
Web Service Discovery Based on Unified View on
Functional and Non-Functional Properties

Martin Junghans
Karlsruhe Institute of Technology (KIT),

Institute of Applied Informatics and
Formal Description Methods (AIFB),

Karlsruhe Service Research Institute (KSRI)
Email: martin.junghans@kit.edu

Sudhir Agarwal
Karlsruhe Institute of Technology (KIT),

Institute of Applied Informatics and
Formal Description Methods (AIFB),

Karlsruhe Service Research Institute (KSRI)
Email: sudhir.agarwal@kit.edu

Abstract—Ever increasing acceptance of service oriented ar-
chitectures in combination with the acceptance of the Web as a
platform for carrying out electronic business triggers a need for
automated methods to find appropriate Web services. Existing
discovery approaches often support a very restricted set of use
cases mainly due to the ignorance of non-functional properties
of services. In our formal model of Web services, we have a
unified view on properties that characterize functional as well as
non-functional aspects. We present how desired combinations of
properties are specified and interpreted as a set of desired service
descriptions and show how service descriptions that fulfill such
constraints are discovered.

I. INTRODUCTION

Web service discovery deals with finding appropriate Web
services for a task at hand and is one of the central components
needed for developing service oriented applications. It is
realized by matching available service descriptions against
a service request and identifying those ones from the given
descriptions that fulfill the request.

One common problem of almost all existing and well known
discovery approaches is that they apply the same formal-
ism for describing service offers and requests. Intuitively, a
service description formalizes the actual values of service
properties. In contrast, a service request specifies desired
property value ranges. Therefore, using the same formalism
with same interpretation for both service description as well
as request does not correspond with the requester’s intuition.
Such mismatch between the semantics of formalisms and the
intuitive interpretation of the requester makes these discovery
approaches hard to use in practice.

We showed in [1] that the applicability of discovered
services is not guaranteed for intersection based matchmaking
between service offers and requests using the same formalism.
E.g., if some requested service executions are provided by a
service and thus an intersect match exists, it may happen that
an invocation fails as not all requested executions are provided.

Unified View on Functional and Non-Functional Properties:
Non-functional properties (NFPs) are part of semantic service
descriptions and supplement functionality descriptions of ser-
vices. In contrast to functional descriptions that describe the
service behavior, NFPs describe manifold quality attributes of
services. It can be observed that non-functional requirements

(NFRs) are often referred to as soft criteria and exclusively
considered for ranking [2]. It is not determined per se whether
properties are interpreted as hard or soft requirements and it is
likewise valid to perceive NFRs as hard requirements, too. E.g.
the NFP availability with a value of 0.99 can be considered
for discovery as well. A request may specify that services have
to offer an availability of at least 90%, which is considered to
be a hard requirement. When a user specifies that she prefers
higher availability rates to lower ones, then such requirements
are referred to as a soft requirement and can be used to rank
services.

In [1], we presented a solution to the first requirement by
proposing different formalisms for service descriptions and
requests. However, we did not incorporate NFPs for discovery
yet. In this paper we present a discovery approach that treats
functional and non-functional properties uniformly.

In Section II we present our extended formal model of Web
services and a syntax for describing Web services together
with its semantic as a mapping to the formal model. We
introduce requests in Section III. Based on the semantics of
the service description and request formalisms, matchmaking
is presented in Section IV. We further show performance test
results of our implementation in Section V. In Section VI, we
discuss the relation of our approach to others and conclude in
Section VII.

II. SERVICE DESCRIPTIONS

This section introduces the formalism to describe Web
services semantically. We introduce a formal Web service
model that captures functional and non-functional properties
in a unifying way. Subsequently, a formalism for describing
such models by presenting an abstract syntax and its semantics
as a mapping to the formal model is provided.

A. Formal Model of Web Services

We consider a finite set P of Web service property types
and a finite set V of value sets. Each property type P ∈ P is
associated with a value set VP ∈ V . We view a Web service as
a finite set of property instances Q with each property instance
q ∈ Q being of a property type t(q) ∈ P that is associated
with a value vq ∈ Vt(q).



