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Abstract. Measuring inconsistency in knowledge bases has been recognized as
an important problem in many research areas. Most of approaches proposed for
measuring inconsistency are based on paraconsistent semantics. However, very
few of them provide an algorithm for implementation. In this paper, we first give
a four-valued semantics for first-order logic and then propose an approach for
measuring the degree of inconsistency based on this four-valued semantics. After
that, we propose an algorithm to compute the inconsistency degree by introducing
a new semantics for first order logic, which is called S[n]-4 semantics.

1 Introduction

Measuring inconsistency in knowledge bases has been recognized as an important prob-
lem in many research areas, such as artificial intelligence [1–5], software engineering
[6] and the Semantic Web [7]. There mainly exist two classes of inconsistency mea-
sures. The first class is defined by the number of formulas which are responsible for
an inconsistency [8]. The second class considers propositions in the language which are
affected by inconsistency [9–11, 3, 2]. The approaches belonging to the second class are
often based on some paraconsistent semantics because we can still find paraconsistent
models for inconsistent knowledge bases. The inconsistency degree considered in this
paper belongs to the second class.

In [9], three compatible kinds of classifications for inconsistent theories are pro-
posed, which actually provides three ways to define inconsistency measures for first-
order logic based on paraconsistent semantics. The first approach is defined by the
number of paraconsistent models. The underlying idea is that the less models, the more
inconsistent the knowledge base is. The second approach is defined by the number of
contradictions in a preferred paraconsistent model which has least contradictions, and
considering the number of non-contradictions in a preferred model which has most non-
contradictions. The third approach is defined by the number of atomic formulae which
have conflicting assignments and by the number of all ground atomic formulae. Among
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these three approaches, the first one is global in the sense that all paraconsistent mod-
els are considered, while the latter two are local since they only consider the models
with least inconsistencies or most consistencies. Later on, an approach for measuring
inconsistency in first-order logic is given in [3], which is based on the third approach in
[9].

Although there exist many approaches to measuring inconsistency in a knowledge
base in a logical framework, very few of them provide efficient algorithms for im-
plementation. In this paper, we first give a four-valued semantics for first-order logic
and then propose an approach for measuring the degree of inconsistency based on this
four-valued semantics. Our definition of inconsistency degree is similar to the approach
given in [3]. The difference is that our approach is based on four-valued semantics and
their approach is based on first-order quasi-classical semantics. After that, we propose
an algorithm to compute the inconsistency degree by introducing a new semantics for
first order logic, which is called S[n]-4 semantics.

This paper is organized as follows. In the next section, we introduce the four-valued
semantics of first-order logic and its properties. In Section 3, we propose a definition of
inconsistency degree of a first-order theory, and then, in Section 4, we give an algorithm
to compute the inconsistency degree. Finally, we conclude the paper and discuss future
work in Section 5.

2 Four-valued First-order Models

In order to measure the inconsistency degree of a first-order theory, in this section we
define four-valued models for first-order theories. The inconsistency measurement stud-
ied in [2] is also by four-valued models. However, quantifiers and variables are not
considered there — that is, only four-valued propositional models are being used. For
first-order theories, an alternative semantic structure studied in [9] can be viewed as
a three-valued semantics. Besides the definition of four-valued models, we also study
how to reduce four-valued entailment to classical first-order entailment in this section,
which serves as one of the important bases for our algorithm.

Given a set of predicate symbols P and a set of function symbols F (the set of 0-ary
functions is a set of constant symbols, denoted C), formulas are built up in the same way
as in classical first-order logic from predicates, functions, a set of variables V and the
set of logical symbols {¬,∨,∧,∀,∃,→,≡}, where α → β is the short form of ¬α∨β.

A first-order theory considered in this paper is a finite set of first-order formulae
without free variables. In this paper, whenever we want to clarify the arity of a function
or predicate, we may state the arity in parentheses following the function or predicate
symbol, e.g. f(n), P (n) means f, P are n-ary function and predicate, respectively. We
also use t (possibly with subscripts) for terms, Greek lowercase symbols α, φ for for-
mulas, and uppercase Γ for a first-order theory. The set of all predicates occurring in Γ
is denoted as P(Γ ). The cardinality of a set A is denoted by |A|.

