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Abstract. Applications of expressive ontology reasoning for the Seman-
tic Web require scalable algorithms for deducing implicit knowledge from
explicitly given knowledge bases. Besides the development of more effi-
cient such algorithms, awareness is rising that approximate reasoning so-
lutions will be helpful and needed for certain application domains. In this
paper, we present a comprehensive overview of the SCREECH approach
to approximate reasoning with OWL ontologies, which is based on the
KAON?2 algorithms, facilitating a compilation of OWL DL TBoxes into
Datalog, which is tractable in terms of data complexity. We present three
different instantiations of the SCREECH approach, and report on experi-
ments which show that a significant gain in efficiency can be achieved.

1 Introduction

Scalability of reasoning remains one of the major obstacles in leveraging the
full power of the Web Ontology Language OWL [1] for practical applications.
Indeed, large-scale applications normally use only a fragment of OWL which is
very shallow in logical terms, and thus cannot employ the more sophisticated
reasoning mechanisms for accessing knowledge which is implicit in knowledge
bases. While the use of such shallow techniques already has added value, it would
be preferable if the more complex logical constructors in the language could also
be used. Consequently, scalability of OWL reasoning needs to be investigated
on a broad front in order to advance the state of the art by several orders of
magnitude.

Among the many possible approaches to address scalability, one of them con-
cerns the use of logic programming for this purpose. This can be traced back to
the work on Description Logic Programs (DLP) [2, 3], which are a naive Horn
fragment of OWL DL. Along the same lines lies the OWL DL-fragment Horn-
SHZIQ [4,5], which is based on the sophisticated transformation algorithms im-
plemented in the KAON2-system?® [5, 6]. Horn-SHZ Q is strictly more expressive
than DLP and allows, for example, the free use of existential role restrictions.

* Research reported in this paper was partially supported by the EU in the IST project
NeOn (IST-2006-027595, http://www.neon-project.org/)) and by the Deutsche
Forschungsgemeinschaft (DFG) under the ReaSem project.

% http://kaon2.semanticweb.org
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At the same time, a different effort to leveraging Horn logic for OWL reason-
ing rests on the idea of approximate reasoning, which presupposes an application
scenario where speed is so important that it becomes reasonable to allow some
incorrect inferences in order to speed up the reasoning. The corresponding im-
plementation is called SCREECH [7], and it is based on the idea of approximating
an OWL DL knowledge base by Horn clauses. Initial experiments reported in
[7] — and briefly in [8] — have shown that SCREECH indeed improves runtime in
some cases, but further evaluations had been missing so far.

In this paper, we will introduce two new variants of the SCREECH approach
(in Sections 2 and 3), resulting in three related algorithms, which can be used
in combination for approximate OWL reasoning. We will then report on exper-
iments (in Section 4) which we performed for all approaches. They show that
all three variants of SCREECH indeed result in significant speed-up under only a
very small number of introduced mistakes.

2 The Screech Approach

2.1 The KAON2-Transformation

Reasoning with KAON?2 is based on special-purpose algorithms which have been
designed for dealing with large ABoxes. They are detailed in [5] and we present
a birds’ eyes perspective here, which suffices for our purposes. The underlying
rationale of the algorithms is that algorithms for deductive databases have proven
to be efficient in dealing with large numbers of facts. The KAON2 approach
utilises this by transforming OWL DL ontologies to disjunctive datalog, and
by the subsequent application of the mentioned and established algorithms for

dealing with disjunctive datalog.
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Fig.1. KAON2 approach to reasoning
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A birds’ eyes perspective on the KAON2 approach is depicted in Figure 1.
KAON2 can handle SHZQ(D) description logic ontologies, which corresponds
roughly to OWL DL without nominals. The TBox, together with a query are
processed by the sophisticated KAON2-transformation algorithm which returns
a disjunctive datalog program. This, together with an ABox, is then fed into a
disjunctive datalog reasoner which eventually returns an answer to the query.

In some cases, e.g. when querying for instances of named classes, the query
does not need to be fed into the transformation algorithm but instead needs
to be taken into account only by the datalog reaoner. This allows to compute
the disjunctive datalog program offline, such that only the disjunctive datalog
engine needs to be invoked for answering the query. All experiments we report
on have been performed this way, i.e. they assume an offline transformation of
the TBox prior to the experiments.