The functionality of a service is also a property within
the model. The formal model of this property is a labeled
transition system which comprises a set of states, a set of
transition labels and a labeled transition relation modeling
the transition between two states. An execution of a Web
service can be seen as a series of states. Here, we consider
traditional Web services that have no user interactions during
their execution. That is, we assume that inputs are provided
with the invocation and outputs are returned at the end. In [1]
we provide more details on modeling the service functionality
within this formal model.

B. Description Formalism

The presented formal model cannot be described completely
mainly because of the following reasons. (1) Service providers
may not want to reveal the exact sequence of operations
they perform. (2) Assuming a global set of property names
is not feasible. The first issue is relevant for functionality
and is the reason why we only model start and end states
by pre- and postconditions in addition to the set of inputs
and outputs in service descriptions. We address the second
issue by modeling Web service properties as properties in a
known ontology language, e.g. OWL [3] or WSML [4]. This
allows us to use existing ontology reasoners to reason about
the properties while not forcing a global set of property names.
More precisely, we
• define for each value set V ∈ V an ontology concept V.

We assume a set of common data types either available
directly or modeled as ontology concepts as well.

• model for each property P ∈ P with range VP a property
P as an object property with range VP if VP is a set of
individuals. Otherwise, if VP is a data type, we model a
property P as a data type property with range VP.

Since ontology languages allow alignment of concepts and
properties in subclass-of and subproperty-of relationships
resp., we achieve interoperability among properties. Note, that
functionality is just another property functionality with range
concept Functionality in our model of Web services.

C. Modeling Example

A service s requires three inputs: user ID, password
and a book’s ISBN number which are specified as I =
{id, pwd, isbn}. The service creates a shipping order for the
given book (if available) to the user’s address and returns
an invoice to the user about the details of the order. The
precondition φ states that it requires the user u with ID id
to be registered and authenticated by its password pwd. For
a successful execution it requires that the book b with ISBN
isbn is in stock.

φ ≡ isRegistered(id) ∧ isAuthenticated(id, pwd)

∧ User(u) ∧ hasID(u, id) ∧ Book(b) ∧ ISBN(isbn)

∧ hasISBN(b, isbn) ∧ isAvailable(b) . . .

The post-condition ψ states that there exists an order o about
product b (which is made sure by the precondition to be the

ordered book) after service execution. The order is supposed to
be shipped to the user’s address ad and there exists an invoice
about the book’s order and price.

ψ ≡ Order(o) ∧ containsProduct(o, b) ∧ hasPrice(b, p)

∧ isShipped(o, ad) ∧ hasAddress(u, ad) ∧ Invoice(i)

∧ containsOrder(i, o) ∧ containsPrice(i, p) . . .

The service returns the book b and the corresponding invoice
i to the user, which is specified by O = {b, i}.

N = {acceptsCreditCard(s, false),

deliveryInDays(s, 2), availability(s, 0.90)}

Apart from the described functionality, the NFPs N of the
service s state that it does not accept credit cards, delivers
within 2 days and has availability 90%.

III. SERVICE REQUESTS

We use a request formalism that differs from the formalism
of offers. In this section we describe the request description
syntax and its mapping into the formal request model.

A. Request Description Syntax

Requests constrain functional and non-functional properties
of services in a unifying way. Besides requesting for inclu-
sions and exclusions of desired property values, requests also
allow for the specification of certain combinations of desired
property values. For example, a user might accept a longer
delivery time only if the service offers credit card payment.

A request always refers to a desired service s of type
Service in order to refer to its properties and specify
constraints on their values by expressions of the form
hasProperty(s, propertyValueSet). Thus, the structure of a
request reflects the service model from Section II-A. The
below example sketches a requestR for a book selling service.

R ≡ Service(s) ∧ hasFunctionality(s, f) ∧ hasPrice(s, p)∧
hasInputs(f, ”i ∧ id∧ 6 ∃d”) ∧ hasOutputs(f, ”book ∧ inv”)∧
hasPrecond(f, ” . . . ISBN(i) ∧ Bday(d)”)∧
hasPostcond(f, ”Book(book) ∧ hasISBN(book, i)∧
Invoice(inv)”) ∧ hasDeliveryTime(s, dt) ∧ lessThan(dt, 7)

Constraints on functional properties are expressed by logical
expressions [1]. A set of desired inputs, outputs, pre- and
postconditions of desired services are characterized within
requests. This example states that the desired sets of inputs
must contain an ISBN and must not require any date of birth
information. Furthermore, the desired service must return a
book that is identified by the given ISBN as well as an invoice.