The set of truth values for four-valued semantics [12, 13] contains four elements:
true, false, unknown (or undefined) and both (or overdefined, contradictory). We use the
symbols t, f, N, B, respectively, for these truth values. The four truth values together



with the ordering ¹ defined below form a lattice FOUR = ({t, f, B, N},¹):

f ¹ N ¹ t, f ¹ B ¹ t,N and B are incomparable.

The upper and lower bounds of two elements based on the ordering, and the operator ¬
on the lattice, are defined as follows:

– N ∧ t = N, B ∧ t = B,N ∧B = f , and for any x ∈ FOUR, f ∧ x = f ;
– f ∨N = N, f ∨B = B,N ∨B = t, and for any x ∈ FOUR, t ∨ x = t;
– ¬t = f,¬f = t,¬N = N,¬B = B, and for all x ∈ FOUR,¬¬x = x.

Formally, a four-valued interpretation I of a first-order theory is defined as follows.

Definition 1 A four-valued interpretation I = (∆I, ·I) contains a non-empty domain
∆I and a mapping ·I which assigns

– to each constant c an element of ∆I, written cI;
– to each truth value symbol the symbol itself: tI = t, fI = f,BI = B,NI = N .
– to each n-ary function symbol f(n) an n-ary function on ∆I, written fI : (∆I)n 7→

∆I, where (∆I)n =

n︷ ︸︸ ︷
∆I × ...×∆I

– to each n-ary predication symbol P (n) a pair of n-ary relations on ∆I, written
〈P+, P−〉, where P+, P− ⊆ (∆I)n.

Recall that a classical first-order interpretation maps each n-ary predicate to an n-ary
relation on the domain. A four-valued interpretation assigns a pairwise n-ary relation
〈P+, P−〉 to each n-ary predicate P , where P+ explicitly denotes the set of n-ary vectors
which have the relation P under interpretation I and P− explicitly denotes the set of
n-ary vectors which do not have the relation P under interpretation I. If a four-valued
interpretation I satisfies P+ ∪ P− = ∆I and P+ ∩ P− = ∅, then it is a classical
interpretation.

The definition of a state σ remains the same as in classical semantics of first-order
logic, which is a mapping assigning to each variable occurring in V an element of the
domain. Due to space limitation, we omit its formal definition as well as the definition of
interpretation of terms based on states. We denote by σ{x 7→ d} the state obtained from
σ by assigning d to x while leaving other assignments to other variables unchanged.

Given an interpretation I and a state σ, the four-valued semantics of an atomic
formula can be defined as follows.

Definition 2 Assume P (t1, ..., tn) is an n-ary predicate, where t1, ..., tn are terms. I is
a four-valued interpretation and σ is a state. Then the truth value assignment to atomic
predicates and equality is defined as follows:

(x ≡ y)I,σ = t, if and only if xσ = yσ

(x ≡ y)I,σ = f, if and only if xσ 6= yσ

(P (t1, ..., tn))I,σ = t, if and only if (tσ1 , ..., tσn) ∈ P I
+ and (tσ1 , ..., tσn) 6∈ P I

−
(P (t1, ..., tn))I,σ = f, if and only if (tσ1 , ..., tσn) 6∈ P I

+ and (tσ1 , ..., tσn) ∈ P I
−

(P (t1, ..., tn))I,σ = B, if and only if (tσ1 , ..., tσn) ∈ P I
+ and (tσ1 , ..., tσn) ∈ P I

−
(P (t1, ..., tn))I,σ = N, if and only if (tσ1 , ..., tσn) 6∈ P I

+ and (tσ1 , ..., tσn) 6∈ P I
−



where ≡ is used for equality in first-order logic.

Note that the truth assignment to equality is classical in the sense that an equality can
only obtain classical truth values t or f , while for common atomic predicates it may be
valued among {t, f, B, N}. Based on the semantics of atomic predicates, the semantics
of complex formulae can be defined deductively as follows:

Definition 3 Let ϕ and φ be two first-order formulae, γ(x1, ..., xn) be a formula con-
taining n free variables, I is a four-valued interpretation and σ is a state. Then,

(¬ϕ)I,σ = ¬(ϕ)I,σ; (ϕ ∧ φ)I,σ = ϕI,σ ∧ φI,σ; (ϕ ∨ φ)I,σ = ϕI,σ ∨ φI,σ

(∀x1, ..., xn.γ(x1, ..., xn))I,σ =
∧

σ′=σ{x1 7→d1,...,xn 7→dn}
(γ(d1, ..., dn))I,σ′

(∃x1, ..., xn.γ(x1, ..., xn))I,σ =
∨

σ′=σ{x1 7→d1,...,xn 7→dn}
(γ(d1, ..., dn))I,σ′

Throughout the paper, we use the finite domain assumption such that the righthand of
the last two equations above are finite conjunctions and disjunctions, respectively.