The program returned by the transformation algorithm is in general not
logically equivalent to the input TBox. The exact relationship is given below in
Theorem 1 due to [5]. Note that statement (b) suffices for our purposes. It also
shows that the KAON2 datalog reasoning engine can in principle be replaced by
other (sound and complete) reasoning engines without changing the results of
the inference process.

Theorem 1. Let K be a SHIQ(D) TBox and D(K) be the datalog output of
the KAON2 transformation algorithm on input K. Then the following claims
hold.

(a) K is unsatisfiable if and only if D(K) is unsatisfiable.

(b) K =« if and only if D(K) | a, where « is of the form A(a) or R(a,b), for
A a named concept and R a role.

(¢) K | C(a) for a nonatomic concept C if and only if, for Q a new atomic

concept, D(K U{C C Q}) E Q(a).

Convenient access to the KAON2 transformation algorithm is given by means
of the KAON2 OWL Tool* dlpconvert,® which can also produce F-Logic [9]
serialisations which can be used with F-Logic engines like OntoBroker.

2.2 Approximate OWL-Reasoning with SCREECH

Due to the inherent high complexity of reasoning with ontologies, it is to be
expected that some application settings will defy even the smartest approaches
for achieving sound and complete scalable algorithms. The method of choice
for dealing with such situations is to use approximate reasoning, which trades
correctness for time, but in a controlled and well-understood way.

The SCREECH approach is based on the fact that data complexity is polyno-
mial for non-disjunctive datalog, while for OWL DL it is coNP complete even
in the absence of nominals [4]. SCREECH utilises the KAON2 algorithms, but

4 http://owltools.ontoware.org/
® http://logic.aifb.uni-karlsruhe.de/wiki/Dlpconvert
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rather than doing (expensive) exact reasoning over the resulting disjunctive dat-
alog knowledge base, it does approximate reasoning by treating disjunctive rules
as if they were non-disjunctive ones, i.e. the disjunctive rules are approximated
by Horn rules.

We will first describe the basic variant of SCREECH, which was introduced
in [7], and which we call SCREECH-ALL. SCREECH-ALL is complete, but may
be unsound in cases. Its data complexity is polynomial. Two other variants of
SCREECH, SCHREECH-NONE and SCREECH-ONE, will be described in Section 3.

SCREECH-ALL uses a modified notion of split program [10] in order to deal
with the disjunctive datalog. Given a rule

H{Vv---VH, — A, ..., A,

as an output of the KAON2 transformation algorithm, the derived split rules are
defined as:

Hy — Aq,..., Ay : H,, — Aq,...,Ay.

For a given disjunctive program P its split program P’ is defined as the collection
of all split rules derived from rules in P. It can be easily shown that for instance
retrieval tasks, the result obtained by using the split program instead of the
original one is complete but may be unsound. As the following proposition shows,
this is even the case if all integrity constraints, i.e. rules of the form

— Bl, ceey Bn
are removed from the split program.

Proposition 1. Consider a SHZQ(D) knowledge base K B that is logically con-
sistent, let DD(K B) denote a disjunctive datalog program obtained by apply-
ing KAON2 to KB, and let P be the logic program obtained from DD(K B) by
SCREECH-ALL. Then P has a least model which satisfies any atomic formula that
is true in some minimal model of DD(K B).

FEspecially, P entails all atomic formulae that are true in all (minimal) models
of DD(K B), i.e. SCREECH-ALL is complete for instance retrieval on consistent
SHIQ(D) knowledge bases.

Proof. First, note that we can restrict to propositional programs obtained as the
(finite) ground instantiations of the relevant datalog programs. Hence it suffices
to consider propositional models.

The fact that P has a least model is a standard conclusion from the fact
that P is a definite logic program. To show the rest of the claim, consider any
minimal model M of the ground instantiation of DD(K B) (note that KB has
some model by consistency, and that some of those must be minial since only
finitely many ground interpretations exist). Define a ground program Qa as
follows:

QMZ{HiHBl/\.../\Bm|M):Bl/\.../\Bm andJ\/l):Hz,lgzgn)}
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We claim that Qaq is a definite program with least model M. Clearly Q aq
is definite (thus has some least model), and has M as a model. But obviously
any model of Q¢ that is strictly smaller than M would also satisfy all rules of
DD(K B), thus contradicting the assumed minimality of M.

