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Abstract

Description Logics are knowledge representation formalisms that provide, for example,
the logical underpinning of the W3C standards OWL Lite and OWL DL, and the upcoming
standard OWL 2. Conjunctive queries, the standard query language in databases, have
recently gained significant attention as an expressive query language for Description Logic
knowledge bases. Several different techniques for deciding conjunctive query entailment are
available for a wide range of DLs. Nevertheless, only for the DL that underpins OWL Lite,
decidability of conjunctive query entailment is known. So far, the combination of nominals,
inverse roles, and number restrictions in OWL DL and OWL 2 caused unsolvable problems
for the available techniques. We tackle this problem and present a decidability result for
entailment of unions of conjunctive queries in the DL ALCHOZ Qb that contains the all
three problematic constructors simultaneously. Provided that queries contain only simple
roles, our result also shows decidability of entailment of (unions of) conjunctive queries in
the logic that underpins OWL DL and we believe that the presented results will pave the
way for further progress towards conjunctive query entailment decision procedures for the
Description Logics underlying the OWL standards.

1. Introduction

In this paper, we present a decidability result for entailment of unions of conjunctive queries
in the very expressive Description Logic ALCHOZ Qb. Description Logics (DLs) are a family
of logic based knowledge representation formalisms (Baader, Calvanese, McGuinness, Nardi,
& Patel-Schneider, 2003). Most DLs belong to the function-free 2-variable fragment of First-
Order Logic (FOL) often extended with counting quantifiers (e.g., Vz3<,y(R(z,y))) and
DLs are also closely related to the (2-variable) guarded fragment since DL formulae naturally
result in guarded formulae when translated into FOL. The restriction to 2 variables implies
that DL formulae contain only unary and binary predicates, which are called concepts
and roles in DLs. The constructors for building complex expressions are usually chosen
such that the key inference problems, such as concept satisfiability, are decidable. A DL
knowledge base (KB) consists of a TBox, which contains intensional knowledge such as
concept definitions and general background knowledge (essentially an FOL theory), and an
ABox, which contains extensional knowledge and is used to describe individuals (a set of
ground facts). Using a database metaphor, the TBox corresponds to the schema, and the
ABox corresponds to the data. In contrast to databases, however, DL knowledge bases, as
FOL in general, adopt an open world semantics, i.e., they represent information about the
domain in an incomplete way.



Standard DL reasoning services include testing concepts for satisfiability and retrieving
certain instances of a given concept. The latter retrieves, for a knowledge base consisting of
an ABox A and a TBox 7, all (ABox) individuals that are instances of the given (possibly
complex) concept expression C, i.e., all those individuals a such that 7 and A entail that
a is an instance of C. The underlying reasoning problems are well-understood, and the
computational complexity of the standard reasoning tasks given a knowledge base as input
range from PTIME-complete for tractable DLs with limited expresivity such as DL-Lite
(Calvanese, De Giacomo, Lembo, Lenzerini, & Rosati, 2005), ££ (Baader, 2003), and ELP
(Krotzsch, Rudolph, & Hitzler, 2008) to 2-NExpPTIME-complete for very expressive DLs
such as SROZQ (Kazakov, 2008).

Despite the high worst case complexity of the standard reasoning problems for very ex-
pressive DLs such as SROZQ, there are highly optimized implementations available, e.g.,
FaCT++ (Tsarkov & Horrocks, 2006), Pellet (Sirin, Parsia, Cuenca Grau, Kalyanpur, &
Katz, 2007), and HermiT (Motik, Shearer, & Horrocks, 2009). These systems are used in a
wide range of applications, e.g., biology (Sidhu, Dillon, Chang, & Sidhu, 2005), bio informat-
ics (Wolstencroft, Brass, Horrocks, Lord, Sattler, Turi, & Stevens, 2005), medicine (Golbre-
ich, Zhang, & Bodenreider, 2006), information integration (Calvanese, De Giacomo, Lenz-
erini, Nardi, & Rosati, 1998b), geography (Goodwin, 2005), geology (Jet Propulsion Lab-
oratory, 2006), defense (Lacy, Aviles, Fraser, Gerber, Mulvehill, & Gaskill, 2005), and
configuration (McGuinness & Wright, 1998). Most prominently, DLs are known for their
use as a logical underpinning of ontology languages, e.g., OIL, DAML+OIL, OWL (Hor-
rocks, Patel-Schneider, & van Harmelen, 2003), which is a W3C recommendation (Bech-
hofer, van Harmelen, Hendler, Horrocks, McGuinness, Patel-Schneider, & Stein, 2004), and
OWL’s currently proposed extension OWL 2.! There are three species of OWL, OWL
Lite, OWL DI, and OWL Full, plus OWL 2, which can be seen as an extension of OWL
DL. OWL Lite corresponds to the DL SHZF in which the standard reasoning tasks are
ExPTiME-complete, OWL DL corresponds to the DL SHOZAN, in which the standard rea-
soning tasks are NEXPTIME-complete, and OWL 2 corresponds to the DL SROZQ, which
is 2-NExpPTIME-complete for the standard reasoning tasks. For OWL Full the standard
reasoning tasks are no longer decidable.

In data-intensive applications, querying KBs plays a central role. Instance retrieval
is, in some aspects, a rather weak form of querying: although possibly complex concept
expressions are used as queries, we can only query for tree-like relational structures, as a
DL concept cannot express arbitrary cyclic structures. This property is known as the tree
model property and is considered an important reason for the decidability of most Modal
and Description Logics (Gradel, 2001; Vardi, 1997) and we also heavily exploit a variant
of this property to obtain our decidability result. Conjunctive queries (CQs) and unions of
conjunctive queries (UCQs) are well known in the database community and constitute an
expressive query language with capabilities that go well beyond standard instance retrieval.
In FOL terms, these CQs and UCQs are formulae from the positive existential fragment.
Free variables in a query (not bound by an existential quantifier) are also called answer
variables or distinguished variables, whereas existentially quantified variables are called
non-distinguished.

1. http://www.w3.org/TR/owl2-syntax/



If all variables in the query are non-distinguished, the query answer is just true or false
and the query is called a Boolean query. Given a knowledge base K and a Boolean UCQ
q, the query entailment problem is deciding whether ¢ is true or false w.r.t. K, i.e., we
have to decide whether each model of K provides for a suitable assignment for the variables
in q. For a query with distinguished variables, the answers to the query are those tuples
of individual names (constants) for which the knowledge base entails the query that is
obtained by replacing the free variables with the individual names in the answer tuple. The
problem of finding all answer tuples is known as query answering. We present a decidability
result for query entailment, which is a decision problem, but this is no restriction since
query answering can easily be reduced to query entailment as we illustrate in more detail
in Section 3.

1.1 Related Work

Recently, the problem of decidability of conjunctive query entailment and the complexity
of the problem in different logics has gained significant attention. For the DLs SHZQO
and SHOQ decidability has been established (Glimm, Horrocks, Lutz, & Sattler, 2008a;
Glimm, Horrocks, & Sattler, 2008b) and 2-EXPTIME-completeness of the problem is known
for SHZQ (Lutz, 2008). Containment in 2-EXPTIME is known for SHOQ (Glimm et al.,
2008b), but, to the best of our knowledge, it is not known whether it is also hard for
2-ExPTIME, although this is conjectured. Conjunctive query entailment is already 2-
ExpTiME-hard in the relatively weak DL ALCZ (Lutz, 2008). The techniques by Glimm
et al. for SHZQ and SHOQ (Glimm et al., 2008a, 2008b) reduce query entailment to
the standard reasoning task of knowledge base satisfiability checking in the DL extended
with role conjunctions. Recently, also an automata-based decision procedure for positive
existential path queries over ALCQTb,., knowledge bases has been presented (Calvanese,
Eiter, & Ortiz, 2007). Positive existential path queries generalize unions of conjunctive
queries and since a SHZQ knowledge base can be polynomially reduced to an ALCQTby e,
knowledge base, the presented algorithm is a decision procedure for (union of) conjunctive
query entailment in SHZQ as well. Regarding data complexity, i.e., the complexity with
respect to the ABox (the data) only, CQ entailment is usually NP-complete for expressive
logics. For example, for DLs from ALE up to SHZQ this is the case (Glimm et al., 2008a)
and this holds also for CQ entailment in the 2-variable guarded fragment with counting
(Pratt-Hartmann, 2009).

Query entailment and answering have also been studied in the context of databases
with incomplete information (Rosati, 2006b; van der Meyden, 1998; Grahne, 1991). In this
setting, DLs can be used as schema languages, but the expressivity of the considered DLs is
usually much lower than the expressivity of the DL ALCHOZ Qb that we consider here and
reasoning in them is usually tractable. For example, the constructors provided by logics of
the DL-Lite family (Calvanese, De Giacomo, Lembo, Lenzerini, & Rosati, 2007) are chosen
such that the standard reasoning tasks are in PTIME and query entailment is in LOGSPACE
with respect to data complexity. Thus, TBox reasoning can be done independently of the
ABox and the ABox can be stored and accessed using a standard database SQL engine.
Another tractable DL is ££ (Baader, 2003). Conjunctive query entailment in ££ is, however,
not tractable as the complexity increases to coNP-complete (Rosati, 2007b). Moreover for



ELTT (Baader, Brandt, & Lutz, 2005), a still tractable extension of ££, query entailment
is even undecidable (Krotzsch, Rudolph, & Hitzler, 2007). This is mainly because in E£1T,
one can use unrestricted role compositions. This allows for encoding context-free languages,
and conjunctive queries can then be used to check the intersection of such languages, which
is known to be an undecidable problem. Since the logics used in databases with incomplete
information are considerable less expressive than ALCHOZ Qb, the techniques developed in
that area usually do not transfer to our setting.

Given that query entailment is a (computationally) harder task than, for example,
knowledge base satisfiability, it is not very surprising that decidability of the latter task
does not necessarily transfer to the problem of CQ entailment. Most of the undecidabil-
ity results can be transferred from FOL since many DLs can directly be translated into
an equivalent FOL theory. For example, it is known that conjunctive query entailment
is undecidable in the two variable fragment of First-Order Logic £o (Rosati, 2007a), and
Rosati identifies a relatively small set of constructors that cause the undecidability (most
notably role negation axioms, i.e., axioms of the form Vz,y (—~R(z,y) — P(x,y)) for R, P
binary predicates). Pratt-Hartmann (2009) recently established decidability for CQ en-
tailment in the 2-variable guarded fragment with counting (GC3). It is worth noting that
Pratt-Hartmann assumes that the background theory (that is the knowledge base in our
case) is constant free and formulae of the form 3_;2(P(z)), which can be used to simulate
constants/nominals, are not considered guarded. His result covers, therefore, only the DL
ALCHZOb and does not cover the case, when the input knowledge base (the background
theory) contains nominals (individual constants).

