topics might be drawn from the
document’s textual content as well as the interests of the document’s authors [1]
(topical information is propagated through the author relation). However, most
of these approaches, including NetPLSA [2], Pairwise-Link-LDA [3], Topic-Link-
LDA [4], Nubbi [5], author-topic models [1], TM for hypertext [6], TM for cita-
tion networks [7] and relational topic models [8], assume homogeneous networks,
where connections between objects are no further distinguished. More suited
for our setting of structured data are TM approaches targeting heterogeneous



networks, where objects are connected via relationships of different types (e.g.
author vs. owningCompany vs. manufacturer). Here, the network structure is
also exploited for propagating topical information. However, different types of
connections have different effects on the learned topics. Smoothing the topics
using regularization functions has been the common strategy to obtain a bias
of topics according to structure information [9, 7]. In fact these approaches can
be regarded as the extension of previous supervised topic models (e.g. [10, 11])
to the networks in which observed variables are the relations instead of tags or
labels.

When dealing with the text-rich structured data as we consider as an in-
put in this paper (as shown Fig. 1), two problems mainly arise: First, such a
data mostly consists of a heterogeneous structure such as many classes and re-
lationships each of which has varying effects on different topics. Thus entities
having different structure information in the data need to have different topic
distributions. For example, any Company entity having product relationships
is more related to a topic about manufacturing than another Company entity
of being a movie distributor. Usually such correlations between the topics and
these structural elements (i.e. classes and relationships) are not one-to-one, but
the latter can be correlated to one or more topics with different proportions.
Another problem also arises due to the sparsity of these correlations between
the topics and the structure. For example, in Fig. 2 the class City is highly
correlated to the topic t4 but not to the other three topics. Such sparsity is
not well addressed by the previous work (e.g. [9, 7]) on heterogeneous networks
which aims the topic smoothness instead of sparsity. One exception to this is the
focused topic model [12] which utilizes latent feature models to control sparsity
but it is an unsupervised approach and does not take the structure information
into account.
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As another direction to learn from structured data Statistical Relational
Learning (SRL) [13] is concerned with predicting unknown values of a rela-
tion, given a database of entities and observed relations among entities. Many
important tasks in SRL, like collective classification, link prediction, link-based
clustering, social network modeling, and object identification, are naturally for-
mulated as instances of learning a probabilistic model (e.g. Markov Logic Net-
work (MLN) or (non-)linear link functions) and using inferencing for predictions.
For example, in [14] and [15], the link prediction is employed as a link function
which uses low-rank matrix decomposition of observed sparse relation matrix to
predict movie ratings and interactions in gene networks, respectively. However
the main problem of directly applying these SRL techniques into our setting is
about handling textual data since they consider the input data to be available
in a sort of structured form (e.g. a user-movie matrix indicating whether a user
likes a movie). Only few works exist that utilize SRL to learn from text-rich
structured data. For instance, in [16] every word of an entity is modeled as a
feature in a MLN [17] which results in a large and complex structured network
of variables for textual data. Instead of using the text directly, SRL approaches
often require ad-hoc manual specification of coarser-grained features. C3 [18] for
instance, a SRL approach that simultaneously solves several learning tasks, uses
Jaccard similarity computed from the textual attribute values of pairs of objects
as a feature for link predication. At this point, using the latent topics as low-
dimensional representation of textual data provides a better way to incorporate
textual information into the SRL models.

In this paper, we propose Topical Relational Model (TRM) that uses rela-
tional information in structured data for topic modeling (text analysis tasks),
and also allows the learned topics to be employed as a low-dimensional repre-
sentation of the text to capture dependencies between structured data objects
(to perform SRL tasks). The main novel aspects of this model are: (1) compared
to previous SRL works, TRM employs hidden topic variables to reduce model
complexity. TRM uses latent topics to represent textual information, targeting
the specific case of text-rich structured data. In this way, it provides a systematic
way to learn low-dimensional features from text (i.e., topics) that can be used
for SRL tasks. We show in experiments that topics learned by TRM outperform
the features manually specified in previous SRL works [18, 17]. (2) Compared
to existing TM approaches, TRM is able to exploit the richness in relational
information available in structured data. With TRM, the learning of topics rec-
ognizes the heterogeneity of classes and relations associated with entities. While
the most related TM work [9] requires manually defined regularization terms to
exploit this heterogeneous structure information, TRM captures correlations be-
tween structure and topics through dedicated latent feature model parameter in
order to better handle the sparsity of the correlations. In experiments, we show
that leveraging relational information this way, TRM improves the performance
of state-of-the-art TM approaches [9, 19]. (3) TRM is unique in its hybrid nature:
it is a topic model that incorporates structure in addition to textual information;