A four-valued interpretation I is a 4-model of a first-order theory Γ if and only if
for each formula α ∈ Γ , αI ∈ {t, B}. A theory which has a 4-model is called 4-valued
satisfiable. Four-valued entailment for first-order logic can be defined in a standard way
as follows.

Definition 4 Suppose Γ is a first-order theory and α is a first-order formula. Γ 4-
valued entails α, written Γ |=4 α, if and only if every 4-model of Γ is a 4-model of
α.

Note that the four-valued interpretation of equality is the same as in classical first-
order logic. So for all positive integers n, a four-valued interpretation I = (∆I, ·I) is
a 4-model of formula En = ∃x1, ..., xn.

∧
1≤i,j≤n(xi 6≡ xj) ∧ ∀y.

∨
1≤i≤n(y ≡ xi) if

and only if |∆I| = n.

Proposition 1 Given a first-order theory Γ without equality ≡ and without boolean
constants {t, f}, Γ always has 4-models of any domain size if UNA (the unique name
assumption1) is not considered. If UNA is used, Γ always has 4-models whose sizes are
equivalent to or larger than the number of constants in Γ .

Example 1 (Canonical example) Γ = {Penguin(tweety), Bird(fred),∀x.Bird(x) →
Fly(x),∀x.Penguin(x) → Bird(x),∀x.Penguin(x) → ¬Fly(x)}. Obviously, Γ has no
two-valued models. However, it has the following 4-model I = (∆I, ·I), where ∆I =
{a, b} and ·I is defined as tweetyI = a, fredI = b, FlyI(a) = B, PenguinI(a) =
BirdI(a) = BirdI(b) = FlyI(b) = t, PenguinI(b) = f.

According to Proposition 1, we restrict our measurement of the inconsistency degree
to first-order theories which do not contain equality or {t, f} in this paper.

Our four-valued semantics is an extension of classical semantics. Additionally, 4-
valued entailment can be reduced to the classical entailment. The reduction in the propo-
sitional case is studied in [14]. We extend it to the first-order case.

1 That is, if c and d are distinct constants, then cI 6= dI for each interpretation I.



Theorem 1 Let Γ be a first-order theory in negation normal form and φ be a formula.
Γ |=4 φ if and only if Θ(Γ ) ` Θ(φ), where Θ(·) is a function defined on a set of
formulae as follows:

– Θ(c) = c, if c is a constant.
– Θ(ϕ) = ϕ, if ϕ is x ≡ y or x 6≡ y;
– Θ(P (x1, ..., xn)) = P+(x1, ..., xn), where P+ is a new atomic n-ary predicate;
– Θ(¬P (x1, ..., xn)) = P−(x1, ..., xn), where P− is a new n-ary predicate;
– Θ(ϕ1(x1, ..., xn)◦ϕ2(y1, ..., ym)) = Θ(ϕ1(x1, ..., xn))◦Θ(ϕ2(y1, ..., ym)), where
◦ is ∧ or ∨;

– Θ(ϕ1(x1, ..., xn) → ϕ2(y1, ..., ym)) = Θ(¬ϕ1(x1, ..., xn)) ∨Θ(ϕ2(y1, ..., ym)).
– Θ(Qx.ϕ) = Qx.Θ(ϕ), where Q is ∀ or ∃.
– Θ(Γ ) = {Θ(ϕ) | ϕ ∈ Γ}.

Example 2 (Example 1 continued)
Θ(Γ ) = {Penguin+(tweety), Bird+(freg),∀x.Bird−(x)∨Fly+(x),∀x.Penguin−(x)∨
Bird+(x),∀x.Penguin−(x) ∨ Fly−(x)}.