Now clearly Qaq is a subset of the screeched program P, and hence any
model of P must be greater or equal to the least model M of Q r¢. Since M was
arbitrary, this shows claim. a

It is possible to also deal with nominals, i.e. to deal with OWL DL (aka
SHOZIN (D)) in an approximate manner. This was mentioned in [7], but for our
purposes it will suffice to consider SHZ Q knowledge bases only, which covers a
significant portion of OWL DL.

Putting the pieces together, SCREECH-ALL utilises the following subsequent
steps for approximate ABox reasoning for SHZ Q.

1. Apply transformations as in the KAON2 system in order to obtain a negation-
free disjunctive datalog program.

2. Obtain the split program as described above.

3. Do reasoning with the split program, e.g. using the KAON2 datalog reason-
ing engine.

Given a TBox K, the split program obtained from K by steps 2 and 3 is
called the screeched version of K. The first two steps can be considered to be
preprocessing steps for setting up the intensional part of the database. ABox
reasoning is then done in step 4. The resulting approach has the following theo-
retical features:

— It is complete with respect to OWL DL semantics.
— Data complexity is polynomial.

A prototype implementation of our approach is available as the SCREECH-ALL
OWL approximate reasoner.® It is part of the KAON2 OWL Tools. KAON2”
is the KArlsruhe ONtology framework, which includes a fast OWL reasoner
based on the KAON2 transformation algorithms [5], and also includes many
other features helpful for working with ontologies. We can convert a SHZQ
ontology into a disjunctive datalog program, e.g. by using the KAON2 OWL
Tool dlpconvert with the -x switch. SCREECH-ALL then accesses the results
of the translation through the KAON2 API, creates the corresponding split
programs and serializes them as Horn logic programs in Edinburgh Prolog syntax
or in F-Logic [11,12] syntax. We need to mention, however, that in general
support for concrete domains and other features like integrity constraints is not
necessarily implemented in off-the-shelf logic programming systems. In these
cases, concrete domains etc. cannot be used. The KAON2 OWL Tool ded,? for
example, performs a language weakening step by removing all concrete domains,
and may come in handy in such situations.

6 http://logic.aifb.uni-karlsruhe.de/screech
" http://kaon2.semanticweb.org
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serbian U croatian C european
eucitizen C european
german LI french LI beneluxian C eucitizen
beneluxian = luxembourgian LI dutch LI belgian
serbian(ljiljana) serbian(nenad)  german(philipp) french(julien)
chinese(yue) german(peter) german(stephan) mongolian(tuvshintur)

indian(anupriya) belgian(saartje) german(raphael) chinese(guilin)

Fig. 2. Example ontology

2.3 A Simple Example

We demonstrate the approach by means of a simple OWL DL ontology. It con-
tains only a class hierarchy and an ABox, and no roles, but this will suffice to
display the main issues.

The ontology is shown in Figure 2, and its intended meaning is self-explanatory.
Note that the fourth line,

beneluxian = luxembourgian LI dutch L belgian,

translates into the four clauses

luxembourgian(z) V dutch(z) V belgian(x) < beneluxian(x), (1)
beneluxian(z) « luxembourgian(x),
beneluxian(z) « dutch,

and beneluxian(z) « belgian(x).

Thus, our approach changes the ontology by treating the disjunctions in line (1)
as conjunctions. Effectively, this means that the rule

luxembourgian(z) V dutch(z) V belgian(z) < beneluxian(x)
is replaced by the three rules

luxembourgian(z) < beneluxian(x),
dutch(z) < beneluxian,
and belgian(x) < beneluxian(z).
This change affects the soundness of the reasoning procedure. However, most
of the ABox consequences which can be derived by the approximation are still

correct. Indeed, there are only two derivable facts which do not follow from the
knowledge base by classical reasoning, namely

dutch(saartje) and luxemburgian(saartje).

All other derivable facts are correct.
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3 Variants of Screech

We will now introduce two other variants of SCREECH, besides SCREECH-ALL
introduced above. These other variants are called SCREECH-NONE and SCREECH-
ONE.

SCREECH-NONE is defined by simply removing all disjunctive rules (and all
integrity constraints) after the transformation by the KAON2-algorithm. For
the example from Section 2.3, this means that the rule

luxembourgian(z) V dutch(z) V belgian(z) < beneluxian(x)

is simply deleted. The resulting reasoning procedure is sound, but incomplete,
assuming that we start with a SHZQ(D) knowledge base.