at the same time, it is also a Bayesian network capturing relational dependencies
between text-rich objects that can be employed for SRL tasks.

Structure. We present the main ideas behind TRM in Sec. 2.1, TRM vari-
ables in Sec. 2.2 and their dependencies in Sec. 2.3. Sec. 2.4 describes the gen-
erative process, which is reversed in Sec. 2.5 for learning TRM. Experimental
results are presented in Sec. 3, followed by conclusions in Sec. 4.

2 Topical Relational Models

TRM supports different types of graph-structured data including relational, XML
and RDF data. The focus lies on text-rich data describing objects through tex-
tual attributes. More formally, the data is a directed graph G = (V,R) (see
Fig.1), where V is the disjoint union V = VC ]VE representing classes and enti-
ties, respectively, and R stands for binary relations between entities. The set of
classes an entity e belongs to is denoted C(e) = {c | type(e, c)} (type is a special
relation that connects an entity node with a class node), while the relations e
is involved in is R(e) = {r | r(e, e′), r(e′, e) ∈ R ∧ e, e′ ∈ VE}. In our text-rich
data setting, every entity also has some textual attribute values such as name,
comment and description. To incorporate this, every entity node e ∈ VE is
treated as a document, i.e., modeled as a bag of words e = {w1, . . . , w|e|}, which
contains all words in the textual values of e.
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Fig. 2: An excerpt of the TRM result for DBpedia. It captures four TRM topics
and and their top ranked words. Further, classes that are highly correlated with
individual topics and relations that are highly correlated with pairs of topics are
shown (strength of correlation shown in brackets).



2.1 TRM

TRM is a topic model representing G through a set of topics T = {ti, . . . , tK}.
Each t ∈ T is a probabilistic distribution {p(w | t)}w∈V , where

∑
w∈V p(w | t) = 1

and V is the vocabulary of words. However, the context from which topics are
derived is not made up of plain words but also includes entities, classes and rela-
tions in G. This is reflected in the TRM’s output, which includes topics as well as
their strength of correlation w.r.t. words, classes and relations. Fig. 2 illustrates
this. For instance, we can see that the related words employ and merger form
the topic t1. Further, t1 is not only drawn from words but also, correlates with
entities of the types Organization and Company. This topic (and its associated
words) correlates with other topics (words) such as t3 (brand and engine) in
the context of the manufacturer relation.

Because TRM also captures dependencies between structure elements (classes
and relationships), it can also be seen as a SRL approach. However, it captures
them only indirectly using topics, which act as a low-dimensional abstraction of
the text. We now present the TRM’s Bayesian network representation to show
these relational dependencies conditioned on topics.

2.2 Template-based Representation of TRM

A template-based representation of Bayesian networks [20] is used to define TRM
as a set of template attributes and template factors.

Let X denotes some the of random variables, X = {X1, ..., Xn}, where each
Xi ∈ X can be assigned a value from the range V al(Xi). Then, a template at-
tribute (or attribute hereafter) is a function A(α1, ..., αk), whose range is V al(A),
and each argument αi is a placeholder to be instantiated with values of a par-
ticular type. For example, there are the template attributes Company(α1) and
headquarter(α1, α2). The values used to instantiate αi are drawn from the data,
called the object skeleton, O(A). Given O(A), the variables instantiating A is
XO(A) = {A(o) | o ∈ O(A)}, where V al(Xi) = V al(A) for each Xi ∈ XO(A).
For example, from Company(α1) and O(Company) = {c1, c2, c3}, we obtain the
random variables XO(Company) = {Company(c1), Company(c2), Company(c3)}.