Example 3 (Example 2 continued)
Consider Γ ′ = Γ ∧Fly(a1)∧¬Fly(a1)∧En and ϕ =

∨
2≤j≤n(Fly(aj)∧¬Fly(aj))∨∨

1≤j≤n((Bird(aj)∧¬Bird(aj))∨(Penguin(aj)∧¬Penguin(aj))). Obviously, Θ(Γ ′) =
Θ(Γ ) ∧ Fly+(a1) ∧ Fly−(a1)) ∧ En and Θ(ϕ) =

∨
2≤j≤n(Fly+(aj) ∧ Fly−(aj)) ∨∨

1≤j≤n((Bird(aj)+ ∧ Bird−(aj)) ∨ (Penguin+(aj) ∧ Penguin−(aj))). According to
Theorem 1, we know that Γ ′ 6|=4 ϕ because Θ(Γ ′) 6` Θ(ϕ). This example will be again
used in Example 7.

3 Inconsistency Measure by 4-valued Semantics

To measure inconsistency of a theory, we consider only finite theory and only finite do-
mains in this paper. This is reasonable for practical cases because only finite individuals
can be represented or would be used.

Our approach to measuring inconsistency is based on the approach given in [3]
which is defined by means of first-order quasi-classical models instead of four-valued
models. The reason why we use 4-valued models is that the 4-valued semantics for the
whole first-order language can be implemented by a linear reduction to the classical se-
mantics. While for quasi-classical logic, this is only achieved restricted to propositional
logic in CNF [15]. Due to space limitation, we omit all proofs. The underlying idea
comes from [3].

Definition 5 Let Γ be a first-order theory and I = (∆I, ·I) be a four-valued model of
Γ . The inconsistency degree of Γw.r.t. I, denoted IncI(Γ ), is a value in [0, 1] calculated
in the following way:

IncI(Γ ) =
|ConflictTheo(I, Γ )|
|GroundTheo(I, Γ )|

where GroundTheo(I, Γ ) = {P (d1, ..., dn) | d1, ..., dn ∈ ∆I, P (n) ∈ P(Γ )}, and
ConflictTheo(I, Γ ) = {(P (d1, ..., dn))I = B | d1, ..., dn ∈ ∆I, P (n) ∈ P(Γ )}.



That is, the inconsistency degree of Γ w.r.t. I is the ratio of the number of conflicting
atomic sentences divided by the amount of all possible atomic sentences formed from
atomic predicates occurring in Γ and individuals in the domain of I. It measures to
what extent a given first-order theory Γ contains inconsistencies w.r.t. I.

Example 4 (Example 1 continued) GroundTheo(I, Γ ) = {Bird(a), Penguin(a), Fly(a),
Bird(b), Penguin(b), Fly(b)}, ConflictTheo(I, Γ ) = {Fly(a)}. So IncI(Γ ) = 1

6 .

Let’s consider another 4-valued model I′ of Γ : tweetyI′ = a, fredI′ = b, FlyI′(a) =
PenguinI′(a) = BirdI′(a) = BirdI′(b) = FlyI′(b) = B, PenguinI′(b) = f. Ob-
viously, GroundTheo(I′, Γ ) = GroundTheo(I, Γ ), |GroundTheo(I′, Γ )| = 5, and
IncI′(Γ ) = 5

6 .

From this example, we can see that for any given first-order theory, its different 4-
valued models might contain different percents of contradictions. According to this, we
define a partial ordering on the set of its models as follows.

Definition 6 (Model ordering w.r.t. inconsistency) Let I1 and I2 be two four-valued
models of a first-order theory Γ such that |∆I

1 | = |∆I
2 |. We say that I1 is less inconsis-

tent than I2, written I1 ≤Incons I2, if and only if IncI1(Γ ) ≤ IncI2(Γ ).

As usual, I1 <Incons I2 denotes I1 ≤Incons I2 and I2 6≤Incons I1, and I1 ≡Incons I2

denotes I1 ≤Incons I2 and I2 ≤Incons I1. I1 ≤Incons I2 means that I1 is more consis-
tent than I2. The models of size n which are minimal w.r.t ≤Incons are called preferred
models and they are formally defined as follows.

Definition 7 Let Γ be a first-order theory, M4(Γ ) be the set of 4-models of Γ , and
n(n ≥ 1) be a given cardinality. Preferred models of size n w.r.t. ≤Incons , written
PreferModeln(Γ ), are defined as follows:

PreferModeln(Γ ) = {I | |∆I| = n;∀I′ ∈M4(Γ ), |∆I′ | = n implies I ≤Incons I′}.
By Proposition 1 and Definition 7, it is not hard to see that given a first-order theory

and an integer n, we can always find a preferred model if the unique name assumption
is not used. Otherwise, with the unique name assumption, we only can find a preferred
model provided n is not less than the number of constants appearing in the theory.