Most of the implemented DL reasoners, e.g., KAON2,2 Pellet, and RacerPro,® provide
an interface for conjunctive query answering, although KAON2 and RacerPro consider only
individuals named in the ABox for the assignments of variables. Under that restriction
queries do no longer have the standard FOL semantics and decidability is obviously not an
issue since conjunctive query answering with this restriction can be reduced to standard
instance retrieval by replacing the variables with individual names from the ABox and then
testing entailment of each conjunct separately. Pellet goes beyond that and also provides an
interface for conjunctive queries with FOL semantics under the restriction that the queries
have a kind of tree shape. Under this restriction decidability is known since CQs can then
be expressed as normal concepts (possibly by adding role conjunctions).

1.2 Contributions and Overview

Given all these results, which show a great interest in the problem of conjunctive query
entailment, it is very interesting that for the DLs SHZF, SHOIN, and SROZQ that
underpin the widely adopted standards OWL Lite, OWL DL, and OWL 2, respectively,
decidability of conjunctive query entailment has only been established for OWL Lite. The
main obstacle in devising a decision procedure is the combination of inverse roles (Z), nom-
inals (O), and number restrictions/counting quantifiers (F stands for functionality, N for
unqualified number restrictions, and Q for qualified number restrictions). The complica-
tions arising from the combination of these constructors caused also a major hurdle in the

2. http://kaon2.semanticweb.org
3. http://www.racer-systems.com



development of implementable algorithms for knowledge base satisfiability in SHOZN and
extensions thereof, but in 2005, Horrocks et al. devised a tableaux based decision procedure
(Horrocks & Sattler, 2005) that has since been extended to SROZQ and alternative ap-
proaches such as resolution (Kazakov & Motik, 2008), and hypertableaux based procedures
(Motik et al., 2009) are available and implemented.

In this paper, we tackle the problem of conjunctive query entailment in a DL that con-
tains all the three problematic constructors simultaneously and prove decidability of (unions
of) conjunctive queries. The most challenging part is to establish finite representability of
countermodels in case the query given as input is not entailed by the knowledge base. Our
results also hold for SHOZQ knowledge bases, i.e., with some roles declared as transitive,
provided that the queries contain only simple roles (roles that are neither transitive nor
have a transitive subrole). This is essentially the same restriction that is placed on roles
that can occur in number restrictions since otherwise the standard reasoning tasks become
undecidable. Under this restriction, we can use the elimination techniques for transitivity
(Kazakov & Motik, 2008). Hence, we also show decidability of conjunctive query entailment
in OWL DL, for queries with only simple roles.

We believe that our work is also valuable for understanding, in general, the structure of
models in DLs that contain nominals, inverse roles, and number restrictions. Furthermore,
we devise non-trivial extensions of standard techniques such as unravelling, which we believe
will prove useful when working with such expressive DLs.

The paper is organized as follows: in Section 2, we give a bird’s eye view over the
techniques and ideas used to establish decidability. In Section 3, we give the necessary
definitions and introduce standard notations. In Sections 4, 5, and 6 we present the main
results that we then use in Section 7 to show how models that do not satisfy the query can
be finitely represented before we conclude in Section 8.

2. The Big Picture

Before going into the technical details, we will describe our overall line of argumentation
establishing decidability of conjunctive query entailment in ALCHOZQb.

Decidability via Finitely Representable Countermodels. Let K be an ALCHOZ Qb
knowledge base and ¢ be the conjunctive query in question, i.e., we aim to determine whether

K Eq.

Clearly, as ALCHOZIOb is a fragment of first-order predicate logic with equality, it can be
translated into a FOL sentence FOL(K). Likewise we find a FOL sentence FOL(q) for
g being just an existentially quantified formula. Hence, checking the above entailment is
equivalent to determining whether the first-order theory FOL(K) entails FOL(q). Following
from the completeness theorem for FOL (Gdédel, 1929), the consequences of a finite FOL
theory are recursively enumerable, which provides us with a procedure that terminates if
K |= q. Hence, we can establish decidability by providing another algorithm that terminates
iff the entailment above does not hold — i.e., if there is a so-called countermodel being a
model Z of K for which Z }~ q.

We will provide such an algorithm by showing that, whenever such a countermodel 7
exists at all, there is also a countermodel Z that is finitely representable. More precisely,



T can be encoded into a word Rep(Z) of finite length over a finite alphabet, whereby the
encoding Rep has the property that for every such finite word it can be effectively checked,
whether it represents a countermodel for a given knowledge base and query.

As a consequence thereof, we can create the desired algorithm that enumerates all words,
checks each for being a countermodel, and terminates as soon as it has found one.

Finite Representability by Bounding Nominals and Blocking. We now outline
how we are going to show that there is always a finitely representable countermodel, if there
is one at all. We do this by taking an arbitrary countermodel and cautiously transforming it
into a countermodel that is finitely representable. Cautiously means that we have to make
sure that the transformation does preserve the two properties of 1) being a model of the
underlying knowledge base K and 2) not entailing the considered query gq.

The result of the overall transformation is going to be a regular model, i.e., a structure
where substructures are being in a certain sense periodically repeated. It is common practise
in DL theory to construct these kind of models from arbitrary ones by blocking techniques,
whereby certain element configurations occurring twice in the original model are detected
and the new model is generated by infinitely stringing together the same finite substructure
that is delimited by those two configurations.

In the case we consider, this technique cannot be applied directly to the original coun-
termodel. This is due to an intricate interplay of nominals, inverse roles and cardinality
constraints by which an arbitrary — even an infinite — number of domain elements can be
forced to “behave” like nominals; that’s why they are usually referred to as new nominals in
a DL context. In FOL, nominals are often called kings and the new nominals are called the
court. In our case, the presence of infinitely many new nominals in the model may prevent
the existence of repeated configurations needed for blocking.

We overcome this difficulty by first applying a transformation by means of which the
original countermodel is converted into a countermodel with only finitely many new nomi-
nals. This guarantees that the subsequent blocking-based transformation is applicable and
will yield the desired regular (and thus finitely representable) model.

Bounding Nominals by Transformations of Forest Quasi-Models. For our argu-
mentation, we introduce the notion of forest quasi-models. These are structures not satis-
fying the originally considered knowledge base but a weakened form of it. In return to this
concession, they exhibit a proper forest structure that is easier to handle.

We employ two techniques to turn “proper models” into forest quasi-models and vice
versa: a model can be unravelled yielding a forest quasi-model. A forest quasi-model
can be collapsed to obtain a “proper” model. Both techniques preserve certain structural
properties.

Our strategy to construct a countermodel with finitely many nominals consists of the
following three steps:

e Take an arbitrary countermodel and unravel it.

e Transform the obtained forest quasi-model by substituting critical parts by well-
behaved ones,

e Collapse the obtained structure into a (proper) model.



The mentioned “critical parts” are those giving rise to new nominals. They have to be —
at least largely — avoided (we don’t care about a finite set of those critical parts remaining).

Now the terminal question is: where do the mysterious well-behaved substitutes come
from? Well, the answer is: the plethora of critical parts brings about its own remedy. We can
use infinite sets of critical parts to construct well-behaved ones in an infinite approximation
process. We thereby obtain parts which have not been present in our structure before, but
are well compatible with it and can hence be used for its reorganization.

After having informally introduced our main line of argumentation, we now move on to
the technical details.

3. Preliminaries

We first define the syntax and semantics of roles, and then go on to SHOZQb-concepts,
individuals, and knowledge bases. We do not actually use the full expressivity of SHOZ Qb,
but it is a convenient umbrella for all DLs we are working with and we can define less
expressive DLs of interest as restrictions of SHOZ Ob.

Definition 1 (Syntax of SHOZQb). Let N¢, Ng, and N; be countable, infinite, and
pairwise disjoint sets of concept names, role names, and individual names, respectively. We
call S = (N¢, Ngr, Nr) a signature. The set rol(S) of SHOZQb-roles over S (or roles for
short) is Np U {r~ | » € Ng}, where roles of the form r~ are called inverse roles. A role
inclusion axiom is of the form r» C s with r,s roles. A transitivity axiom is of the form
trans(r) for r a role. A role hierarchy H is a finite set of role inclusion and transitivity
axioms.

For a role hierarchy H, we define the function inv over roles as inv(r) := r~ if r € Ng and
inv(r) := sifr = s~ for arole name s € Ng. Further, we define Ty as the smallest transitive
reflexive relation on roles such that r C s € H implies r Ty s and inv(r) Ty inv(s). We
write r =y s if r Ty s and s Cgy 7. A role 7 is transitive w.r.t. H (notation r* Ty 7) if
r Ty s for some role s such that trans(s) € H or trans(inv(s)) € H. A role s is called simple
w.r.t. H if there is no role r such that r is transitive w.r.t. H and r Ty s.

For r € rol(S) a simple role, a Boolean role expressions U is defined as follows:

Uux=r|-U|UNU|UUU.

We use I to denote standard Boolean entailment between a set of roles R C rol(S) and role
expressions. Let r € rol(S), and U a Boolean role expression over R. We inductively define:

e RErifre R, and R I/ r otherwise,

e RE-UIfRIFU, and Rt/ U otherwise,

e REUMNVIREFUand REV, and Rt/ U NV otherwise,
e REUUVIREFUOr RFV,and R/ U UV otherwise.

A Boolean role expression U is safe if )t/ U.
Given a signature S = (N¢g, Ng, Np), the set of SHOZQb-concepts (or concepts for
short) over S is the smallest set built inductively over symbols from S using the following



grammar, where o € N;, A € No,n € Ny, s is a simple role, and U is a role or a safe
Boolean role expression:

C:= T‘J_‘{O}’A’_‘C’01HCQ‘01I_|CQ‘
YU.C | U.C |[<Kns.Cl=ns.C. A

Alternatively, safeness can be characterized as follows: a Boolean role expression Uis
safe if, after transforming it into disjunctive normal form, each conjunct contains at least
one non-negated role. Intuitively, this implies that a safe role expression can never relate
individuals that are not in a direct role relation with each other.

Definition 2 (Semantics of SHOZQb-concepts). An interpretation T = (AT, 1) consists
of a non-empty set AZ, the domain of Z, and a function -, which maps every concept name
A € N¢ to a subset AT C AT, every role name € Ng to a binary relation r C AT x A%,
and every individual name a € N; to an element aZ € AZ. For each role name r € Np,
the interpretation of its inverse role (r~)” consists of all pairs (6,6} € AT x A7 for which
(6',6) € rt.

The semantics of SHOZ Qb-concepts over a signature S is defined as follows:

(=r)f = AT x AT\ T (rinr)t =rfnrd (ryUry)t =rfurt
' = A? 1r=10 ({o})” = {0}
(=C)f = AT\ T (cnbDyf=ctnp* (CubD)f=ctup?
(VU.C)E = {6 € AT |if (§,8") € UZ, then §' € CT}
(3U.C)* = {6 € AT | there is a (§,8") € UL with §' € CT}
(< ns.C)F = {6 € AT | 4(s7(5,C)) < n}
(=ns.C)Y = {0ec AT |4(s(s,0)) >n}

where #(M) denotes the cardinality of the set M and s?(§,C) is defined as
{6 € AT | (5,0") € s* and &' € CT}.