Template factors are used to define probability distributions over random
variables. They are templates because instead of ground variables, template at-
tributes are taken as arguments. They return real numbers for assignments of
variables instantiated from template attributes, i.e., given a tuple of attributes
A1, ..., Al, a template factor f is a function from V al(A1) × ... × V al(Al) to R.
A special template factor is the conditional probability distribution, which splits
the attributes into two groups, Ac,APa ⊆ {A1, ..., Al}, called child and parent
attributes.

Observed Variables. Elements in G are used to instantiate three tem-
plate attributes defined for observed variables, namely the class c, the relation r
and the entity-word assignment w. Their object skeletons are entities belonging
to the type c, relations of the type r, and words in the entities’ bag-of-words
representation, i.e., O(c) = {e|c ∈ C(e)}, O(r) = {(e, e′)|r(e, e′) ∈ R} and



O(w) = {(e, v) | e ∈ VE ∧ v ∈ e}. These templates are binary-valued func-
tions, indicating whether an entity, a relation instance or an entity-word assign-
ment exists or not. For example, the variables Company(c1), product(c1, p1)
and w(c1, car) obtained for these templates model whether there is an entity c1

that is a company, p1 is a product of c1 and car is a word associated with c1,
respectively.

Observe that some entity-word assignments are dependent on a particular
relation. For instance, the probability of observing the assignment w(e,munich)
is very high, given headquarter(e, e′) indicating “BMW, the company e, has its
headquarter in Germany, the country e′”. Further, such dependencies may exist
only for some particular entities – e.g. not every entity that has its headquarter
in Germany contains the word munich but some other words representing other
cities in Germany. Instead of modeling dependencies between all observable vari-
ables (words and structure elements) directly, TRM models variables as being
dependent on hidden topic-related variables.
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Fig. 3: (a) Template-based representation around the entity c1 with observed
variables (dark) and hidden topic-related variables (light). (b) The generative
process for two entities shown in plate notation.

Hidden Topic-related Variables. The hidden topic variables are captured
by the template attributes topic indicator b, topic proportion θ and topic-word
assignment z. For these templates, we need object skeletons that also range
over the topics T . In particular, b is instantiated with entities and topics in the
skeletons O(b) = {(e, t)|e ∈ VE , t ∈ T}. It is a binary-valued function such that
for an entity e, bt(e) = 1 indicates that t is a topic of e. The vector of all topic
indicator variables of e is b(e) = 〈bt1(e), . . . , btK (e)〉.

While b(e) is useful to determine which topics are present for an entity e,
it does not capture sufficient information to model the probabilities of entity
words. Following the tradition of topic modeling, θ is introduced for modeling
entity words through a distribution of topics. While θ is defined over the same



skeletons, it is different to b in that it is real-valued: for an entity e, θt(e) returns a
real number and θ(e) = 〈θt1(e), . . . , θtK (e)〉 defines a per-entity topic distribution
such that

∑
t∈T θt(e) = 1.

The semantics of the per-entity topic-word assignment is the same as in LDA.
To capture this, we define a template attribute z that has the same skeleton as
w. However, instead of a binary value, it returns a topic for an entity-word pair,
i.e., z(e, v) = t indicates that the word v associated with e belongs to topic t.

Fig. 3-a depicts variables obtained by instantiating the templates with infor-
mation about the entity c1.

2.3 Probabilistic Dependencies in TRM

Central to TRM is the assumption that given the topic indicator vector of an
entity, all its random variables derived from class and relation attributes are
conditionally independent. That is, instead of capturing dependencies between
these structure variables directly, we propose to use hidden topics. We want
to capture that when entities exhibit structural resemblances, their topics shall
also be similar. Vice versa, given some topics, some structure elements are more
likely to be observed than others. We introduce the model parameters λ and ω
to capture the quantity of how much a particular structure variable depends on
a topic (pair of topics).

First, we consider that the probability of observing an entity e belonging to
a class c depends on its topic indicator vector b(e). We model this as a template
factor captured by a logistic sigmoid function defined over a linear combination
of topic indicators, i.e.,

p(c(e) | b(e)) = σ(λTc b(e)) = σ

∑
ti∈T

bti(e) λci

 (1)

where σ(x) = 1
1+e−x is the logistic sigmoid mapping values from [−∞,+∞] to

[0, 1] and λ is a global parameter represented as a |VC |×K matrix. Each element
λci in the vector λc represents the strength of dependency between the class c
and topic ti.