As a direct consequence of Definition 6 and Definition 7, the following corollary
shows that for any two preferred four-valued models of a first-order theory with the
same cardinality, the inconsistency degrees of the theory w.r.t. them are equal.

Corollary 2 Let Γ be a first-order theory and n(≥ 1) be any given positive integer.
Suppose I1 and I2 are two four-valued models of Γ such that |∆I1 | = |∆I2 | = n, and
{I1, I2} ⊆ PreferModeln(Γ ). Then IncI1(Γ ) = IncI2(Γ ).

Based on Corollary 2, the following definition of inconsistency degree of a first-
order theory is well-defined.

Definition 8 Given a first-order theory Γ and an arbitrary cardinality n(n ≥ 1), let In

be an arbitrary model in PreferModelsn(Γ ). The inconsistency degree of Γ , denoted by
TheoInc(Γ ), is defined as 〈r1, r2, ..., rn, ...〉, where rn = ∗ if PreferModeln(Γ ) = ∅,
and rn = IncIn

(Γ ) otherwise. We use ∗ as a kind of null value.



Following [3], we also use a sequence as the inconsistency degree of a first-order theory.
This sequence can reflect the inconsistency information of the theory with respect to
each finite size domain. For such sequences, the following property holds obviously.

Proposition 2 Given an inconsistent first-order theory Γ , assume |C| is the number of
constants of Γ and TheoInc(Γ ) = 〈r1, r2, ...〉. Then for i ≥ |C|, ri 6= ∗ and ri > 0.

This proposition shows that for any given first-order theory, its inconsistency measure
cannot be a meaningless sequence (i.e., each element is the null value ∗) no matter
whether UNA is used or not. Moreover, the non-zero values in the sequence start at
least from the position which equals the number of constants in the first-order theory,
and remains greater than zero in the latter positions of the sequence.

Example 5 (Example 1 continued) If UNA is used, TheoInc(Γ ) = 〈∗, 1
6 , ..., 1

3n , ...〉.
If UNA is not used, TheoInc(Γ ) = 〈 13 , 1

6 , ..., 1
3n , ...〉. The 4-models which only assign

Fly(tweety) to B are among the preferred models in both cases.

4 Computational Aspects of Inconsistency Degree Sequences

A naive way to compute the inconsistency degree is to list all models to check which are
the preferred models, and then compute the number of contradictions in these models.
For a first-order theory, listing all models is not an easy and practical reasoning task.

In this section, we propose a practical way to compute the inconsistency degree by
reducing the computation of the inconsistency degree to classical entailment, such that
existing reasoners for first-order logic can be reused.

4.1 S[n]-4 Semantics

In this subsection, we define S[n]-4 semantics for first-order logic and show that S[n]-4
entailment can be reduced to classical entailment via four-valued entailment. We were
inspired by [16]. S[n]-4 semantics will serve as the basis for our algorithm for comput-
ing the inconsistency degrees in Section 4.2.

Throughout this section, we assume that there is an underlying finite set of predi-
cates P used for building all formulae and that Dn = {a1, ..., an}. The set of ground
atomic formulae Base(P,Dn) is defined as the set {P (ai1 , ..., aim) | P (m) ∈ P, ai1 , ...,
aim ∈ Dn}.

Definition 9 (S[n]-4 Interpretation) Let Dn = {a1, ..., an} be a domain of size n and
S be any given subset of Base(P,Dn). A 4-valued interpretation I with domain Dn is
called an S[n]-4 interpretation if and only if it satisfies the following condition:

φI =
{

B if φ ∈ Base(P,Dn) \ S,
N or t or f if φ ∈ S and {N, t, f} ⊆ FOUR

That is, I is an S[n]-4 interpretation if and only if it is a 4-valued interpretation with
domain of size n and assigns the contradictory truth value B to the ground atomic
formulae not in S, and it maps non-contradictory truth values to ground atomic formulae
in S.



Definition 10 Let Γ be a first-order theory. An S[n]-4 interpretation I is an S[n]-4
model of Γ if and only if it is a 4-model of Γ . A theory is S[n]-4 satisfiable if and only
if it has an S[n]-4 model.