Constraints on NFPs: Non-functional requirements, de-
noted by N , constrain values of NFPs such that the request
describes a set of desired values. Analogously to service
descriptions, each of the desired services in a request is
described by a finite set of property instances Q. A property
instance q ∈ Q of a property type t(q) ∈ P is restricted to a set
of desired values VR,q ⊆ Vt(q). As an example, the maximum



delivery time of 7 days of the desired service s is expressed
by hasDeliveryTime(s, dt) ∧ lessThan(dt, 7).

B. Semantics of Service Requests

The semantics I of a request maps a set of property-values
sets into the formal model that is described by sets of desired
property-value sets. Translated into the formal model, a request
is a set of sets of property instances q ∈ Q of type t(q), which
is assigned to a value v ∈ VR,q that is member of the desired
value set VR,q .

Let q = (p, VR) denote a requested property instance of
user’s concern. VR,q ⊆ Vt(q) is the set of desired property
values of the property p = t(q) ∈ P . Then, the interpretation

I : {Q : Q ⊆
⋃
q∈Q
{q} × 2VR,q} → {Q : Q ⊆

⋃
q∈Q
{q} × VR,q}

of a property request is (p, VR,p)I = {(p, v)|v ∈ VR,p},
which is the set of property-value pairs that is constructed
by considering each value v ∈ VR,p that is member of the set
of acceptable values individually.

This interpretation provides us means to formalize desired
properties of services. Again, we refer to the work in [1]
that introduces modeling of the desired value set of the
functionality property as a set of labeled transition systems.

IV. MATCHMAKING

After we introduced two formalisms and their translations
into a common model, we define a match and how it is deter-
mined. A match is given if a service w meets all requirements
of a request R, i.e. property values of the offer are in the sets
of desired values of corresponding property instances.

Within the two formal models of service offers and requests,
a match is computed by checking whether the offer is con-
tained in the set of desired service descriptions of the request.
As each desired property is modeled as a set of desired values,
the matchmaker checks for a containment relation between
service offer and request. This applies to all property-value
pairs including the labeled transition system based formal
interpretation of offered and requested functionalities.

A service description was interpreted as a set

QIw ⊆
⋃
P∈P

P × VP (1)

of property instances comprising functional and non-functional
properties in a unifying way. Within the formal model of
service descriptions, the property instances q ∈ Q model the
assignment of a property t(q) to a value vt(q) ∈ Vt(q).

Constraints on properties QR in a request are formalized as
a set of values assigned to a property.

QR ⊆
⋃
P∈P

P × 2VP (2)

QIR ⊆
{
Q : Q ⊆

⋃
P∈P

P × VP
}

(3)

As can be easily derived from Equations (1) to (3), a set of
property instances QIw of a Web service description matches

against the requested properties QIR if and only if QIw ∈ QIR.
I.e., there exists a set Q′R ∈ QIR of property instances that
equals the set QIw. Then there exists qR ∈ Q′R for each
property instance qw ∈ QIW with qR = qw and this in turn
means that resp. types t(qR) = t(qw) and values vqR = vqw
of both property instances are equal per definitionem.

Matchmaking, as introduced above, detects the match be-
tween the example service description from Section II and
the request from Section III. For instance, the NFPs N match
the NFRs N , because the offered service is that fast that it
delivers in less than three days although it does not accept a
credit card. Furthermore, the pre-condition also matches the
request as the it only requires that the service identifies books
by ISBN and the post-condition as it delivers the proper book
with an invoice and the user receives reward points. Another
book selling service that identifies books by author name and
book title does not match this example request R.

V. IMPLEMENTATION AND EVALUATION

We fed service descriptions in form of ontologies into a
WSML reasoner1 and used the WSML core language dialect
for Web service descriptions within the EU-funded project
SOA4All. Notice that our approach is not bound to these tech-
nologies. It can be also used in conjunction with standardized
languages like OWL and a corresponding reasoner.