A concept C' is in negation normal form (NNF') if negation occurs only in front of concept
names and we use nnf(C) to denote the negation normal form of a concept C. A

Any concept can be transformed in linear time into an equivalent one in NNF by pushing
negation inwards, making use of de Morgan’s laws and the duality between existential and
universal restrictions, and between at-most and at-least number restrictions of the form
< nr.C and > n r.C respectively (Horrocks, Sattler, & Tobies, 2000).

Definition 3 (Syntax and Semantics of Axioms and Knowledge Bases). A functionality
restriction is an expression func(f) for f a role. For C,D concepts, a general concept
inclusion (GCI) is an expression C' C D. We introduce C' = D as an abbreviation for
CC Dand D LCC. A finite set of GCIs and functionality restrictions is called a TBoz. An
(ABox) assertion is an expression of the form C(a), r(a,b), —r(a,b), a = b, or a #b, where
C is a concept, r is a role, and a,b € Ny are individual names. An ABox is a finite set of
assertions. A knowledge base K is a triple (7, H, A) with 7 a TBox, H a role hierarchy,
and A an ABox.



We use con(K), rol(K), and nom(K) to denote, respectively, the set of concept, role,
and individual names occurring in K. The closure cl(K) of K is the smallest set containing
nnf(-C' U D) if C C D e T; D if D is a sub-concept of C and C' € cl(K); and nnf(=C) if
C € cl(K). A role fis functional in K if IC contains the functionality axiom func(f) and it
is inverse functional in K if IC contains the functionality axiom func(f™).

Let Z = (AZ,.2) be an interpretation. Then Z satisfies a role inclusion axiom r C s if
rT C s?, T satisfies a transitivity axiom trans(r) if 77 is a transitive binary relation, and a role
hierarchy ‘H if it satisfies all role inclusion and transitivity axioms in H. The interpretation
T satisfies a functionality restriction func(f) if, for each 6 € AT #({8" | (5,8') € fF}) < 1; T
satisfies a GCI C' C D if CT C D?; and T satisfies a TBox 7 if it satisfies each functionality
restriction and each GCI in 7. The interpretation Z satisfies an assertion C(a) if a* € C7,
r(a,b) if (a®,b?) € T, —r(a,b) if (a®,b?) ¢ v, a = bif a = b%, and a#b if o # 05 T
satisfies an ABox if it satisfies each assertion in A. We say that Z satisfies K if Z satisfies
7, H, and A. In this case, we say that Z is a model of K and write Z |= K. We say that K
is consistent if JC has a model. A

If the knowledge base K is clear from the context, we simply say that a role f is (inverse)
functional instead of saying f is (inverse) function in A.

The names of DLs indicate which constructors are supported. The basic DL ALC
supports Boolean concept constructors and GClIs, but no role hierarchies, functionality
restrictions et cetera. If transitivity axioms are added, be use S instead of ALC. Inverse
roles are indicated by the letter Z, role inclusion axioms by H, nominals, i.e., concepts of
the form {o} for o € Ny, by O, inverse roles by Z, functionality restrictions by F, qualified
number restrictions, i.e., concepts of the form < n s.C and > n s.C', by 9, and safe Boolean
role expressions by b. If number restrictions are limited to concepts of the form < n s.T
and > n s.T, we use the letter NV.

We mostly refer to a few particular DLs in this paper: the DL SHOZQ is obtained from
SHOZIQb by disallowing Boolean role expressions. The DLs SHZQ, SHOQ, and SHOZ
are obtained from SHOZQ by disallowing nominals, inverse roles, and number restrictions
(functionality restrictions and ), respectively. Finally, the DL ALCOZFDb is obtained from
SHOIQb by disallowing transitivity axioms (we use ALC instead of S in the name of the
DL to indicate this), role inclusion axioms, and concepts of the form < n s.C' and > n s.C.

3.1 Conjunctive Queries and Unions of Conjunctive Queries

We now introduce Boolean conjunctive queries since they are the basic form of queries we
are concerned with. We later also define non-Boolean queries and show how they can be
reduced to Boolean queries. Finally, unions of conjunctive queries are just a disjunction of
conjunctive queries.

Definition 4 (Syntax and Semantics of Conjunctive Queries). Let S = (N¢, Ng, Nr) be
a signature and Ny be a countably infinite set of variables disjoint from N¢, Ng, and Nj.
A term t is an element from Ny U N;. Let A € N¢ be a concept name, r € Ng a role
name, and t,t' terms. An atom is an expression A(t) or r(t,t') and we refer to these two
types of atoms as concept atoms and role atoms respectively. A Boolean conjunctive query
q is a non-empty set of atoms. We use var(q) to denote the set of (existentially quantified)



variables occurring in ¢ and term(q) to denote the set of variables and individual names
occurring in ¢. As usual, we use #(¢q) to denote the cardinality of ¢, which is simply the
number of atoms in ¢, and we use |g| for the size of g, i.e., the number of symbols necessary
to write q.

Let T = (AT, 7) be an interpretation. A total function 7: term(q) — A7 is an evaluation
if 7(a) = a’ for each individual name a occurring in ¢q. For A(t),r(t,t') atoms, we write

o T |=" A(t) if w(t) € AT,
o TE"r(t,t)if (n(t),n(t)) € rt.

If, for an evaluation m, Z =" At for all atoms At € ¢, we write Z =" q. We say that Z
satisfies ¢ and write Z = ¢ if there exists an evaluation 7 such that Z =" q. We call such a
m a match for ¢ in 7.

Let K be a knowledge base and ¢ a conjunctive query. If Z = K implies Z = ¢, we say
that KC entails ¢ and write K |= q. A

The query entailment problem is defined as follows: given a knowledge base K and a
query ¢, decide whether K = q.

Definition 5 (Unions of Conjunctive Queries). A union of Boolean conjunctive queries is
a formula ¢; V ...V gy, where each disjunct ¢; is a Boolean conjunctive query.

A knowledge base IC entails a union of Boolean conjunctive queries q1 V...V g, written
as K = q1 V...V qy, if, for each interpretation Z such that Z = K, there is some ¢ such that
ZFEg and1<i<n. A

We now clarify the connection between query entailment and query answering clearer.
For query answering, let the variables of a conjunctive query be typed: each variable can
either be existentially quantified (also called non-distinguished) or free (also called dis-
tinguished or answer variables). Let g be a query in n variables (i.e., f#(var(q)) = n), of
which vy,..., v, (m < n) are answer variables. The answers of K to ¢ are those m-tuples
(ai,...,an) of individual names such that, for all models Z of K, Z =" ¢ for some 7 that
satisfies m(v;) = a for all i with 1 < i < m. Let ind(K) be the set of individual names
occurring in I (in the form of nominals or ABox individuals). It is not hard to see that
the answers of K to ¢ can be computed by testing, for each (ai,...,an) € Nr§', whether
the query qjy,. .. v, a1,...am) Obtained from ¢ by replacing each occurrence of v; with a; for
1 < i < m is entailed by K. The answer to ¢ is then the set of all m-tuples (ai,...,an)
for which K = qu,,....o;m/a1,...am]- L€t k = §(nom(K)) be the number of individual names
occurring in K. Since K is finite, clearly k is finite. Hence, deciding which tuples belong to
the set of answers can be checked with at most k™ entailment tests.

The algorithm that we present in this paper decides query entailment. The reasons
for devising a decision procedure for query entailment instead of query answering are two-
fold: first, query answering can be reduced to query entailment as shown above; second, in
contrast to query answering, query entailment is a decision problem and can be studied in
terms of complexity theory.
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3.2 Simplifying Assumptions

In the following, we make several assumptions that are without loss of generality, but
simplify the presentation of the decision procedure.

3.2.1 FroM SHOZQ AND ALCHOZOb TO SIMPLIFIED ALCOZFb KNOWLEDGE BASES

In the following, we only work with ALCOZFb knowledge bases. Nevertheless, our results
also hold for SHOZQ knowledge bases and queries with only simple roles in the query and
for ALCHOZ Qb knowledge bases, i.e., when the knowledge base contains safe Boolean role
expressions, but no transitivity. The restriction to ALCOZFb is without loss of generality,
as we show now.

Provided the query contains only simple roles, we can use the elimination techniques for
transitivity (Kazakov & Motik, 2008) to reduce a SHOZ Q knowledge base to an ALCHOZQ
knowledge base with extended signature. We can further eliminate qualified number restric-
tions and role inclusion axioms by transforming an ALCHOZQb knowledge base into an
ALCOTFb knowledge base that is equivalent to the original one up to an extension of the
signature (Rudolph, Krétzsch, & Hitzler, 2008). We do not repeat a formal proof here, but
rather give an informal argument as to how this reduction works.

We assume that the knowledge base is in negation normal form, i.e., all GCIs are of
the form T C C with C' a concept in NNF. Now, consider a concept expression of the form
> n r.C with r a role and C' a concept. This means that there are at least n distinct r-
neighbors satisfying C. However, this situation can be enforced by introducing n new roles
r1, ...,y each of which are deemed to have r as a superrole (r; C r) and which are pairwise
disjoint (T C V(r; Mrj).L). Under those “side conditions”, the above concept expression
can be replaced by 3r1.C11...M3r,.C.

A somewhat dual argumentation is possible for concept expressions of the form < n r.C
restricting the number of r-neighbors satisfying C to at most n. Again we extend the

signature by introducing new roles 71, . .., r,, but this time, we let them “cover” all outgoing
r-links in the following sense: whenever an r-link leads to some domain element § which
satisfies C, then one of the roles ry,...,7, also leads there. Indeed, safe Boolean role

expressions allow to express this correspondence via the concept description V(r M —rqy M
..M =ry,).nC. It is now easy to see, that this concept expression can replace the above if
we additionally demand all roles r1,...,r, to be functional.

Finally consider a role hierarchy statement r C s, stating that whenever two domain
elements 91 and d2 are connected by role r, they are also interconnected via s. Clearly, this
statement can be reformulated as: there are no two domain elements connected by r and
by —s. This, in turn, can be equivalently rephrased by saying that no domain element has
an 7 M —s-neighbor or, expressed as GCI, T C V(r M —s).L.

These transformations can be applied to an ALCHOZQb knowledge base, whereby all
cardinality constraints and role inclusion axioms are eliminated. This leaves us with an
equivalent ALCOZFb knowledge base up to an extension of the signature.

Figure 1 displays an ALCOZFb knowledge base and an according model, which we will
refer to as a running example throughout the paper.

Furthermore, we assume that the ABox is internalized (e.g., C(a) is replaced by the
equivalent GCI {a} C C,r(a,b) by {a} T Ir.{b}, etc.). Thus, we effectively decide query
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{o}C3IrA AC3IrA ALC3s.B
func(f7) func(g™) BCCuUD
CC3fE DCHdg.FE FECBU{o}

Figure 1: Knowledge base and model.

entailment with respect to a TBox only since knowledge bases in this setting have an empty
ABox.