Similarly, the probability of observing a relation r(e1, e2) is modeled via
logistic regression over the topic indicator vectors b(e1) and b(e2). A template
factor over r(e1, e2), b(e1) and b(e2) is defined as

p(r(e1, e2) | b(e1),b(e2)) = σ(b(e1)Tωrb(e2)) (2)

where b(e1)Tωrb(e2) =
∑
tk,tl∈T btk(e1)btl(e2)ωrkl and ωr is a K ×K matrix.

For any given two entities e1 and e2, where e1 has the topic indicator tk and e2
has tl, the weight of observing a relation r between these two entities is given as
the value of the cell (k, l) of the matrix ωr denoted as ωrkl.

Further, we employ the topic parameters θ and z to bring words into this
picture. We want to capture that given some topics, some words are more likely
than others. This part essentially follows the idea of topic modeling behind LDA.



The only difference is that while LDA defines the topic proportion θ(e) over all
topics, θ(e) here is defined only over the topics captured by the corresponding
topic indicator vector b(e), i.e., topics not in b(e) have no density in θ(e) (this
creates a sparsity of topics similar to focused topic modeling [12]). To capture
this, we introduce the template factor p(θ(e) | b(e)).

This is an important design decision: On one hand, in order to handle the
sparsity of dependencies that occur between the structure variables and the top-
ics, the topics indicated in b(e) determines the probability of observing structure
for the entity. On the other hand, the topic proportions of the entity in θ(e) is
governed by the topic indicator vector b(e) which in turn is determined by the
structure around the entity.

2.4 Generative Process

We specify the full joint distribution for TRM and the generative process so
that we can infer hidden variables from observed data in G. First, we start with
the vector b that specifies binary topic indicators for each entity. We use a
prior distribution over the possible values in b in order to capture our initial
uncertainty about the parameters. Obtaining such a prior is possible with the
Indian Buffet Process (IBP), which is a non-parametric Bayesian process used to
generate latent features via a Beta-Bernoulli distribution [21]. IBP assumes that
each entity e possesses a topic t with probability πt, and that topic indicators
in b(e) are then generated independently. Under this model, the probabilities of
the topics are given as π = {π1, ..., πK}, and each πt follows a Beta distribution
with hyperparameter α, i.e., p(πt | α) = Beta(α/K, 1). Then, for an entity e,
each topic indicator value is sampled from a Bernoulli distribution as p(bt(e) |
πt) = Bernoulli(πt). IBP can be utilized for both finite and infinite number of
topics [22]. For the purpose of this work, we set the number of topics to a fixed
K. For θ(e), we set a Dirichlet prior over the topics just like in LDA. However,
instead of using a uniform hyperparameter, we parametrize the Dirichlet with
topic indicators b(e): p(θ(e) | b(e), ρ) = Dirichlet(ρb(e)). As the number of
selected topics varies according to b(e), each entity will have a different density
of topic proportions. For the topic index z and word attribute w, the same
process as defined for LDA involving the hyperparameter β is used. We arrive
at the following generative process (see Fig. 3-b):

1. For each topic t = 1, 2, ..,K:
(a) Draw πt | α ∼ Beta(α/K, 1).

2. For each entity e:
(a) For each topic t:

i. Draw bt(e) | πt ∼ Bernoulli(πt)
(b) For each class c of entity e:

i. Draw c(e) using Eq. 1
(c) Draw θ(e) | ρ ∼ Dir(ρb(e))
(d) For each word v of entity e:

i. Draw topic index z(e, v) | θ(e) ∼Mult(θ(e))



ii. Draw word w(e, v) | z(e, v), β1:K ∼Mult(βz(e,v))

3. For each pair of entities e, e′:

(a) For each relation r ∈ {r | r(e, e′), r(e′, e) ∈ R}:
i. Draw r(e, e′) or r(e′, e) using Eq. 2