SCREECH-ONE is defined by replacing each disjuntive rules by ezactly one of
the split rules. This selection can be done randomly, but will be most useful if
the system has some knowledge — probably of statistical nature — on the size of
the extensions of the named classes.® For our example from Section 2.3, when
considering the rule

luxembourgian(z) V dutch(z) V belgian(x) < beneluxian(x),

we can use the additional knowledge that there are more dutch people than
belgians or luxenbourgians, thus this rule is replaced by the single rule

dutch(z) < beneluxian(z).

We also remove all integrity constraints after the translation. The resulting rea-
soning proceedure is neither sound nor complete. We thus obtain the following
result.

Proposition 2. Instance retrieval with SCHREECH-NONE is sound but generally
incomplete. Instance retrieval with SCHREECH-ONE in general is neither sound
nor complete.

Proof. Soundness of SCHREECH-NONE is immediate from the fact that calcula-
tions are performed on a subset of the computed clauses, together with mono-
tonicity of the employed datalog variant. For all other claims it is easy to find
counterexamples. a

The properties of SCREECH are summarised in Table 1.

From a theoretical point of view, it would be satisfying to characterize the
described approximations in terms extremal bounds in certain logical fragments.
However, we remark that the unsound screech variants do not yield greatest Horn
lower bounds in the sense of [13] w.r.t. the disjunctive datalog program, not even

8 This was suggested by Michael Sintek.
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Table 1. SCREECH variants and their basic properties

variant | description | sound| complete
SCREECH-ALL | use all of the split rules no yes
SCREECH-NONE| use none of the split rules| yes no
SCREECH-ONE | use one of the split rules | no no

if we modify the definition to allow only definite Horn rules. As a counterexample
for SCREECH-ALL, consider the program {« C(a),C(a)VC(b) «}. Its screeched
version is {C(a) <, C(b) <}, but its greatest lower bound in the sense of [13]
would be {C(b) <}. Analogously, we note that SCREECH-ONE yields no greatest
lower bound, even if integrity constraints are included (which obviously makes
the procedure complete while still being unsound). To see this, consider the pro-
gram {C(a) «—,C(b) —,«— A(a),« B(b), A(x) V B(xz) «— C(x)}. Its (extended)
SCREECH-ONE versions are {C(a) «—,C(b) <, A(a),— B(b), A(x) «— C(x)}
and {C(a) —,C(b) «—,« A(a),— B(b),B(xz) «— C(x)}, but its greatest lower
bound would be {C(a) «—,C(b) —, B(a) «+, A(b) —}.

3.1 Expected results

Prior to performing our experiments — which we will report in Section 4 — we
formulated the expected outcome from the different variants of SCREECH.

— SCREECH-ONE — assuming the mentioned knowledge about the size of the
extensions of atomic classes — compared to SCREECH-ALL should show overall
less errors for some suitable knowledge bases. We also expected SCREECH-
ONE to be quicker than SCREECH-ALL.

— SCREECH-NONE should be quicker than SCREECH-ALL and SCREECH-ONE.
We expected that the number of errors should be comparable with SCREECH-
ALL, but more severe than SCREECH-ONE.

We furthermore expected, that the parallel execution of SCREECH-ALL and
SCREECH-NONE should help to determine exract answers in some cases quicker
than using the KAON2 datalog reasoner. This expectation is based on the fol-
lowing fact: If the extensions of some class C' as computed by SCREECH-ALL and
SCREECH-NONE are of the same size, then the computed extensions are actually
correct (sound and complete) with respect to the original knowledge base.

4 Experimental Evaluation

An approximate reasoning procedure needs to be evaluated on real data from
practical applications. Handcrafted examples are of only limited use as the ap-
plicability of approximate methods depends on the structure inherent in the
experimental data.
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So we evaluated some popular publicly available ontologies. In some cases we
had to cautiously modify them in order to enable KAON2 to perform reasoning
tasks on them, but the general approach was to first use KAON2 for transforming
the TBoxes to disjunctive datalog. Also offline, a screeched version of the TBox
was produced. We then invoked the KAON2 disjunctive datalog engine on both
the resulting disjunctive datalog program and on the screeched version, to obtain
a comparison of performance.’

For all our experiments, we used a T60p IBM Thinkpad with 1.9GB of RAM,
with the Java 2 Runtime Environment, Standard Edition (build 1.5.0 09-b03).