Example 6 Let P = {p(x), q(x, y)}, n = 2, D2 = {a1, a2}. Then Base(P,D2) =
{p(a1), p(a2), q(a1, a1), q(a2, a2), q(a1, a2), q(a2, a1)}. Consider Γ = {∃x.(p(x) ∧
¬p(x)),∀x∃y.q(x, y)}.

¦ Let S1 = {p(a2), q(a1, a1), q(a2, a2), q(a1, a2), q(a2, a1)}. Γ is S1[2]-4 satisfiable
and has the following S1[2]-4 model I: pI(a1) = B, and ϕI = t for all ϕ ∈ S1.

¦ Let S2 = {p(a1), p(a2)}. Γ is S2[2]-4 unsatisfiable since all S2[2]-4 interpretations
should map neither p(a1) nor p(a2) to B, so ∃x.p(x) ∧ ¬p(x) cannot be satisfied.

Theorem 3 (Monotonicity) For any positive integer n, assume the two sets S and S′

satisfying S ⊆ S′ ⊆ Base(P,Dn). If a theory Γ is S[n]-4 unsatisfiable, then it is
S′[n]-4 unsatisfiable.

Proof. Assume that Γ is S[n]-4 unsatisfiable and that there exists an S′[n]-4 interpre-
tation IS′ satisfying Γ . We construct an S[n]-4 interpretation IS as follows.

φIS =
{

B if φ ∈ S′ \ S,
φIS′ otherwise.

Obviously, IS is an S[n]-4 model of Γ , which is a contradiction. ¤

Definition 11 (S[n]-4 entailment) A sentence φ is S[n]-4 implied by a theory Γ , de-
noted Γ |=4

S[n] φ, if and only if every S[n]-4 model of Γ is an S[n]-4 model of φ.

The relation between S[n]-4 satisfiability and S[n]-4 entailment is obvious.

Proposition 3 Γ is S[n]-4 unsatisfiable if and only if Γ |=4
S[n] f , where f ∈ FOUR.

The following theorem shows that S[n]-4 entailment can be reduced to 4-valued
entailment in first-order logic.

Theorem 4 For any n ≥ 1 and S ⊆ Base(P,Dn), let S = {α1, ..., αm} and T =
Base(P,Dn) \ S = {β1, ..., βk}, where m + k = n. Then the following claim holds:

Γ |=4
S[n] ϕ if and only if Γ ∧

∧

1≤i≤k

(βi ∧ ¬βi) ∧ En |=4 ϕ ∨
∨

1≤j≤m

(αj ∧ ¬αj),

where En = ∃x1, ..., xn.
∧

1≤i,j≤n(xi 6≡ xj) ∧ ∀y.
∨

1≤i≤n(y ≡ xi).

The right side of the claim is explained as follows: for each 4-model I of Γ , if I satisfies

1. it has an n-size domain (i.e., En is satisfied by I) and
2. it assigns truth value B to each element in Base(P,Dn) \ S (i.e., the conjunction∧

1≤i≤k(βi ∧ ¬βi) is satisfied by I),



then I is not an S[n]-4 model of Γ if and only if it assigns B to at least one element in S
(i.e., the disjunction

∨
1≤j≤m(αj ∧¬αj) is true under I). A formal proof is as follows.

Proof. Let Γ ′ = Γ ∧∧
1≤i≤k(βi ∧ ¬βi) ∧ En and let ϕ′ = ϕ ∨∨

1≤j≤m(αj ∧ ¬αj).
(⇒) For any 4-model M4 of Γ ′, we show that M4 satisfies ϕ′. First, from the

assumption that M4 satisfies Γ ′, we know |∆M4 | = n and M4(βi) = B for 1 ≤ i ≤ k.
If there is j0, 1 ≤ j0 ≤ m such that M4(αj0) = B, then M4 is a 4-valued model of ϕ′.
Otherwise, if for each 1 ≤ j ≤ m, M4(αj) 6= B, then M4 is an S[n]-4 model of Γ , so
M4 satisfies ϕ by hypothesis and therefore satisfies ϕ′.

(⇐) For any S[n]-4 model MS of Γ , we show that MS satisfies ϕ. By definition of
MS , |∆MS | = n, MS(βi) = B for 1 ≤ i ≤ k, and MS(αj) 6= B for 1 ≤ j ≤ m. So
MS is a 4-model of Γ ′ but does not satisfy

∨
1≤j≤m(αj ∧ ¬αj). Then MS satisfies ϕ

by hypothesis and Γ |=S-4 ϕ. ¤
Corollary 5 Let S = {α1, ..., αm} and let T = Base(P,Dn) \ S = {β1, ..., βk}. Γ is
S[n]-4 unsatisfiable if and only if

Θ(Γ ∧
∧

1≤i≤k

(βi ∧ ¬βi)) ∧ En `
∨

1≤j≤m

Θ((αj ∧ ¬αj)).