2.5 Learning

We propose to learn the posterior distribution of the hidden topic-related vari-
ables b,θ,π and z conditioned on the observed variables w, c and r via varia-
tional Bayesian learning [23]. Intuitively, the variational method approximates
the posterior distribution of p by another simpler distribution q. In particu-
lar, through mean field approximation [23], we have q as a distribution that is
fully-factorized over the hidden variables indexed by the free variational param-
eters ν,γ,φ and τ for Bernoulli, Dirichlet, Multinomial and Beta distribution,
respectively:

q(b,π, θ, z | ν,γ,φ, τ ) =

K∏
t=1

q(πt | τt1, τt2)
∏

e∈VE

q(bt(e) | νt(e))


∏

e∈VE

q(θ(e) | γ(e))
∏

(e,v)∈O(w)

q(z(e, v) | φ(e, v))

 (3)

These variational parameters are then fit such that q is close to the true
posterior of p, where closeness is measured by the KL-divergence, KL(q ‖ p).
Because the decomposition log p(c, r,w) = KL(q ‖ p) +L(q) and KL(q ‖ p) ≥ 0
hold [23], minimizing the KL-divergence is equivalent to maximizing the term
L(q), the variational lower bound on the log marginal likelihood. The learning
problem can then be expressed as optimizing

{τ, ν, γ, φ} = arg max
{τ,ν,γ,φ}

L(q) (4)

For this, we use the 2-steps variational Bayesian EM algorithm. It takes the
fixed hyperparameters α and ρ and an initial choice of the model parameters β, λ
and ω as inputs. Then, it iteratively updates the variational parameters τ, ν, γ
and φ until convergence in the E-step. Then, for fixed values of the variational
parameters, the model parameters β, λ and ω are iteratively computed in the
M-step. Thus, parameters are updated until convergence within the two steps,
and both steps are run until convergence in the outer loop of the EM.

Variational E-Step. Update equations for this step can be obtained by
setting the derivative of L(q) equal to zero. For each topic t ∈ K, we compute
τt1 and τt1 of the Beta distribution as

τt1 =
α

K
+

∑
(e,t)∈O(b)

νt(e) (5)

τt2 = 1 + |O(b)| −
∑

(e,t)∈O(b)

νt(e) (6)



The update of νt(e) is given as νt(e) = 1
1+eϑt(e)

where

ϑt(e) = ϑτ +
∑

c∈C(e)

ϑc +
∑

r(e,e′)∈R

ϑr1 +
∑

r(e′,e)∈R

ϑr2 + ϑγ (7)

The update in Eq. 7 has five different parts. The contribution from the Beta prior
can be computed by ϑτ = Ψ(τt1)− Ψ(τt2) where Ψ(·) is the digamma function.
For each class c ∈ C(e) the contribution to the update is given by

ϑc = (1− σ(λTc ν(e)))λct (8)

If the entity is the source of a relation, i.e., we have r(e, e′), the contribution is

ϑr1 = (1− σ(ν(e)Tωrν(e′)))ωrt.ν(e′) (9)

or if it is the target, i.e. r(e′, e), the contribution is

ϑr2 = (1− σ(ν(e′)Tωrν(e)))ωr.tν(e′) (10)

and ϑγ is updated by

ϑγ = ρ (Ψ(γt(e))− Ψ(
∑
t′

γt′(e))) (11)

The variational Dirichlet parameter γt(e) is

γt(e) = ρνt(e) +
∑

(e,v)∈O(w)

φt(e, v) (12)

The contribution to the update in Eq. 12 includes the variational multinomial
φt(e, v) and also the variational parameter νt of the corresponding topic indicator
bt, i.e., q(bt(e) | νt(e). This is the direct result of parameterizing the Dirichlet
distribution with the topic indicator vector of each entity instead of using a
non-informative prior α as in LDA.

The updates for the variational multinomial φt(e, v) is identical to that in
variational inference for LDA [19]:

φt(e, v) ∝ exp{logβtv + Ψ(γt(e))− Ψ(
∑
t′

γt′(e))} (13)

where φt(e, v) = q(z(e, v) = t).
Variational M-Step. The update for the topic parameter β is the same as

in LDA because also here, the words are conditionally dependent on β and z.
In order to fit the parameters λ and ω of the logistic regression defined by Eq.