Results in a nutshell

We performed comprehensive experiments with GALEN, WINE, DOLCE, and
SEMINTEC. Before we report in more detail, we list a summary of the results.

— SCREECH-ALL shows an average speedup in the range between 8 and 67%,
depending on the ontology under consideration, while 39 to 100% of the
computed answers are correct. Most interestingly, a higher speedup usually
seemed to correlate with less errors.

— SCREECH-ONE compared to SCREECH-ALL shows overall less errors. In most
cases, all correct class members are retrieved. Its runtime is comparable to
SCREECH-ALL.

— SCREECH-NONE compared to SCREECH-ALL shows similar run-time. In most
cases, the extensions are computed correctly — with the exception of WINE,
for which we get 2% missing answers.

— Running SCREECH-ALL and SCREECH-NONE in parallel and comparing the
results, allows the following: If the computed extensions are of the same size,
then we know that all (and only correct) class members have been found.
This is the case for more than 76% of all classes we computed.

GALEN

We first report on our experiments with the OWL DL version of the GALEN
Upper Ontology.!? As it is a TBox ontology only, we populated GALEN’s 175
classes randomly with 500 individuals.!! GALEN does not contain nominals or
concrete domains. GALEN has 673 axioms (the population added another 500).
After the TBox translation to disjunctive datalog we obtained ca. 1800 disjunc-
tive datalog rules,'? ca. 60 of which contained disjunctions.!® The SCREECH-ALL

® The raw data of the experiments can be found online under
http://logic.aifb.uni-karlsruhe.de/wiki/Screech.

10 http://www.cs.man.ac.uk/~rector /ontologies /simple-top-bio/

1 Using the pop KAON2 OWL tool.

12 The exact numbers differ slightly on different runs, as the KAON2 translation algo-
rithm is non-deterministic. Here it was between 1737 and 1909.

3 The number of disjunctive rules ranged between 51 and 81 on different runs.
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Table 2. Summary of the three SCREECH versions on GALEN. miss indicates the
elements of the extensions which were not found by the approximation, corr indicates
the elements which were correctly found, and more indicates elements which were
incorrectly computed to be part of the extension. time gives the runtime (in ms) for
the respective SCREECH version, while KAON2 gives the runtime (in ms) using the
disjunctive rules. f-meas is the f-measure known from information retrieval, computed
as (2 - precision - recall)/(precision + recall) with precision = corr/(corr + more) and
recall = corr/number of actual instances, corr.class gives the fraction of classes for
which the extension was computed correctly, and time/KAON2 is the ratio between
time and KAON2.

Variant miss corr more| time KAON2|f-meas corr.class time/KAON2
SCREECH-ALL | 0 5187 465 |513546 1562898| 0.957  0.78 0.33
SCREECH-ONE | 5 5182 134 (569658 1562898| 0.987 0.98 0.36
SCREECH-NONE| 10 5177 0 |366711 1562898| 0.999  0.78 0.23

split resulted in 113 new rules, replacing the disjunctive ones. 149 integrity con-
straints were also removed.

We then queried all named classes for their extensions using the KAON2
datalog engine, both for processing the disjunctive datalog program and for the
various splits.

A summary of the results can be seen in Table 2. For 137 of the 175 classes
(i.e. 78%), the computed extensions under SCREECH-ALL and SCREECH-NONE
had the same number of elements, which allows to conclude — without using the
disjunctive rules — that for those classes the extensions were computed correctly.
For some classes, so for the class Physical-occurrent-entity, computing the
extension under SCREECH-ALL saved 99% of the runtime.

While the different versions of SCREECH have about the same runtime, the
differences in the number of introduced errors is remarkable. Indeed, SCREECH-
NONE makes almost no mistakes. The parallel execution of SCREECH-NONE and
SCREECH-ALL, as mentioned, allows to compute the correct extensions of 78%
of the classes — and to know that the computations are correct — in less than a
quarter of the time needed by using the unmodified knowledge base.

DOLCE

DOLCE™ (a Descriptive Ontology for Linguistic and Cognitive Engineering) is a
foundational ontology, developed by the Laboratory for Applied Ontology in the
Institute of Cognitive Sciences and Technology of the Italian National Research
Council. In full, it exceeds the reasoning capabilities of current reasoners, hence
we used a fraction for our experiments consisting of 1552 axioms. Since DOLCE
is a pure TBox-Ontology, we randomly populated it with 494 individuals to be
able to carry out instance retrieval.