For 7 an ALCOIZFb TBox, it is always possible to transform 7 into an equivalent TBox
7' up to signature extension such that all GCIs in 7’ have one of the following simplified
forms:

[1AiC||Bj | A={o} | ACVUB | AC3IUB | func(f), (1)

where A(;) and By;) are atomic concepts, o is an individual name, U is a safe Boolean role
expression, and f is a role. If i = 0, we interpret [ | A; as T and if j = 0, we interpret | | B; as
1. An ALCOZFb knowledge base K = (T ,.A) is simplified if T is simplified and A is empty.
Every ALCOZFb knowledge base, which is not in this form, can be transformed in poly-
nomial time into the desired form by using the standard structural transformation, which
iteratively introduces definitions for compound sub-concepts (Kazakov & Motik, 2008).
Thus, we assume in the remainder that any knowledge base is rewritten into a simplified

ALCOLZFb knowledge base.

3.2.2 CONNECTED AND CONSTANT-FREE (QUERIES

We assume that queries are connected. More precisely, let ¢ be a conjunctive query. We say
that q is connected if, for all t,t' € term(q), there exists a sequence t1, ..., t, such that t; = ¢,
tn, =t and, for all 1 < i < n, there exists a role r such that r(¢;,t;+1) € ¢. A collection
qi,---,qn of queries is a partitioning of ¢ if ¢ = ¢1 U ... U ¢y, term(g;) N term(g;) = 0 for
1 <i < j <n,and each ¢; is connected.

Lemma 6. Let K be a knowledge base, q a conjunctive query, and qi1,...,q, 6 partitioning
of q. Then K |= q iff K = ¢; for each i with 1 < i < n.

A proof is given by Tessaris (2001, 7.3.2) and, with this lemma, it is clear that the
restriction to connected queries is indeed without loss of generality since entailment of ¢
can be decided by checking entailment of each ¢; at a time. In what follows, we therefore
assume queries to be connected without further notice.

In unions of conjunctive queries, we assume that the variable names in each disjunct are
different from the variable names in the other disjuncts. This can always be achieved by
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naming variables apart. We further assume that each disjunct in a UCQ is a connected con-
junctive query. This is without loss of generality since a UCQ which contains unconnected
disjuncts can always be transformed into conjunctive normal form; we can then decide en-
tailment for each resulting conjunct separately and each conjunct is a union of connected
conjunctive queries (Glimm et al., 2008a). Note that, due to the transformation into con-
junctive normal form, the resulting number of unions of connected conjunctive queries for
which we have to test entailment can be exponential in the size of the original query.

We further assume that queries do not contain constants (individual names) to occur in
the position of variables. In the presence of nominals this is without loss of generality: for
each individual name a occurring in g, we extend the knowledge base I with the axioms
{a} = N, for N, € N¢ a fresh concept name, and replace each occurrence of a in ¢ with a
fresh variable z, € Ny and add a concept atom N,(z,) to g.

3.2.3 GENERAL NOTATION

Throughout this paper, concept names and role expressions are written in upper case, while
roles and individual names are written in lower case. Unless stated otherwise, we use A
and B for concept names; C and D for possibly complex concepts; r and s for roles, f
for functional or inverse functional roles; U and V for safe Boolean role expressions; and o
for nominals that are used in TBox axioms or that occur in complex concepts. Sub- and
superscipts might be appended if necessary. If not stated otherwise, we use ¢ (possibly
with subscripts) for a connected Boolean conjunctive query, K for a simplified ALCOZFb
knowledge base, Z for an interpretation (AZ,-7), and , u for an evaluation.

4. Model Construction

In this section, we introduce interpretations and models that have a kind of forest shape.
We exploit the nice properties of trees and forests in the following sections, when we replace
parts in interpretations that give rise to an infinite number of new nominals. Since even
models of an ALCOZFb knowledge base that have a kind of forest shape are not really
forests, we also introduce “approximations” of models in which nominals are no longer
interpreted as singleton sets. We call these structures quasi-interpretations or quasi-models
and such interpretations can have the form of real forests. Further, we provide a way of
“unravelling” an arbitrary model into a forest that is a quasi-model for the knowledge base
and a way of “collapsing” such forest quasi-models back into a real models of the knowledge
base that still have a kind of forest shape.

Definition 7 (Forest (Quasi-)Interpretations and (Quasi-)Models). A tree T is a prefix-
closed subset of N*. For w,w’ € T, we call w’ a successor of w if w' = w - ¢ for some ¢ € IN,
where “” denotes concatenation. We call w’ a predecessor of w if w = w’- ¢ for some ¢ € IN,
and w' is a neighbor of w if w' is a successor of w or vice versa. The empty word ¢ is called
the root of the tree. We use |w| to denote the length of w.

A forest F'is a subset of R x IN*, where R is a countable, possibly infinite set of elements
{d1,...,0p} such that, for each § € R, the set {w | (0, w) € F} is a tree. Each pair (0,¢) € F
is called a root of F. For (6,w), (8, w') € F, we call (§',w’) a successor of (§,w) if &' =6
and w’ is a successor of w; (&', w’) is a predecessor of (§,w) if 6’ = 6 and w’ is a predecessor
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of w; (0’',w') is a neighbor of (§,w) if (&', w’) is a successor of (4, w) or vice versa. A node
(6, w) is an ancestor of a node (¢',w') if § = ¢’ and w is a prefix of w’ and it is a descendant
if § = ¢ and w' is a prefix of w.

A forest interpretation of a knowledge base K is an interpretation Z = (AZ,-7) that
satisfies the following conditions:

FI1 AZ is a forest;

FI2 for each o € nom(K), there is exactly one (J,w) € AT s.t. oF = (§,w) andd, for each
such (0, w), w = ¢;

FI3 for each role r € rol(K), if {(6,w), (&', w’)) € rZ, then either

(a) w=eorw =e¢, or

(b) (6, w) is a neighbor of (&, w’).

If T = K we say that Z is a forest model for K. If AT has a single root, we call T a tree
interpretation and a tree model for K respectively.

Let K be an ALCOZFb knowledge base. With nomFree(K), we denote a knowledge
base obtained from K by replacing each nominal concept {0} with o € nom(K) with a fresh
concept name N,. A forest quasi-interpretation for K is an interpretation J = (A7, -7) of
nomFree(K) that satisfies the following properties:

FQ1l AY is a forest;
FQ2 for each o € nom(K), there is exactly one (d,¢) € A7 s.t. (6,¢) € NJ
FQ3 if, for a role r € rol(K), ((6,w), (§',w')) € r7, then either

(a) w=eorw =¢,or

(b) § =6’ and w' is a neighbor of w.

We call J strict if in condition FQ3, only FQ3b is allowed. If 7 = nomFree(K) we say that
J is a forest quasi-model for K.

The branching degree d(w) of a node w in a tree T is the number of successors of w. Let
T = (A%, 1) be a forest (quasi) interpretation for K. If there is a k such that d(w) < k for
each (6, w) € AT, then we say that Z has branching degree k. A

In the remainder, when we use the concept name N,, we mean the fresh concept name
that was introduced in nomFree(K) for the nominal concept {0} with o € nom(K). Elements
in the extension of a concept N, are called nominal placeholders. Please note that, in a
forest quasi-interpretations 7, we can have several elements (0, w) with w # & such that
(5,w) € NJ.

In the following, we define a notion of isomorphism between forest quasi interpretations.
Note that we demand not only structural identity w.r.t. concepts and roles but also w.r.t.
the successor relation.
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Definition 8 (Isomorphism between Forest Quasi Interpretations). Let K be an ALCOZFb
knowledge base, K’ = nomFree(K), and J = (A7,-7), J' = (A7",.7") two forest quasi-in-
terpretations of K. Then J and J' are called isomorphic w.r.t. K', written: J = J', iff
there is a bijection ¢ : A7 — A7’ such that:

e Jy is a successor of 8y iff (1) is a successor of ¢(&2) for all §1, 62 € AT,
o (81,05) € T iff (p(81),0(02)) € " for all 61,0, € AT and r € rol(K'),
o 5 AT iff p(6) € A7 for all 6 € A7 and A € con(K').

Two pairs of elements (§1,d2) and (§],83) with 6,0, € A7,8,,8, € AT are isomorphic
w.r.t. K, written (01, 02) S (07, 05) iff

o (81,05) € 7 iff (57,0) € r7" for each r € rol(K'),

o §; € AT iff 6/ € A7 for i € {1,2} and each A € con(K').
A

If clear from the context, we omit the subscript K of .

Forest quasi-models have, intuitively, the purpose of an intermediate step between ar-
bitrary models of K and forest models of . When identifying each § in the interpretation
of a concept N, in the knowledge base K’ with a root that is in the interpretation of N,,
then we obtain an interpretation that would be a model for I apart from functionality
restrictions for some nominals that might be violated. We show later how we can eliminate
those relations from the forest back to the roots that violate functionality restrictions and
how we can eventually obtain a forest model from a forest quasi-model.

Another useful property of quasi-interpretations is that, for simplified ALCZFb knowl-
edge bases, it can be checked locally whether an interpretation Z is actually a model of

K.

Definition 9 (Local K-consistency). Let Z = (AZ,.Z) be an interpretation for some
ALCIFb knowledge base with 6 € AZ. We define local satisfaction for § and concepts
that can occur in simplified ALCZFb axioms as follows:

1. for Ay,..., A, € con(K):
(a) Z,0 = [ Ai if § € AL for each i with 1 <4 < n; Z,8 £ [] A; otherwise;
(b) Z,d |= || A; if § € AT for some i with 1 < i < n; Z,6 = | | A; otherwise;
2. for U a safe Boolean role expression over rol(K), A € con(K):

(a) Z,0 |= JU.A if there is some &' € AT such that (6,6") € U? and Z,8' = A;
7,6 = JU.A otherwise;
(b) Z,8 = YU.A if, for each §' € AT such that (5,0') € UL, Z,8' = A; Z,0 = YU.A

otherwise;

3. for f € rol(K), Z,0 = func(f) if 4({0’ € AT | (6,0") € fI}) < 1; Z,8 W~ func(f)
otherwise.
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An element 6 € A locally satisfies a GCI C T D with C, D ALCZFb-concepts if Z,d = C
implies Z, 6 = D. It locally satisfies a functionality restriction func(f) if Z, ¢ = func(f). An
element 6 € A” is locally K-consistent if it satisfies each axiom in K. AN

Lemma 10. Let K be a simplified ACCTFb knowledge base and T = (AT,-T) an interpre-
tation for K. Then T is a model for K iff each element § € AT is locally IC-consistent.