1 and 2, respectively, we employ gradient-based optimization. At each iteration,
we perform updates using the gradient

5λct =
∑
e∈VE

(1− σ(λTc ν(e)))νt(e) (14)

for each class c and topic t and

5ωrtt′ =
∑

r(e,e′)∈∈R

(1− σ(ν(e)Tωrν(e′)))ωrtt′νt′(e
′) (15)



for each relation r and topics t and t′.
These gradients cannot be used directly since they are only calculated for pos-

itive observations of class and relationships. For the unobserved cases (r(e, e) =
0) a regularization penalty is applied so the updates decreases ω and λ in each
iteration for the topics controlled by the Beta-Bernoulli prior of b. This also
introduces sparsity of the weights in ω and λ according to the topics selected
in b. In particular, let ε be the number of observations (e.g. entities) for which
the class membership is unknown such that c(e) = 0 and π be a topic-indicator
vector set to be the mean of the Beta-distributed variable π, π = τ1

τ1+τ2
. Then,

the regularization for λc is Rλc = −ε(σ(λTc π))π. Similarly, let ζ be the number
of observations where a particular relationship is unknown (i.e. r(e, e′) = 0).
Then, the regularization term for ωr is Rωr

= −ζ(σ(πTωrπ)π.

3 Experiments

First, we aim to obtain an initial understanding of the (1) quality of the topic
model produced by TRM. Then, we provide a quantitative analysis of TRM by
comparing its performance to state-of-the-art TM and SRL approaches w.r.t. the
(2) object clustering and (3) link predication tasks, respectively.

Datasets. We use a subset of DBpedia containing 20,094 entities described
by 112 distinct classes and 49 different types of relations. All attribute values are
treated as textual information and put into bags of words. The resulting vocabu-
lary comprises 26,109 unique words after stop word removal. We also employ the
DBLP3 dataset. The abstract and title of the papers are treated as textual data.
In addition, authors and conferences and their relations to papers are taken into
account. We use a subset of papers that belong to the fields of database, data
mining, information retrieval and artificial intelligence. In total, there are 28,569
paper, 28,702 author and 20 conference entities, and a vocabulary comprising
11,771 unique words.

3.1 Topic analysis

A useful application of TRM is to understand the data. Fig. 2 displays the top
words of four selected topics using the learned β parameter. Words are ranked by
score(v, t) = βtv

(
logβtv − 1

K

∑
t′ logβt′v

)
, which intuitively, assigns high scores

to those words that are characteristic for a topic, relative to all other topics.
We can clearly observe that structure elements (classes and relations) have an
influence on the topics and the words that are ranked high for these topics. For
example, t1 has top words from entities of the type organization whereas t2
captures words related to person. In particular, t1 and t2 have top words from
those organization and person entities that are involved in the keyPerson rela-
tion. In fact, TRM not only exploits structure information for topic modeling but
also explicitly models the strength of dependencies between topics and structure
elements through the ω and λ parameters.

3 http://www.informatik.uni-trier.de/ley/db/



3.2 Link Prediction

Note that TRM captures the joint distribution over variables representing topics
and structure elements. Thus, not only are topics dependent on structure ele-
ments but also vice versa, the existence of certain topics (and their words) can
be used to infer that some structure elements are more likely than others. Here,
we evaluate the effectiveness of using TRM topics for link prediction – based
on the design and implementation used for the previous C3 experiment [18]. We
created training data using the author relations between papers and authors
in DBLP and the starring relations between movies and actors in DBpedia.
Then, this data is divided into a training and test set, with test data set to be
2, 4 and 3

4 times the amount of training data.
However, it should be noted that the task of link prediction in SRL is different

from LP for documents(as in Chang et.al or Topic-Link LDA) in which topic
similarity of documents is only distinctive feature. In the former each relation
(e.g.starring,author) is characterized differently by its weights to features in a
linear model like SVM. Thats why supervised TMs are not directly applicable
on this task. Thus, in this experiment we show how the topic features based on
ω of a relation are distinctive for link prediction beyond some base features such
as the ones employed in C3. Also note that, unlike other supervised TMs, TRM
distinguishes different types of relations and a separate ω matrix is used for every
relation, which assigns cross-topic weights. Link direction is also considered as
the matrix omega is asymmetric.