' http://www.loa-cnr.it/DOLCE.html
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Table 3. Summary of the three SCREECH versions on DOLCE. For the legend, see
Table 2.

Variant miss corr more| time KAON2|f-meas. corr.class time/KAON2
SCREECH-ALL | 0 3697 2256 (472941 516064 | 0.766 ~ 0.76 0.92
SCREECH-ONE | 0 3697 512 (425748 516064 | 0.935 1.0 0.82
SCREECH-NONE| 0 3697 0 |397260 516064 | 0.0 1.0 0.77

The conversion into disjunctive datalog yielded ca. 1780 rules'® of which
ca. 72 are disjunctive.'® The SCREECH-ALL split resulted in 176 new rules, re-
placing the disjunctive ones. We also removed ca. 200 integrity constraints.'”

As before, we queried all named classes for their extensions using the KAON2
datalog engine, both for processing the disjunctive datalog program and for the
various splits.

A summary of the results can be seen in Table 3. For 93 of the 123 classes
(i.e. 76%), the computed extensions under SCREECH-ALL and SCREECH-NONE
had the same number of elements, which allows to conclude — without using the
disjunctive rules — that for those classes the extensions were computed correctly.

Remarkable under DOLCE is that SCREECH-NONE makes no mistakes, while
the runtime improvement is rather mild. This indicates that the disjunctive
knowledge in DOLCE does not contribute any results.

WINE

The next ontology we tested was the WINE ontology.'® It is a well-known ontol-
ogy containing a classification of wines. Moreover, it is one of the rare ontologies
with both an ABox and a nontrivial TBox. It also contains nominals, which we
removed in an approximate way following [7].1° The resulting ontology contains
20762 axioms, including functionality, disjunctions, and existential quantifiers.
The corresponding ABox contains 6601 axioms.

The translation procedure into disjunctive datalog produces altogether ca. 550
rules,?® among them 24 disjunctive ones. The SCREECH-ALL split resulted in 48
new rules, replacing the disjunctive ones. We also removed 3 integrity constraints
after the translation.

As before, we queried all named classes for their extensions using the KAON?2
datalog engine, both for processing the disjunctive datalog program and for the
various splits.

1% 1775-1788

16.72-73

17 188-190

'8 http://www.schemaweb.info/schema/SchemaDetails.aspx?id=62

19 We used the TBox after that processing as baseline, since we are interested in the
comparion of the different versions of SCREECH.

20 526-572
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Table 4. Summary of the three SCREECH versions on WINE. For the legend, see

Table 2.

Variant miss corr more| time KAON2|f-meas. corr.class time/KAON2
SCREECH-ALL | 0 30627 1353 (588562 707476 | 0.978 0.93 0.83
SCREECH-ONE | 0 30627 615 |494456 707476 | 0.990 0.94 0.70
SCREECH-NONE| 697 29930 0 |504914 707476 | 0.988 0.90 0.71

A summary of the results can be seen in Table 4. For 116 of the 140 classes
(83%), the computed extensions under SCREECH-ALL and SCREECH-NONE had
the same number of elements, which allows to conclude — without using the
disjunctive rules — that for those classes the extensions were computed correctly.

WINE is the only ontology we tested for which SCREECH-NONE resulted in
mildly significant number of mistakes. However, precision is still at 0.977, i.e. very
good. Considering the fact that WINE was created to show the expressiveness
of OWL DL, it is remarkable that all three SCREECH versions show a very low
amount of errors, while runtime increases by 17-30%. For some classes — e.g. for
Chianti, over 91% of the runtime were saved using SCREECH-ALL.

SEMINTEC

In a last investigation, we consider an ontology, the translation of which turned
out to not contain proper disjunctive rules. Nevertheless, removing integrity
constraints is supposed to result in improving runtime behaviour (while in this
case even preserving soundness).

So, the last ontology we considered was created in the SEMINTEC project?!
at the university of Poznan and is concerned with financial services. Its TBox
contains 130702 axioms of comparably simple structure, apart from some func-
tionality constraints which require equality reasoning. The ABox contains 35882
axioms.

The TBox translation generated 217 rules, all of them being Horn, among
which were 113 integrity constraints.