A user interface allows to formulate and submit requests
that may contain a combination of constraints on desired
properties. The discovery engine translates the user request
into proper WSML syntax and sends this WSML query to the
reasoner. The reasoner executes the query upon its knowledge
base, which models all service descriptions. For each service
modeled in the knowledge base, the reasoner determines
whether the descriptions of offered inputs I , outputs O, pre-
condition φ, post-condition ψ, and NFPs N are a model of the
requested combination of inputs I, outputs O, pre-condition Φ,
post-condition Ψ, and NFRs N , resp. Therefore, the reasoner
checks all mappings between variables of query and service
description. A service is in the result set if there is a mapping
that fulfills pre- and post-condition plus the requested sets of
inputs and outputs cohere to this mapping

Performance Results: We created a repository of randomly
generated service descriptions. We use the Semantic Web for
Research Community ontology as domain knowledge to model
service descriptions. We measured the reasoner’s mean query
answering time on a quad core Xeon CPU (2.33GHz) powered
machine. Small, medium and large conjunctive queries with
6, 9, 12 variables and 9, 12, 15 properties resp. within the
desired pre- and post-conditions were sent to the reasoner.
Queries further comprised 2, 4, 6 NFRs, resp. The mean query
answering time ranges from 2.8s, 4.2s, 5.0s with 5K service
descriptions to 17s, 23s, 33s with 30K descriptions for small,
medium, large sized queries, resp.

We omit a comparison with existing discovery approaches
as our approach features different expressivity. We intend to

1See http://tools.sti-innsbruck.at/wsml2reasoner for reasoning details.



show the feasibility of the presented approach only. Obviously,
query answering time highly depends on size and structure of
the used domain ontologies, size and complexity of the query
and service descriptions.

VI. RELATED WORK

Many semantic Web service discovery approaches have
been proposed. OWL-S Profile [5] models Web services
semantically with inputs, outputs, pre-conditions and effects
(IOPE). OWL-S matchmaker uses OWL-S profile for de-
scribing offers as well as requests but considers types of
inputs and outputs only. The semantic Web community with
focus on languages provides description logic (DL) based
service description approaches [6], [5], [7]. Li et al. represents
objects like inputs and outputs as concepts in description logics
in [8] and further combine the use of DL with DAML+OIL
and DAML-S. Service descriptions and requests are similarly
structured comprising IOPE. Intersection based matchmaking
is reduced to subsumption checking of input and output
types. However, DL-based approaches fail to reason about
the dynamics of services since DL reasoners can not reason
about changing knowledge bases. Thus, formalisms like state
based approaches that cover service dynamics were developed
recently.

Stollberg et al. uses a state based formal model of service
descriptions [9]. The service functionality is formally de-
scribed by possible Web service executions while each normal
execution is determined by its start and end states. The dis-
covery algorithm [10] relies on the assumption φ⇒ ψ that the
pre-condition logically implies the effect. However, modeling
a transition as a logical implication can be problematic, e.g.,
a service that deletes a certain fact, when the existence of a
fact would imply non-existence of this fact.

The mentioned approaches did not use NFPs for discovery.
In OWL-S, NFPs are considered as human-readable meta-data,
e.g. service name. WSML [4] does not include NFPs into the
logical model. Consequently, no reasoning on them is possible.
The WSMO specification defined NFPs, however there is so
far no prominent implementation available that considers them,
such as the Internet Reasoning Service [11]. O’Sullivan [12]
described a set of NFPs relevant for modeling Web services
which were formalized in a WSMO deliverable.

Goal-driven approaches like [10], [13], [14] do neither
consider NFPs nor do they explicitly specify inputs in goals.
The usability of one global hierarchy of goal templates is
hardly feasible in an decentralized and open setting like
the Web. Furthermore, [10], [15] do not deal with possible
inconsistencies between functional description of Web services
with their classification. In a goal, constraints on inputs can
be useful, in particular if a user wishes to exclude a particular
input parameter. Another difference to our approach [1] is the
different interpretation of offers and requests.