Methods. We compare TRM against MLN [17] and C3 [18]. To train the
MLN, we use the open source Alchemy4 implementation and adopt the rules
as described in the Alchemy’s tutorial for link predication. In order to predict
links between two entities, C3 employs SVM along with a set of features includ-
ing Jacccard similarity computed from textual values of the two entities, words
shared by the entities and adjacent nodes connected to the entities. LibSVM5

is used to train a nu-SVM with a RBF kernel. The value of nu is set experi-
mentally between 0.1 and 0.5. To use TRM for link prediction, we consider the
combination of C3 and the topics inferred by TRM. Namely, TRM provides two
additional features that are then used by C3. The first feature is a topic-based
similarity score defined as simr(e1, e2) =

∑
t,t′
∑
v∈VM

p(v | βt) ωrtt′ p(v | βt′)
where VM is the set of words e1 and e2 have in common. Instead of using these
shared words only, we also use all the words in e1 and e2 to calculate a second
feature using the formula above.

Results. We present the overall performance in Table 1. Also considering
true negatives as depicted in Fig.4, we observe that while MLN can provide high
recall for positive labeled data (achieves best recall for DBpedia in one setting),
it does not perform well for negative labeled data. C3 performs better than
MLN in terms of precision and accuracy and also, achieves higher true negative
rate. However, C3’s performance could clearly be improved when using TRM
features in additional: TRM outperforms both baselines in terms of precision

4 http://alchemy.cs.washington.edu/
5 http://www.csie.ntu.edu.tw/ cjlin/libsvm/



DBLP(1-4) DBLP(1-2) DBLP(3-4)
Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc.

MLN 50.46 74.75 50.05 49.53 71.33 49.23 51.9 76.14 52.31

C3 55.51 76.92 57.69 56.09 71.87 55.14 58.13 78.12 59.80

TRM 66.03 84.84 67.34 65.98 83.87 69.53 68.83 85.54 71.25

DBpedia(1-4) DBpedia(1-2) DBpedia(3-4)
Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc.

MLN 50.72 81.7 51.08 50.4 83.05 50.5 51.45 79.61 52.03

C3 57.14 66.67 54.95 56.52 66.10 54.04 55.88 65.51 54.95

TRM 72.71 78.43 69.04 70.58 74.38 67.84 71.68 74.20 67.28

Table 1: Precision, recall and accuracy results for link prediction on DBLP and
DBpedia.

and accuracy and achieves average recall comparable to MLN. Also, it is more
superior than these baselines in handling negative labeled data. The second
feature provided by TRM captures the topical correlation between all words of
the entities. It was particularly helpful in eliminating false negatives, i.e., two
entities not correlated topic-wise w.r.t. ωr are mostly not linked. The topic-based
similarity calculated from matching words further helps to find true positives.

Fig. 4: True negative rate for DBLP and DBpedia.

3.3 Object Clustering

For DBPedia, we use entities of the type movie. Following the experiment per-
formed previously [9], we use the six labels in DBLP representing various com-
puter science fields as clusters. The clustering result is evaluated by comparing
the label of each paper with the topic learned from the data.

Methods. We compare TRM to three TM approaches. As the most rele-
vant baselines, we use two methods for learning topics from heterogeneous net-
works [9]: one model is learned with biased random walk (TMBP-RW) and



Method/
Metric

Paper(%) Author(%) Venue(%)
Acc. NMI Acc. NMI Acc. NMI

LDA 47.22 15.97 – – – –

TMBP-RW 69.11 45.24 74.67 65.61 65.79 67.48

TMBP-Reg 78.21 58.42 88.55 71.17 75.02 64.01

TRM 89.35 65.51 93.44 78.16 87.73 75.11

(a) DBLP

Method/
Metric

Movie(%)
Acc. NMI

LDA 58.71 22.29

TMBP-RW 57.10 27.65

TMBP-Reg 62.33 31.84

TRM 71.57 44.28

(b) DBpedia

Table 2: Precision and normalized mutual information (NMI) results for object
clustering on DBLP and DBpedia.

the other results from biased regularization (TMBP-Reg). TMBP-RW propa-
gates topic probabilities through the network via random walk, while TMBP-
Reg achieves topic propagation through regularizing a statistical topic model
with two generic terms. A previous experiment [9] has already shown that incor-
porating heterogeneous structure information as performed by these baselines
helps to outperform clustering results of several existing (TM) approaches. For
brevity, we thus include only the results of the standard LDA model [19]. Since
LDA cannot be directly applied to heterogeneous information networks, we only
use the bag-of-words representation of entities and ignore structure information.