As before, we queried all named classes for their extensions using the KAON?2
datalog engine, both for processing the disjunctive datalog program and for the
various splits.

Table 5. Summary of SCREECH on SEMINTEC — note that all three versions of
SCREECH coincide, since no disjuntive rules are produced by the translation. For the
legend, see Table 2.

Variant

miss corr more

time KAON2

f-meas. corr.class time/KAON2

SCREECH

0 51184 O

41796 86045 1

.0

1.0 0.49

2! http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm
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Table 6. Overview of SCREECH evaluations. Mark that for due to the completeness
of SCREECH-ALL, the recall values are always 100% as well as the precision values for
SCREECH-NONE due to its soundness. Moreover, the three SCREECH variants coincide
in the case of the SEMINTEC ontology.

SCREECH-ALL SCREECH-ONE SCREECH-NONE
ontology time saved precision |time saved precision recall|time saved recall
GALEN 38.0% 91.8% 63.6%  97.5% 99.9% 76.5% 99.8%
DOLCE 29.1%  62.1% 17.5%  87.8% 100% 23.0% 100%
WINE 34.5%  95.8% 30.1%  98.0% 100% 28.6% 97.7%
SEMINTEC 67.3% 100% 67.3% 100% 100% 67.3% 100%

A summary of the results can be seen in Table 5. As in the case of absence of
disjunctive rules all three variants of SCREECH coincide, for all of the 59 classes,
the extensions were computed correctly.

For SEMINTEC, we achieve a performance improvement of 54% while the
computation remains correct. For some classes - in particular for some with very
small extensions, computing the extension under SCREECH-ALL saved about 95%
of the runtime. For some classes with larger extension — like Leasing, 92% of
runtime was saved.

5 Conclusions

Motivated by the obvious need for techniques enhancing the scalability of reason-
ing related tasks, we have investigated three variants of the SCREECH approach
to approximate reasoning in OWL ontologies.

On the theoretical side, we gave the completeness result for SCREECH-ALL
and the soundness result for SCREECH-NONE, yet a desirable characterisation of
the approximations in terms of extremal bounds following the theory of Horn-
approximations was shown not to hold by providing counterexamples.

However, on the practical side the obtained results were promising: the per-
formance improvement is stable over all ontologies which we included in our
experiments. The performance gain varied between 17.5 and 76.5%, while the
amount of correctly retrieved classes was above 87.8% for all but one of the on-
tologies — see Table 6. It is encouraging to see that the approach appears to be
feasible even for the sophisticated WINE ontology, and also for the SEMINTEC
ontology, although in the latter case we only remove integrity constraints.

Concerning the comparatively bad results on DOLCE, we note that the re-
sults are quite counterintuitive. One would naively expect that performance im-
provements go hand-in-hand with loss of precision. However, for DOLCE we
measured both the least runtime improvement and the worst performance in
terms of correctness. Concerning correctness, we suspect that the comparatively
large number of incorrect answers is caused by the fact that DOLCE uses a
large number of complete partitions of the form A = A; U --- U A,, where all
the A; are also specified to be mutually disjoint. It is intuitively clear that this
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kind of axioms introduces disjunctive (non-Horn-style and therefore harder to
approximate) information on the one hand and integrity constraints (those being
neglected in our approximation) on the other. However, this does not in itself
explain why we did not observe a higher speedup. This indicates that the prop-
erties of ontologies which lead to performance improvement through screeching
must be less straightforward than initially expected. For a clarification, more
evaluations taking into account a wider range of ontologies with differing char-
acteristics w.r.t. expressivity, used language features, or statistical measures like
degree of population will lead to substantial hypotheses.

In general, we see a great potential in the strategy to combine various (pos-
sibly approximate) algorithms having known properties as soundness and/or
completeness maybe with respect to differing types of queries. For instance, the
proposed “sandwich technique” can be used to solve instance retrieval tasks in
some cases even without calling the more costly sound and complete reasoners.
If the sets of individuals Is and I retrieved by two algorithms—one of those
being sound and the other one complete—coincide, the result is known to be
exact. But even if not, the result is at least partly determined (as all elements of
Is are definitely instances and all individuals not in I are not) and it might be
beneficial to query a sound and complete reasoner for class membership only for
individuals of the set I \ Is of individuals for which class membership is still
undecided. Clearly, the strategy to combine several approximate algorithms will
be especially reasonable if parallel computation architectures are available.
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