Proof. This corollary holds by replacing φ with f in Theorem 4 and then performing
Θ(·) according to Theorem 1 with the fact that Θ(En) = En.

This theorem shows that S[n]-4 satisfiability can be reduced to classical entailment in
first-order logic.

4.2 Algorithm for Computing the Inconsistency Degree

In this section, we first study how the inconsistency degree of an inconsistent theory Γ
can be characterized by S[n]-4 satisfiability. Secondly, we give an algorithm to compute
the inconsistency degree by invoking a classical reasoner.

Without loss of generality, throughout this section, we assume that the n-size (n ≥
1) domain of any 4-valued interpretation isDn = {a1, ..., an}. Whenever we talk about
S[n]-4 semantics used to compute the inconsistency degree of a first-order theory Γ ,
we always assume that the underlying finite set of predicates P is all the predicates
occurring in Γ — that is, P = P(Γ ) and Base(P,Dn) = GroundTheo(Dn, Γ ).

Theorem 6 Let TheoInc(Γ ) = 〈r1, ..., rn, ...〉. If rn 6= ∗, the equation

rn = 1− Bn

|GroundTheo(Dn, Γ )| (1)

holds, where Bn = max{|S| : S ⊆ GroundTheo(Dn, Γ ), so that Γ is S[n]-4 satisfiable}.

Proof. Let In be a preferred model and S be the set of atomic sentences all of which
are not assigned the contradictory value B under In. Therefore, Γ is S[n]-4 satisfiable
because In is already an S[n]-4 model of Γ . For any subset S′ ⊆ GroundTheo(Dn, Γ )
such that |S′| > |S|, we claim that Γ is S′[n]-4 unsatisfiable. Otherwise suppose IS′

is an S′[n]-4 model of Γ . Obviously, IS′ <Incons In, since |S′| > |S|, contradicting
the definition of In. Thus Bn = |GroundTheo(Dn, Γ )| − |ConflictTheo(In, Γ )|. By
Definition 5 and Definition 8, Equation 1 holds. ¤



Theorem 6 shows that the computation of rn can be reduced to the problem of
computing the maximal cardinality of S such that S is a subset of GroundTheo(Dn, Γ )
and Γ is S[n]-4 satisfiable. We are now ready to give an algorithm to compute each
element of the inconsistency degree sequence of a first-order theory Γ . The underlying
idea is that we test S[n]-4 satisfiability for each subset S of GroundTheo(Dn, Γ ) from
size |GroundTheo(Dn, Γ )|−1 to 1. Whenever such subset has been found, the value of
rn is calculated by Equation 1 and the procedure ends.

Algorithm 1 Computing Inconsistency Degree(Γ, n)
Input: An inconsistent first-order theory Γ and a positive integer n
Output: rn // TheoInc(Γ ) = 〈r1, ..., rn, ...〉
1: N ← the number of constants in Γ
2: if n < N and UNA is used then
3: rn ← ∗
4: return rn

5: end if
6: Dn ← {a1, ..., an},
7: Σ ← GroundTheo(Dn, Γ ) // see GroundTheo(Dn, Γ ) in Definition 5
8: rn = 0 // The initial value of rn is set to 0
9: for l ← |Σ| − 1 to 1 do

10: S ← PopSubset(Σ, l)
// PopSubset(·, ·) is a procedure to return a subset of Σ with cardinality l. Once a
subset is returned, it will not be selected again.