Proof. For simplified ALCZFb knowledge bases, only axioms of the form A C VU.B and
A C 3U.B involve checking neighbors of an element § and, since B is a concept name in
simplified knowledge bases, it is immediate that satisfaction of B can be checked locally for
the neighbor of § in question. O

For a knowledge base K with nominal, we can also use local K-consistency, but we need
an additional global condition that ensures that nominals are interpreted as singleton sets.
The following is an immediate consequence of Lemma 10 and the extra condition 2 for
nominals:

Proposition 11. Let K be a simplified ACCOIFb knowledge base and T = (AL,T) an
interpretation for K. Then I is a model for IC iff

1. each element § € AT is locally KC-consistent and,
2. for each o € nom(K), there is evactly one element § € 6 such that o = 6.

We now show how we can obtain a forest quasi-model from a model of K by using an
adapted version of unravelling.

Definition 12 (Unravelling). Let K be a consistent ALCOZFb knowledge base and 7 =
(AT, -T) amodel for K. Let choose be a non-deterministic function that returns, for a concept
JU.B € cl(K) and an element § € (3U.B)? an element §c5 € AT such that (5, 6¢c4) € UL
and 5015 e BT,

Without loss of generality, we assume that, for each § € AZ and concepts C; =
3U;.B1,Cy = 3U3.B3 € cl(K) such that 6 € CF N CZ, if choose(C1, §) = 61, choose(Cy, §) =
(52, and <5, (51> = <(5, 52), then 51 = 52.

An unravelling for some element § € A%, denoted as |(Z,d), is an interpretation that
is obtained from Z and ¢ as follows: we define the set S C (AZ)* of sequences to be the
smallest set such that

e J is a sequence;
® 010y - 0na1 is a sequence, if

— 01---0, IS a sequence,
— if n > 2 and (6,,6,_1) € f* for some functional role f, then 8,11 # 6n_1,
— Op+1 = choose(C, 6,,) for some C' = JU.B € cl(K).

Now fix a set FF C {0} x IN* and a bijection f: F — S such that
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Figure 2: Unravelling of the model displayed in Figure 1.

(i) F is a forest,
(i) f(9,e) =9,

(iii) if (6, w), (6,w-¢) € F with w - ¢ a successor of w, then f(w-c¢) = f(w) - dp41 for some
5n+1 S AI.

Such a forest F' and bijection f exist because S is a prefixed-closed set with root 4. Thus,
we just map from the notion of sequences to that of forests.

For each o € nom(K), let N, € N¢ be a fresh concept name. For each (§,w) € F,
set Tail(0,w) = 0y if f(d,w) = d1---9,. Now, we define the unravelling for ¢ as the
interpretation J = (AY,-7) with AY = F and, for each (§,w) € A7, we define the
interpretation of concept and role names as follows:

(a) for each o € nom(K), N = {(6,w) € AT | Tail(§,w) € o*};
(b) for each concept name A € con(K), (6,w) € A7 iff Tail(6,w) € AZ;

(c) for each role name r € rol(K), ((6,w), (6, w’)) € r7 iff w' is a neighbor of w, and
(Tail (6, w), Tail(6,w")) € rZ.

Let R be the subset of AT that contains exactly those 6 € AZ such that o? = § for some
o € nom(K). Let U be a set containing an unravelling of Z starting from each 6 € R. The
union of all interpretations from U is called an unravelling for Z, denoted as [(Z). A

Figure 2 shows the unravelling for our example knowledge base and model. The dotted
lines under the non-root elements labeled N, indicate that a copy of the whole tree should
be appended since we do not stop unravelling at nominal placeholders.

It might be helpful to think of the function Tail as a homomorphism (up to signature
extension) from the elements in the unravelling 7 to elements in the original model Z.
Indeed, Tail satisfies the following properties: For each (d,w), (¢',w’) € A7,
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e Tail(§,w) = of iff (§,w) € NJ for all o € nom(K),
o Tail(6,w) € AT iff (§,w) € A7 for all A € con(K), and
o (Tail(s,w), Tail(¢', w')) € rT iff {(§,w), (&, w")) € r7 for all r € rol(K).

Unravellings are the first step in the process of transforming an arbitrary model of I
into a forest model since the resulting model is a forest quasi-model of I, as we show in the
next lemma.

Lemma 13. Let K be a consistent ACCOLZFb knowledge base and T = (AT, a model of
K. Then J = (AY,-7) = [(T) is a strict forest quasi-model for K.

Proof. Let K' = nomFree(K). By construction, J satisfies conditions FQ1 and FQ3 of
forest quasi-models and the strictness condition. Since J is obtained from a model Z of
IC, by definition of unravellings as starting from each § € AZ such that o = 6 for some
o € nom(K), and by condition (a) of unravellings, there is, for each o € nom(K), one root
(8,€) € A7 such that (6,e) € NJ. Thus, J satisfies also property FQ2 and J is a forest
quasi-interpretation for K. We show that J is a model of K’ by demonstrating that each
(5, w) € A7 is locally K'-consistent. Since we assume all knowledge bases to be simplified,
we only have to consider axioms of form(1).

Let Ax be an axiom of the form [ A4; C | | B; and assume that (6,w) € ([14;)Y. By
condition (b) of unravellings, we have that &, = Tail(6,w) € ([ A4;)% and, since T |= K, we
have that d,, € BJ-I for some j. Again by condition (b) of unravellings, we then have that
(0,w) € B}j as required.

Axioms of the form A = {0} in K are rewritten into A = N, in K'. We consider A C N,
and N, C A separately. Let Ax be of the form A C N, for o € nom(K) and assume that
(6,w) € A7. By condition (b), we have that &, = Tail(6,w) € A? and, since 7T = K, we
have that d,, € {0o?}. By condition (a) of unravellings, we then have that (J,w) € Ny as
required. For N, C A with o € nom(K), assume that (J,w) € NY. By condition (a), we
have that &,, = Tail(§,w) € {0%} and, since Z = K, we have that &,, € AZ. By condition (b)
of unravellings, we then have that (§,w) € A7 as required.

Let Ax be an axiom of the form A T VU.B and assume that (§,w) € A7. By con-
dition (b), we have that 6, = Tail(§,w) € AT and, since T = K, we have that each
Suw € AT such that (6,,8,) € U? is such that §,, € B%. Let (§,w’) be such that
((6,w), (8',w")) € U7 and (§',w') ¢ BY. By condition (c) of unravellings, we then have
that (0y,0,) € UT for §,, = Tail(§',w') and by condition (b) that d,, ¢ B%, which is a
contradiction.

Let Ax be an axiom of the form A C 3U.B and assume that (§,w) € A7. By condi-
tion (b), we have that &,, = Tail(§,w) € A% and, since Z |= K, we have that there is at least
one 0,y € AT such that (,,d,/) € UL and 6,, € BL. In case there is more than one such
element, let &, be such that d,, = choose(C, d,,). Then, by definition of sequences, there is
some neighbor (§,w’) of (§, w) with Tail(§,w’) = §,. Let f(d,w) = b1+ 0y, i€, 0y = Oy
We distinguish two cases:

1. The element ¢, is such that d,, = d,,_1. By definition of the bijection f, w = v’ - ¢,
by definition of J from Z (condition (c)) and since (8,,d,/) € UZ, we have that
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((6,w), (6,w")) € UJ. Then, since B is a concept name and &,, € B%, we have by
condition (b) that (J,w’) € BY, which proves the claim.

2. The element §,, is such that 0, # d,—1. By definition of sequences and the bijection
f, we have that f(d,w") = 81 -0y -0y . Now, by definition of 7 from Z (in particular
properties (b) and (c)), we have that ((,w), (6,w’)) € UY and, again since B is a
concept name, (6,w’) € B, which proves the claim.

Let Ax be an axiom of the form func(r) for r» € rol(K). Assume, to the contrary
of what is to be shown, that (J,w) has two distinct neighbors (d,w;), (6, w2) such that
(6, w), (6,w1)), ((6,w), (§,ws)) € 7. Since the function f introduced in the unravelling is a
bijection, there are two distinct sequences s1 and sg such that f(d,w;) = s and f(9,w2) = s2
and Tail(d, w1) = 1, Tail(d, we) = d2 with d; # d2. Since ((4,w), (3, w1)), ((§,w), (0, w2)) €
rJ we get, due to condition (c), that (Tail(6,w), &), (Tail(§,w), 52) € r%, which is a contra-
diction since 7 = K.

Since (§,w) was arbitrarily chosen, we have that each element in the domain of J is
locally K’-consistent as required. ]

Lemma 14. Let K be a consistent ACCOTFb knowledge base, T = (A, -T) a model of K,
and J = (AY,-7) = |(T) an unravelling for T. Then J has a branching degree bounded in

[cI(K)]-

Proof. Let m be the number of axioms in . Each axiom of a simplified knowledge base
can contain at most one existential restriction and, due to the definition of the function
choose used in the unravelling, there are, for each sequence s € S, at most m elements
81,...,0m € AT such that s-6; with 1 < i < m is a sequence in S. Since the mapping f
from the forest A to sequences is a bijection, A7 is a forest with branching degree m. [

Definition 15 (Paths and BCPs). Let Z = (AZ,Z) be an interpretation. We call §;-...-d,
is a path from &, to &, if, for each i with 1 <i < n, (8;,6;41) € rZ for some role r; € rol(K).

The length |p| of a path p = 61 -...- 0, is n — 1. Each element § € A” is a path of length

0. We write 61 Y do... Ut 0p, to denote a path from 6; to d,, such that (d;,0;+1) € UiI for

each 1 <14 < n and U; a safe Boolean role expression.

Let K be an ALCOZFb knowledge base and Z = (AZ, ) a forest model (a forest quasi-
model) of K. A path p = d1-...-8, in T is a descending path if there is some root (§,¢) € A?
such that, for each i with 1 < i < n,d; = (§,w;) and, for 1 < i < n,|w;| < |wi+1]|. The
path p is a backwards counting path (BCP) in Z if 6, € of (8§, € NZ) for some nominal
o € nom(K) and, for each i with 1 <i < n, (§;,d;11) € fzz for some inverse functional role
fi € rol(K). The path p is a descending BCP if it is a BCP and a descending path. Given a

BCP p = 6; ELN oo ... I Snt1 with 8,01 € 07 (6,01 € NYJ), we call the sequence fi - - - fr0
a path sketch of p. A

Please note that an element (6, w) in the domain of J already counts as a (descending)
BCP if (6,w) € 07 (NY) one some o € nom(K).

We now show how we can produce a forest model for an ALCOZFb knowledge base from
a forest quasi-model for the knowledge base. In order to do that, we traverse a forest quasi-
model in a particular order that guarantees that in an iterative parsing process, we not only
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process all nodes, but also that we can merge nodes as required so that, finally, all nominal
placeholders can be interpreted as nominals without violating functionality restrictions.

Definition 16 (Ordering). For convenience and without loss of generality, we assume that
the set of individual names N; is ordered. Let K be a consistent ALCOZFb knowledge
base and J a forest quasi-interpretation for K. We extend the order to elements in J
as follows: let w; = w,, - c% coect, W = Wy - c% -+ cy' € IN* where w, € IN* is the longest
common prefix of wy and we, then wy < wy if either n < m or both n = m and c% < c%. For
(61,€), (62,¢) € A7, let 01 € nom(K) be the smallest nominal such that (d1,£) = Ny and
02 € nom(K) the smallest nominal such that (J2,&) = Ngi. Now (61, wy) < (62, ws) if either
(1) |wi] < |wa| or (ii) |wi| = |wa| and 01 < 09 or (ii) |wi| = |wa|, 01 = 02 and wy < ws.