Results. Table 2 shows the average results obtained from 10 test runs.
TMBP-RW outperforms LDA on DBLP and is comparable to LDA on DBPe-
dia. TMBP-Reg slightly outperforms TMBP-RW on both datasets. This suggests
that exploiting structure information as supported by TMBP-RW and TMBP-
Reg, leads to better results than LDA, which only considers word co-occurrences.
TRM leads to further improvements on both datasets by incorporating the ef-
fects of specific classes and relations on topics. For DBpedia for instance, TRM
automatically infers that the structure elements distributor and country have
a strong discriminative effect on assigning objects to the correct clusters.

4 Related Work

Related to our work, there are TM approaches proposed for homogeneous net-
works such as NetPLSA [2], Pairwise-Link-LDA [3], Nubbi [5], author-topic mod-
els [1], latent topic models for hypertext [6], citation networks [7] and relational
topic models [8]. The major distinction between these models and TRM is that
they consider a homogeneous network structure with only few types of entities
and relations. In addition, more related to TRM, there are approaches over het-
erogeneous networks [9, 7] which utilize specific regularization functions to fit the
topics to the underlying network structure. In general, as the network becomes
more heterogeneous (i.e. more than two types of relationships), more complex
topic models are needed to capture complex correlations between the topic and
structural variables. TRM mainly addresses this in a principled way by introduc-
ing sparsity of topics via topic indicators to create specific bias of topics towards
structure information, i.e., classes and relations.



SRL works such as probabilistic relational models (PRM) [13] and MLN [17]
learn graphical models using relational information. As discussed, this training is
costly when the dependency structure is complex and the number of variables is
high – which is particularly the case when a large amount of text is involved. We
propose the use of hidden topic variables to reduce this complexity. To combine
SRL with topic models, FoldAll [24] uses constraints given as first-order rules in a
MLN to bias the topics by training a MRF. Although biasing the topics according
to structure information can be accomplished through MLN, this approach does
not capture correlations between topics and structure elements (e.g. predicate of
rules). In addition, the number of groundings in the MLN rules poses a problem
for FoldAll, since each grounding is represented as an indicator function in the
corresponding topic model. TRM is unique in terms of using the topics as a
low-dimensional abstraction to capture the correlations between the topics and
classes/relationships (i.e λ and ω).

5 Conclusion

We presented TRM, a novel combination of TM and SRL to learn topics from
text-rich structured data. It captures dependencies between words in textual
and structured data through hidden topic variables in a template-based model
constructed according to the underlying data structure. It represents a novel ap-
proach for automatically using heterogeneous structure information for learning
topics as well as using topics to perform SRL tasks. In experiments, we show that
compared to existing TM approaches, TRM is more effective in exploiting struc-
ture information. It reveals and exploits varying level of dependencies between
topics and specific classes and relationships, resulting in higher performance for
both object clustering and link prediction.

As future work we plan to explore the extension of TRM to even richer
generative models, such as time-varying and hierarchical topic models. In addi-
tion, potential application areas of TRM in the field of text-rich databases are
manyfold. In particular, for selectivity estimation of structural queries compris-
ing string predicates, TRM provides a synopsis of the database by capturing
the topics and their correlations with classes and relationships. This way, any
structural query can be interpreted as a probability distribution, from which the
query result size is estimated. We also consider TRM as being useful for keyword
search on structured data. In existing work, keywords are mapped to database
elements and connections between these keyword elements are discovered based
on the relationships given in the schema to compute structured results. The
ranking of these results is separated from that computation. Instead of using the
schema for discovering connections and a separate model for ranking, TRM can
serve as a “probabilistic schema”, capturing connections that are most proba-
ble. Hence, it can be used as a holistic model both for result computation and
ranking based on their probability.
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