11: while S 6= ∅ do
12: if Γ is S[n]-4 satisfiable then
13: rn ← (1− l

|Σ| ) exit
14: // |S| = max{|S′| | S′ ⊆ GroundTheo(Dn, Γ ), Γ is S′[n]-4 satisfiable }.
15: else
16: S ← PopSubset(Σ, l)
17: end if
18: end while
19: if rn 6= 0 then
20: exit // The subset used to compute rn has been found w.r.t. size l
21: else
22: l ← l−1 // We have to find a subset used to compute rn w.r.t. a smaller cardinality.
23: end if
24: end for
25: if l = 0 then
26: rn = 1
27: end if
28: return rn

In Algorithm 1, if UNA is used and the input n is strictly less than the number of
constants in Γ , then rn = ∗ is returned (see line 2 to line 5). If it is not the case, the ini-
tialization process follows till line 8. From line 9 to line 27 we have the main steps of the
algorithm to compute the inconsistency degree, where subsets of GroundTheo(Dn, Γ )



are selected one by one according to a decreasing size ordering, so that whenever the
first subset S satisfying the condition in line 12, the inconsistency degree rn is com-
puted and the whole procedure ends. This is indeed the case because such S satisfies
Bn = |S| = max{|S′| | S′ ⊆ GroundTheo(Dn, Γ ), Γ is S′[n]-4 satisfiable}, where
Bn is defined as in Theorem 6. Since Γ is inconsistent, it is no necessity to test l = |Σ|
in line 9. Furthermore, if no proper subset S of GroundTheo(Dn, Γ ) can satisfy the
condition in line 12, then this means that all sentences in GroundTheo(Dn, Γ ) should
be assigned B by preferred models, thus rn = 1. This shows the correctness of this
algorithm as well.

For line 12, the condition of S[n]-4 satisfiability can be decided by classical entail-
ment of first-order logic according to Corollary 5, such that each rn in the inconsistency
degree sequence can be computed by invoking a classical reasoner. We give an example
to illustrate Algorithm 1.

Example 7 (Example 5 continued) We take the case that UNA is used and n ≥ 2.
GroundTheo(Dn, Γ ) = {Bird(ai), Fly(ai), Penguin(ai) | ai ∈ Dn} so that |Σ| = 3n.
For l = |Σ| − 1 = 3n − 1, assume that following subset of Σ is selected: S =
GroundTheo(Dn, Γ ) \ {Fly(a1)}. We have that Γ is S[n]-4 satisfiable because of the
result studied in Example 3. Then rn = 1− l

3n = 1
3n , which equals the general repre-

sentation of the inconsistency degree of Γ in Example 5.

The computation of the inconsistency degree sequence 〈r1, ..., rn, ...〉 of a first-
order theory Γ can be achieved using Algorithm 1. However, a practical problem is
that the infinite style definition of TheoInc(Γ ) makes us unable to get the exact value
of TheoInc(Γ ) in finite time. We can however set a termination condition in order to
guarantee that an answer will be obtained. Suppose time (resource) is used up, a possi-
ble way is to use the already obtained partial sequences 〈r1, ..., rn〉 as an approximating
value of TheoInc(Γ ).

From Theorem 6 and Corollary 5, the computation of each element of an incon-
sistency degree sequence includes at most 2|Σ| times invoking a classical entailment,
where |Σ| ≤ KnM for any n ≥ 1 provided that the maximal arity of predicates in Γ is
M and the number of predicates in Γ is K. The worst case occurs when all subsets of
Σ have to be searched.

As to an optimization of the algorithm, the direct way is to properly design a proce-
dure PopSubset(·, ·) such that the correct S which makes Γ S[n]-4 satisfiable can be
found within as few steps as possible.

5 Conclusions and Future Work

In this paper, we have studied the computational aspects of calculating the inconsistency
degree of a first-order theory. Theoretically, we have shown the process of encoding the
calculation of the inconsistency degree as a first-order unsatisfiability decision problem
via the S[n]-4 semantics proposed in this paper.

The semi-decidability of first-order logic makes Algorithm 1 semi-computes the
inconsistency degree of first-order theory in the sense that we can be informed in finite
time when Γ is S[n]-4 unsatisfiable for a chosen S; However if the correct subset of S



such that Γ is S[n]-4 satisfiable is chosen, we actually cannot get the answer in finite
time in general cases. Therefore we also have to set a time termination condition for
each computation of rn, and when time is used up, Γ can be roughly considered to be
S[n]-4 satisfiable and we can use this S to compute rn.

Considering the semi-decidability problem, the study of implementing our algo-
rithm on Description Logics which include a family of decidable fragments of first-
order logic becomes meaningful [17].

In the future, we will study how to extend the underlying idea of our algorithm to
compute other approaches to measuring inconsistency, such as the inconsistency degree
defined in [3]. In order to provide inconsistency degree information for real applica-
tions, we will also consider approximating approaches to measuring inconsistency in
future work.
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