In the following, we are merging elements in an unravelling and, in this process, create
new roots of the form (dw,e) and elements of the form (dw,w’). We extend, therefore, the
order to elements of this form as follows: (d1wy, w]) < (dawe, wh) if (01, wiw)) < (92, wowh).

A

Roughly speaking, we proceed as follows in order to transform a quasi-forest model
J into a forest model Z: we work our way downwards the trees level by level along the
descending BCPs and use the above defined order for this purpose. By definition of the
semantics, elements that start the same descending BCP or, more precisely, that start
BCPs with identical path sketches, have to correspond to the same element in the forest
model Z that we produce. During the traversal of the forest quasi-model, we distinguish
two situations. The first one is when we encounter an element § that starts a descending
BCP and we have not seen another element before that starts a descending BCP with the
same path sketch. In this case, we promote ¢ to become a new root node and we shift the
subtree rooted in § with it. The other situation is when we encounter a node  that starts a
descending BCP, but we have already seen a node §’ that starts a descending BCP with the
same path sketch. In this case, we delete the subtree rooted in § and, instead, use the root
node created for ¢’. If § is an f-successor of its predecessor for some inverse functional role
f, we delete all f~-successors of ' and their subtrees in order to satisfy the functionality
restriction. In an unravelling, the deleted successor of ¢’ satisfies the same atomic concepts
as the predecessor of ¢ and local consistency is maintained. If the input forest quasi-model
is not an unravelling of a model, we use a notion of collapsing admissibility to characterize
fores quasi-models that have the desired properties.

In order to keep the domain as a forest when promoting an element (J, w) to a new root,
we build the new domain with elements of the form (§ - w,¢) for (§, w) and elements of the
form (dw,w’) for descendants (6, ww’) of (8, w).

Definition 17 (Equivalence Relation ~ and Collapsings). Let I be an ALCOZFb knowl-
edge base, K' = nomFree(K), and J = (A7,-7) a forest quasi-interpretation of . We
define ~ as the smallest equivalence relation on AY that satisfies 6; ~ o if 1,02 start
descending BCPs with identical path sketches.

Let J be a strict forest quasi-interpretation for K, Jo = (A%, -%0) = 7 and (8p, wo) €
A% the smallest element with wgy # ¢ that starts a descending BCP. We call Jy an initial
collapsing for J and (dp,wp) the focus of Jp.
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Let J; be a collapsing for J and (8;,w;) € A7 the focus of J;. We obtain a collapsing
Jiv1 = (AT T with focus (811, wiy1) for J from J; according to the following two
cases:

1. There is no element (p,c) € A such that (p,¢) is smaller than the focus (6;,w;) and

(p,€) ~ (6;,w;). Then J;4; is obtained from J; by renaming each element (d;, w;w}) €
AT to (8w, w)).

2. There is an element (p, <) € A such that (p,¢) is smaller than the focus (d;, w;) and
(p,€) ~ (i, w;). Let (p,e) be the smallest such element.

(a) AT+t = AT\ ({(0;, wiw)) | wi € N} U{(p,w) | w = c-w'c € N,uw' €
IN*, (§;, w;) has a predecessor (5Z,wz) such that ((6;,w!), (0;,w;)) € f7i for an
inverse functional role f in rol(XC) and ((p, ), (p,€)) € f7i});

(b) for each concept name A € con(K) and (6, w) € AJi+1, (6, w) € AT+ iff (6,w) €
AT,

(c) for each role name r € rol(K) and (61, w), (62, ws) € AT+1 ((61,w1), (62, ws)) €
rdet iff

i. ((61,w1), (02, ws)) € 77 or
ii. (01,w1) is the predecessor of (0;,w;) in J; (i.e., 61 = 0; and w; = wy - ¢ for
some ¢ € IN), (82, w2) = (p, ), and ((51,w1), (6;,w;)) € r7i.

The focus (0;4+1, wit1) in Ji+1 is the smallest descending BCP such that (d;, w;) < (0i41, wit1).
For a collapsing J;, let safe(J;) be the restriction of J; to elements (6, w) such that
(0,w) € Jj for all j > i. With J, we denote the non-disjoint union of all interpretations
safe(J;) obtained from subsequent collapsings J; for J. The interpretation obtained from
J., by interpreting each o € nom(K) as (p,e) € NJ« is denoted by collapse(7) and called a
purified interpretation w.r.t. J. If collapse(J) | K, we call collapse(J) a purified model of
K. A

In Figures 3 to 6 we illustrate the first collapsing steps for the unravelling depicted in
Figure 2. The concept interpretations are not shown in the figures, but are assumed to be
as indicated in Figure 2. The edges for descending BCPs are shown in red color, and the
dashed lines in Figure 3 indicate the levels of the tree because, within a tree, the order in
which the nodes are processed depends firstly on their level. Within a level, we assume
that the order increases from left to right. The numbers next to nodes in Figure 3 indicate,
which elements are used as focus element in a collapsing step and their order. For the initial
collapsing (Figure 3) the focus is on the first non-root element that starts a BCP, which we
indicate with a black border around the node.

In the first collapsing step we just rename elements to promote the focus from Figure 3
to a root. Because the focus element highlighted in Figure 4 starts a BCP with path sketch
different from the ones started by smaller elements, we again only rename elements to
obtain a new root (Figure 5). Now, the focus is on a nominal placeholder and since nominal
placeholder are BCPs, we have a root with the same path sketch and use the second case
of Definition 17. The resulting collapsing is depicted in Figure 6.
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Figure 3: An initial collapsing for the un- Figure 4: In the first collapsing step we just
ravelling depicted in Figure 2. rename elements to promote the
focus from Figure 3 to a root.

Figure 5: A collapsing obtained from the Figure 6: A collapsing obtained by using
one depicted in Figure 4. the second case of Definition 17
on the collapsing from Figure 5.

Finally, we obtain a collapsing for the unravelling shown in Figure 2 as the one depicted
in Figure 7.

We can now show that the collapsing of an unravelling results in a forest model for
K. Our aim is, however, to show something more general. We want to collapse not only
unravellings into forest models, but forest quasi-models. Unfortunately, it is not the case
that the collapsing of any forest quasi-model results in a forest model for X since the
elements that we merge in the collapsing process do not necessarily satisfy the same atomic
concepts. We define, therefore, the following admissibility criterion that characterizes forest
quasi-models that can be collapsed into forest models.

Definition 18 (Collapsing-admissibility). Let J be a forest quasi-interpretation for some

ALCOTIFb knowledge base K. Then J is collapsing-admissible if there exists a function
ch: (cl(K) x A7) — A7 such that
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Figure 7: Result of collapsing the unravelling from Fig. 2. The infinitely many new root
elements are displayed in the top line.

1. for each concept C' = 3U.B € cl(K) and each § € C7, we have (6,ch(C,6)) € U7 and
ch(C, ) € BY. Moreover, if there is no functional role f for which (5,ch(C,6)) € f7
then ch(C, d) is a successor of 0,

2. for each concept C' = JU.B € cl(K) and elements &, € C7 that start descending
BCPs with identical path sketches, we have (91, ch(C,d1)) = (92, ch(C, d2)).
A

Lemma 19. Let K be an ALCOZFb knowledge base. Any unravelling J of a model T for
K is collapsing-admissible.

Proof. We define a function ch directly from the function choose used in the unravel-

ling as follows: for each C' € cl(K) and (§,w) € A7 with f(§,w) = 61 -... 6, and
choose(C, Tail(d, w)) = {&'}, we set ch(C, (6,w)) = (6, w’) for (6,w') = f= (61 ... 0p - ¢")
if 61 -...-0p, -0 is a sequence in S and (,w') = f~(01 ... dp—1) otherwise. This is

well-defined since the function f in unravellings is total and bijective and it is as required
for admissibility since elements that start BCPs with identical path sketches are always
generated from the same element in Z. The first condition of collapsing-admissibility holds
since in unravellings, we always add 01 - ... - d, - &’ to the set of sequences unless the pair
(On, On—1) is in the interpretation of some functional role. In that case, the function ch uses
the predecessor instead of the successor, which is still admissible. O

Lemma 20. Let K be a consistent ACCOIFb knowledge base, J = (A7 ,-7) a strict forest
quasi-model for K with branching degree b that is collapsing-admissible. Then collapse(7)
is a forest model for K with branching degree b.
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Proof. Let K' = nomFree(K). Since J is a forest quasi-model of K by assumption, J = K'.

We first show that each collapsing J; for J is a forest quasi-model for K, i.e., J; &= K.
We then show that each collapsing J;+1 produced from an admissible collapsing J; is again
collapsing-admissible. Finally, we show that, for each 0 € nom(K), there is exactly one
node in J, of the form (p, ) such that (p,e) € NJ~, which implies by Proposition 11 that
collapse(J) is a forest model for K.

We start with the first claim: For the initial collapsing this is immediate since J is a
forest quasi-model for . In particular, Jy is locally K’-consistent. Assume that J; is a
locally K'-consistent collapsing and (d;, w;) is the focus in ;. We show that J;41 is locally
K'-consistent. Since K’ is simplified by assumption, we only have to consider axioms of
form (1).

If Ji4+1 is obtained according to the first case of Definition 17, we only rename elements
of the domain in order to create a new root node and local K'-consistency is immediate.
We assume, thus, that J;11 is obtained according to the second case of Definition 17.

Axioms of the form [|A; C | |B; and A = {o} (rewritten into A = N, in K’) hold
immediately due to condition 2.b of collapsings.

Let Ax be an axiom of the form A C VYU.B and assume that (6,w) € A7. The only
interesting elements are the predecessor (8;,w)) of the focus (d;,w;) and (p,e). However,
(6;,w;) ~ (p,e) and, since J is collapsing-admissible, (d;,w;) and (p, ) satisfy the same
atomic concepts with respect to con(K). Further, the interpretation of atomic concepts is
not changed due to 2.b, which again implies local K’-consistency for this kind of axioms.

Let Ax be an axiom of the form A C 3U.B and assume that (5, w) € A7+1. We concen-
trate on the three interesting cases where the direct neighborhoods of elements change:

1. We start with the case where the focus (d;,w;) is the corresponding U-successor of
(5, w), i.e., 6; = §,w; = w-c for some ¢ € N, ((§,w), (6;, w;)) € U+, and (6;, w;) € BT,
Since (p,e) and (d;,w;) are in the same equivalence class for ~ by assumption, (p,¢)
starts a BCP with the same path sketch as (d;, w;) and both (p,e) and (9;, w;) satisfy
the same atomic concepts with respect to con(KC). Then condition 2.(c)ii. ensures that
(p,€) is the required U-successor for (§,w) in Jj41.