VII. CONCLUSION AND OUTLOOK

We presented a formal service model based on a unified
view on functional and non-functional properties and enhanced

the formalisms introduced in [1] in order to capture NFPs.
We have shown how expressive requests with combinations of
constraints on NFPs and functional properties are formulated.
Based on the semantics and the common formal model of
service and request descriptions, we defined a match between
both and also showed how it can be computed. Finally, we
completed the presented work by a implementation that is part
of the larger system developed in the EU project SOA4All.

Our long term goal is to establish a scalable semantic
service search framework, which tightly integrates discovery
and ranking into the search of services. Both functional and
non-functional properties are not distinguished and likewise
considered for discovery and ranking. We aim to achieve
efficiency and scalability by developing indexing structures
and reducing the search space by early ranking. Known service
matching techniques like subsume and plugin match may be
exploited to develop indexing among service descriptions as
these techniques use the same formalism.

Acknowledgments: We acknowledge funding by the Euro-
pean project SOA4All (FP7-215219, http://www.soa4all.eu).

REFERENCES

[1] M. Junghans, S. Agarwal, and R. Studer, “Towards Practical Semantic
Web Service Discovery,” in 7th Extended Semantic Web Conference, ser.
LNCS. Springer, 2010.

[2] S. Agarwal, S. Lamparter, and R. Studer, “Making Web services tradable
- A policy-based approach for specifying preferences on Web service
properties,” Web Semantics: Science, Services and Agents on the World
Wide Web, vol. 7, no. 1, pp. 11–20, Januar 2009.

[3] W3C OWL Working Group, OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation, 27 October 2009, available at http:
//www.w3.org/TR/owl2-overview/.

[4] J. de Bruijn, D. Fensel, M. Kerrigan, U. Keller, H. Lausen, and J. Sci-
cluna, Modeling Semantic Web Services: The Web Service Modeling
Language. Berlin: Springer, 2008.

[5] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan, “Automated
Discovery, Interaction and Composition of Semantic Web Services,” in
Journal of Web Semantics, vol. 1, no. 1, Dec. 2003, pp. 27–46.

[6] B. Benatallah, M.-S. Hacid, A. Leger, C. Rey, and F. Toumani, “On
automating Web services discovery,” The VLDB Journal, vol. 14, no. 1,
pp. 84–96, 2005.

[7] J. Gonzalez-castillo, D. Trastour, and C. Bartolini, “Description Logics
for Matchmaking of Services,” in KI-2001 Workshop on Applications of
Description Logics, 2001.

[8] L. Li and I. Horrocks, “A Software Framework for Matchmaking Based
on Semantic Web Technology,” Int. J. Electron. Commerce, vol. 8, no. 4,
pp. 39–60, 2004.

[9] U. Keller, H. Lausen, and M. Stollberg, “On the Semantics of Functional
Descriptions of Web Services,” in Proc. of the 3rd European Semantic
Web Conf., 2006.

[10] M. Stollberg, M. Hepp, and J. Hoffmann, “A Caching Mechanism
for Semantic Web Service Discovery,” in The Semantic Web. 6th Int.
Semantic Web Conf., ser. LNCS 4825, K. Aberer and et al., Eds. Busan,
Korea: Springer, 2007, pp. 480–493.

[11] J. Domingue, L. Cabral, S. Galizia, V. Tanasescu, A. Gugliotta, B. Nor-
ton, and C. Pedrinaci, “IRS-III: A broker-based approach to semantic
Web services,” Web Semant., vol. 6, no. 2, pp. 109–132, 2008.

[12] J. O’Sullivan, “Towards a precise understanding of service properties,”
Ph.D. dissertation, Queensland University of Technology, 2006.

[13] R. Lara, M. Corella, and P. Castells, “A Flexible Model for Locating
Services on the Web,” Int. J. Electron. Commerce, vol. 12, no. 2, 2008.

[14] U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel, “Automatic
Location of Services,” in Proceedings of the 2nd European Semantic
Web Symposium (ESWS2005), Heraklion, Crete, 5 2005.

[15] T. Vitvar, J. Kopecký, J. Viskova, and D. Fensel, “WSMO-Lite Anno-
tations for Web Services,” in 5th European Semantic Web Conf., ser.
LNCS 5021. Springer, 2008.