2. Assume that (6,w) = (p,e), {(p,€), (p,c)) € U% (p,c) € BT, (p,c) ¢ AJ+1, and
(p,e) ¢ (3U.B)7+1. Due to 2.a, the focus (J;,w;) has a predecessor (&;,w!) such that
((8;,wh), (8;,w;)) € f7 for an inverse functional role f € rol(K) and ((p,¢), (p,c)) €
(f7)7:. Since f is inverse functional and J; is, by assumption, locally K’-consistent,
there is no successor (6;,w; - ¢;) of (8;,w;) such that ((6;,w;), (5, w; - ¢;)) € (f7)7".
Similarly, there is no element (p’,w’) such that ((p,¢),(p/,w’)) € (f~)%. Then,
since J; is collapsing-admissible, we have that (d;,w}) € ch(3U.B, (6;,w;)), (p,c) €
ch(3U.B, (p,¢e)), and ((d;, w;), (d;,w})) = ((p,€), (p,c)) since (§;, w;) and (p,e) start
descending BCPs with identical path sketches. In particular, ((6;,w;), (6;,w})) € U7
and (0;,w]) € B7. Then, by condition 2.(c)ii., {(p,€), (§;,w})) € U1 by condi-
tion 2.b, (§;,w!) € B7#1, and, thus, (p,¢) € (3U.B)7#+1 as required.

3. We assume that (d;,w;) has a predecessor (d;,w}) such that ((&;,w!), (6;,w;)) € f7
for an inverse functional role f in rol(KC) and ((p, c), (p,€)) € f7¢, causing the deletion
of (p,c) and its descendants, one of which, say (p,v) is connected to some (s, ¢), such
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that {((s,e), (p,v)) € U and (p,v) € B7:. Now, if there is no inverse functional role
g for which ((s, ), (p,v)) € g7%, then the strictness and collapsing-admissibility of J;
ensure the existence of a ¢ € N for which ((s,¢), (s,c)) € U% and (s,c) € B and,
consequently, also ((s,¢),(s,c)) € U7+ and (s,¢) € BTi+1. If ((s,e),(p,v)) € g7
for some inverse functional role g, then strictness of the initial collapsing implies that
(p,v) itself started a descending BCP and, due to the defined order, it must have been
a focus before and now be a root itself. This contradicts, however, the fact that (p,v)
is a descendant of (p, ) and are done.

In all cases, the elements in AJi+1 have the required successors.

Let Ax be an axiom of the form func(f) for f € rol(K). We concentrate on relations
between the predecessor (d;,w}) of the focus and (p, €) since otherwise local K'-consistency
is immediate. A predecessor exists for the focus since we process elements in ascend-
ing order starting with non-root nodes. Assume ((d;,w!), (6;,w;)) € f7, in which case
((6;,wh), (p,e)) € f7+1 due to 2.(c)ii. and assume (p,e) has a successor (p,c) in J; such
that ((p,c),(p,€)) € f7i. In this case, (p,c) ¢ AJi+1 according to 2.a and together with
local K'-consistency of J;, this implies that (0;,w}) is the only element in A7+ such that
<(6i7 wg)’ (P, 5)> € fJHl'

We now show that each J;11 produced from an admissible collapsing 7; is again ad-
missible for collapsing. By assumption, the initial collapsing is admissible, so let J; be an
admissible collapsing and ch; the required function. We distinguish two cases:

1. Let J;+1 be produced according to the first case of collapsings. We define a function
chit1 for Ji41 as follows: For each C € cl(K) and § € AJ+1 we set ch;11(C,8) = &
for ' = (d;w;, wh) if chi(C, &) = (6;, wyw}) for (9;, w;) the focus in J; and ¢ = ch;(C, J)
otherwise. Since we just change the names of the elements and leave the interpretation
of concepts and roles as before, the function is as required for admissibility.

2. Let J;41 be produced according to the second case of collapsings. We define a function
ch;y1 for Jit1 as follows: For each C € cl(K),

(a) for each § € AT+t ¢ {(6;,w)), (p,e)} with (;,w!) the predecessor of the focus
(6;,w;), we set ch;y1(C,6) = & for & such that &' € AJi+1 and &' = chi(C,0);
this is well-defined since only successors of (p, ) and (0;, w;) are deleted in Jj41.

(b) for 6 = (p,e) and (0;,w}) the predecessor of the focus, ch;41(C,d) = ¢ for
§' = (6;,wl) if chi(C,8) = (p,c) and (p,c) ¢ AT+t and § = chi(C, §) otherwise;

(c) for § = (0;,w}) the predecessor of the focus, we set ch;41(C,d) = ¢’ for &' = (p,¢)
if chi(C,0) = (6;, w;) and §' = ch;(C, §) otherwise.

For elements apart from the predecessor of the focus (d;,w}) and the root (p,¢)
that replaces (d;,w;), the interpretation of concepts and roles remains as before
by properties 2.b and 2.c and the function is as required. For (d;,w}), we change
the function so that in cases where (d;,w;) was returned, (p,e) is returned. Since
(0;,w;) ~ (p,€), this is admissible. Similarly, if a successor (p, c) of (p,¢) is not con-
tained in A7+, then (&;,w!) is used instead. This is admissible since, in this case,
(65, w;), (0, w))) = ((p,€), (p,c)) as argued above for axioms of the form A C 3U.B.
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We now show that, for each o € nom(K), there is exactly one node in 7, of the form
(p, €) such that (p,e) € NJ~. Nominal placeholders are descending BCPs by definition and,
when a nominal placeholder becomes the focus, it is merged into a root that is in the same
equivalence class of ~ and which is by definition of lower order. Such a root exists because
of property FQ2 of forest quasi-interpretations. Since the “safe” parts added to J, contain
only the elements which will never be renamed, J,, does not contain nominal placeholders
as required.

The interpretation 7, is obtained by building the non-disjoint union of the “safe” parts
for all collapsings, which contain only elements which will neither be renamed nor deleted.
Considering one element (J,w) € A7 we find that there is a i € IN such that all successors
and all root neighbors of (,w) in J; are the same as in J,. As we have shown, J; is
locally K'-consistent and therefore (§,w) has a consistent neighborhood. Hence [, is a
forest quasi-model of K.

Now, when interpreting each o € nom(K) as {(p,e) € A% | (p,e) € NJ*} in collapse(J),
we obtain a forest model for KC, where the set of roots is {(p,¢) | (p,e) € A=},

The bounded branching degree is an immediate consequence of the construction since
we never add successors during the construction and the starting forest quasi-interpretation
J has a bounded branching degree by assumption. O

Since unravellings of a model 7 for K are strict forest quasi-models of X with branching
degree bounded in |cl(K)| by Lemma 13, and unravellings are collapsing-admissible by
Lemma 19, it is an immediate consequence of Lemma 20 that the collapsing of an unravelling
yields a forest model branching degree bounded in |cl(/C)].

Corollary 21. Let K be an ALCOIFb knowledge base and T an interpretation such that
T = K, then the purified interpretation collapse([(Z)) is a forest model for IC with branching
degree b bounded in |cl(K)].

In the following, we work towards giving an alternative characterization of the result of
a collapsing. This will come handy for the subsequent proofs.

We start by defining the so called pruning of a forest quasi-interpretation, which is,
roughly speaking, the structure obtained by just deleting all the nodes, which will be erased
in the course of the collapsing process anyway.

Definition 22 (Pruning). Let J be a strict forest quasi-model for an ALCOZFb knowledge
base IC that is collapsing-admissible and let Jy, J1,...,J, be as defined in Definition 17.
The pruning of J (written prune(J)) is obtained by restricting J to a set I' € AY which
is defined as follows: I' contains all (§wy,wsws) € A7 for which (dwiws,ws) € A or
(dwrwsg, ws) is the focus in some J;. AN

We again use the equivalence relation ~ for elements that start descending BCPs with
identical path sketches from Definition 17 and construct an interpretation from a pruning
by identifying equivalent nodes, also known as factorization.

Definition 23 (Factorization). Let K be an ALCOZFb knowledge base, J a strict forest
quasi-interpretation for K that is collapsing-admissible, and £ = prune(J).

The factorization of £ by ~ (denoted by L. ) is now defined as the forest quasi-inter-
pretation M = (AM M) with
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AM = (8] 5 € A%);

for each A € con(K), AM = {[§]~ | § € AL},

for each 7 € rol(K), r™M = {([8]~, [6']~) | (6,0") € 7*}, and

for each o € nom(K), o™ = [§]. for 6 € N~.
A

Note that the interpretation of nominals in M is well defined as, by definition, all
N,-instances are in the same ~-equivalence class.

Now we are ready to establish the wanted correspondence: the collapsing of a forest
quasi-interpretation can essentially be obtained by first pruning and then factorizing it.

Lemma 24. Let J be a strict forest quasi-model for an ALCOZFb knowledge base K
that is collapsing-admissible. Then collapse(J) = prune(J) ... Moreover the new roots in
collapse(J) correspond to those ~-equivalence classes that contain J-elements which start
descending BCPs in J.

Proof. Considering the first claim, note that by definition of the collapsing procedure, for
every (dw,w') € Acollapse(T) there is exactly one pair wi,ws with w = wywsy such that
(6w, waw') € APUeT) Moreover, case 1 of the construction assures that Ace!lapse(J)
contains one element from every ~-equivalence class from APU"*(J)/~ Hence the mapping
@« Acllapse(T) _ APUNe(T)/~ with o(dw,w') = [(§wy, waw')]~ is a bijection and, as a
consequence of the construction, an isomorphism.

The second claim is also a direct consequence of the construction of the collapsing. [

5. Quasi-Entailment in Quasi-Models

In this section, we will come up with a characterization for forest quasi-models that mirrors
query entailment for the corresponding “proper models”. In our further argumentation, we
have to talk about the initial part of a tree, i.e., the part that remains if one cuts branches
down to a fixed length. For a forest interpretation Z = (AZ,-Z) and an n € N, we denote,
therefore, with cut,(Z) the interpretation obtained from Z by restricting AZ to those pairs
(p,w) for which |w| < n.

The following lemma ensures that in the case of purified models, we find only finitely
many unravelling trees of depth n that “look different”.

Lemma 25. Let K be a consistent ALCOTFb knowledge base. Then there is a purified

interpretation T such that T = K and, for every n € IN, there are only finitely many
non-isomorphic trees of depth n.
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Proof. Since K has a model by assumption, Lemma 21 guarantees that there is some purified
model 7 of K. In particular, Z is a forest model with the branching degree bounded in the
size of cl(KC).

We now compute the maximal number of non-isomorphic trees of depth n over the
domain of Z. We denote this bound by 7). The argumentation is close to the one used by
Levy and Rousset (Levy & Rousset, 1998) for their definition of tree blocking.

Let ¢ = [cl(K)| and r = |rol(K)|. We first consider trees of depth n = 0. We have 2¢
choices for the different subsets of concepts in cl(K). For n > 0, each concept at level 0
can trigger the generation of a new successor and we can have any number of successors
between 0 and c. Assume, for now, that we have only a single role name r € rol(K) and
that each node in a level smaller than n is the root of a tree with depth n — 1 with exactly
¢ successors for each node. In this case, there are O(2°T)S_,) non-isomorphic sub-trees of
depth n. Taking into account that a node does not necessarily have ¢ successors, but we can
choose any number between 0 and ¢, we get a bound of O(2°T)_,) for the number of non-
isomorphic sub-trees of depth n. Finally, since we have not only one but a choice of r roles,
we get a bound of O(2°(¢TS_;)"). We now abbreviate 2°¢” with x and rc¢ with a and rewrite
the obtained bound as Tj, = O(z(T,,_1)%). Unfolding yields T}, = O((z+ot-+a""")(Ty)a")
which is bounded by O((z%")(2)*") = O((22°)®"). By expanding the abbreviated symbols,
we obtain a bound for T}, of O((2¢¢")("9"). O

For our further considerations, we introduce the notion of “anchored n-components”.
These are meant to be certain substructures of forest quasi-interpretations. In the first
place, these substructures contain a connected set of nodes W’ which are situated “closely
together” in the original structure, this closeness being witnessed by the fact that all ele-
ments of W’ are descendants of some node § and have a distance < n to §. Moreover for
each of those nodes ¢’ from W', that the anchored n-component may (but does not need
to) contain a finite number of descending BCPs starting from §'.

Definition 26 (Earthed Components). Let J be a forest quasi-interpretation and § € A7,
An interpretation C will be called anchored n-component of J with witness § if C can be
created by restricting J to a set W C AY obtained as follows:

e Let Js5 be the subtree of J that is started by ¢ and let Js, := cut,(Js). Select a
subset W’ C AJsn that is closed under predecessors.

e For every &' € W/, let P be a finite set (possibly empty) of descending BCPs p starting
from ¢’ and let Wy contain all nodes from all p € P.

[ ] Set W - W/ U U(S,EW’ W&/
A

Now think of a forest quasi-model J and some query ¢. The following definition and
lemma employ the notion of anchored n-components to come up with the notion of quen-
tailment (short for quasi-entailment), a criterion that reflects query-entailment in the world
of forest quasi-models.

Definition 27 (Quentailment). Let ¢ be a conjunctive query with f(¢) = n and J some
forest quasi-model of an ALCOZFb knowledge base K. We say that J quentails q (written
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J kq) if, for V = var(q), J contains connected anchored n-components Ci, ..., Cy and there
are according functions py;: V — 22% guch that the following hold:

Q1 For every x € V, there is at least one C;, such that p;(z) # 0
Q2 For all A(z) € ¢, we have p;(z) € A7 for some i.

Q3 For every r(x,y) € q there is a C; such that there are 61 € p;(x) and do € p;(y) such
that <51,52> erd.

Q4 If, for some z € V, there are connected earthed n-components C; and C; with § € p;(z)
and ¢’ € pj(x), then there is

e a sequence Cp,,...,Cp, with n; =4 and ny = j and
e a sequence d1,...,0; with 6; = ¢ and §; = &’ as well as 0,, € pp,, () for all
1<m <k,

such that, for every m with 1 < m < k, we have that

e C,,, contains a descending BCP p; started by 9,,,
o C
e p; and po have the same path sketch.

contains a descending BCP ps started by 041,

Nm-+1

For a union of conjunctive queries u = ¢q; V...V qp, we say that J quentails u (written

Jku)if Jhrqforage{q,... .} A

Lemma 28. Letu=q V...V q, be a union of conjunctive queries and K an ALCOLFb
knowledge base. Then

1. For any model T of K, |(Z) R u implies T = u.

2. For any strict forest quasi-model J of KC that is collapsing-admissible, collapse(J) = u
implies J R u.

Proof. 1. Let g be a disjunct of u such that | (Z)rgq, V = var(q), and Ci,...,C, the
connected earthed n-components witnessing the quentailment. We use the function
Tail from Definition 12 and exploit its properties as a homomorphism. Note that Tail
maps nodes in [(Z) to the same individual in Z, if they start descending BCPs with
the same path sketches. Due to condition Q4 from Definition 27, this implies, for
every x € V and every 1 € p;(x) and d2 € pj(x), that Tail(é1) = Tail(d2). Hence, the
total function p: V — AT defined by letting u(x) = v whenever Tail(§) = + for some
d € pi(x) and some i with 1 < i < £, is well-defined. We now show that p is a query
match for ¢ in Z by examining the atoms of g:

e For every unary atom A(x), the definition of quentailment ensures that there
exist a C; and a § € A% with ¢ € pu;(2) and 6 € A7. Then, by definition of Tail,
it follows that u(z) = Tail(§) € AZ.
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e Likewise, for every binary atom r(z,y), the definition of quentailment ensures
that there exists a C; and 6,02 € A% such that §; € u;(z) and 6o € p;(y) as
well as (d1,82) € 7. Again, by definition of Tail, it follows that (u(x), u(y)) =
(Tail(61), Tail(d2)) € rZ.

2. To prove this, we employ the alternative characterisation of collapsings as established
in Lemma 24. Let 7/ = (AT, 2') = prune(J),~ and let p: V — A?' be a match for
q in Z'. We use p to construct the anchored n-components and functions needed to
show that J quentails q.

Let V* C V contain those variables which p maps to a singleton ~-equivalence class.
We now define U = {Vi,...,V,,} as the finest partitioning on V* such that, for any
x,y € V*, x and y are in the same partition whenever r(z,y) € ¢ for some r € rol(K).
Next, we assign to every partition V' € U the set Qv of query atoms containing
variables from V’. We now construct for every V' an anchored n-component Cy and
a function py (initialized as yielding () for all inputs) as follows:

e For every z € V', let Cy contain the J-element 6 for which u(z) = {6}. Note
that AT consists of the ~-equivalence classes over elements from 7, i.e., {d} is
one of the ~-equivalence classes from AT, Moreover, set py(x) = py () U {d}.

e For every r(z,y) € Qv with y & V' and p(x) = {0}, let Cy» contain an addi-
tional element &' € p(y) for which (6,0") € r7 (existence assured by definition
of collapsing via factorization) and all elements from some descending BCP in
prune(J) starting from J (existence assured since [¢']. is not a singleton class).
Moreover set puy(y) = py(y) U {0’}

e Likewise, for every r(z,y) € Qv+ with z € V' and u(y) = {0}, let Cy» contain an
additional element &' € u(x) for which (¢§',6) € r7 (existence assured by defini-
tion of collapsing via factorization) and all elements from the shortest descending
BCP in prune(J) starting from ¢’ (existence assured since [¢]. is not a singleton
class). Moreover set pys(z) = pys(z) U {d'}.

We furthermore construct, for each query atom a that contains no variables from V*,
its own anchored n-component C, and function pu, (again initialized to always return
0) as follows:

o If a = r(z,y), let C, contain two nodes §; and dy for which 6; € p(z) and
62 € pu(y) and (61,82) € rJ (existence assured by definition via factorization)
as well as some prune(J)-descending BCP starting from ¢; and the shortest
prune(J )-descending BCP starting from ds.

e If a = A(x), let C, contain a node & for which § € u(z) and § € A7 (existence

assured by definition via factorization) as well as the shortest prune(J)-descen-
ding BCP starting from J.

Let € contain all Cy+ and C, defined so far. Note that € already satisfies the conditions
Q1-Q3 of Definition 27. We now have to add some more anchored n-components in
order to satisfy condition Q4 as well. Let €’ be initially empty. For any z € V where
p(z) is a non-singleton equivalence class and any two C,,Cg € € with 6 € po(z) and
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Figure 8: Correspondence between entailment and quentailment.

8" € pg(z), we have that, since 0 and ¢’ are in the same ~-equivalence class p(x),
there is a sequence 01, ...,d; of J-nodes with § = 0; and ¢ = 0, and every ¢; and
di+1 start a descending BCP having the same path sketch. We enhance €' by one
anchored component per d; which contains just §; and the corresponding descending
BCPs. Then, by construction, the elements of €U€’ constitute the necessary anchored
n-components to justify that J quentails ¢ and, thus, J quentails u.

O

As an example for the correspondence between (query) entailment and quentailment,
consider the conjunctive query

q = {r(z1,x2), s(x2,x3), f(x4,x3),s(x5,24)}.

A match p for this query into our example model from Figure 1 is displayed in the upper
part of Figure 8, which witnesses Z |= ¢. In the lower part, the anchored components C;
and C2 and according functions pp and ps establish |[(Z) kgq.
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Figure 9: One limit for the model from Fig. 1

6. Limits and Forest Transformations

Before introducing the following construction, the reader might benefit from some more
explanation. One of the major obstacles for a decision procedure for conjunctive query
entailment is that for DLs including inverses, nominals, and cardinality restrictions (or al-
ternatively functionality), there are potentially infinitely many so-called “new nominals”:
domain elements which can be in a way identified by being linked to a “proper nominal”
via a BCP. However, due to the global cardinality constraints that those BCPs impose on
their elements, the existence of infinitely many new nominals implies that their “witnessing”
BCPs must get longer and longer, such that by just looking at some finite-distance neighbor-
hood, most of those new nominals just look like non-nominal domain elements. This state of
affairs can be exploited by essentially constructing new domain elements as “environment-
limits”. In a way, those new domain elements are characterized by the property that they
can be approximated with arbitrary precision by already present domain elements - possibly
without themselves being present in the domain.* We will see in the following that those
new domain elements come handy for constructing a well-behaved interpretation.

Definition 29 (Limits of a Model). Let Z = (A%, -7) with § € A% be some model of an
ALCOZFb knowledge base K. A tree interpretation J is said to be generated by 6 (written:
J <9), if it is isomorphic to the restriction of | (Z,d) to elements of {(J, cw) | (6, cw) €
AT ¢ HY for some H C IN.

The set of limits of 7 (written limZ) is the set of all tree interpretations J such that
for every k € N, there are infinitely many § € AZ such that cuty(£) = cuty(J) for some
L <0. A

Figure 9 displays one limit element of our example model.

The following lemma gives some useful properties of limits. Besides some rather ob-
vious compatibility considerations with respect to knowledge base satisfaction, claim 3 of
Lemma 30 provides us with the as pleasant as useful insight that the root node of a limit
can never be part of a BCP at all.

4. As an analogy, consider the fact that any real number can be approximated by a sequence of rational
numbers, even if it is itself irrational.
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Lemma 30. Let K be an ALCOZFb knowledge base, K' = nomFree(K), Z a purified model

of I, and n some fized natural number. Then the following hold:

1.

Let L' be a tree interpretation such that there are infinitely many 6 € AT with £’
cut, (L) for some L<5. Then, there is at least one limit J € limZ such that cut, (J)
L.

[l 112

Fvery J € limZ is locally K'-consistent apart from its root (p,e).

For every J € Wim T it holds that its root (p,e) has no BCP to any (p,w) € A7.

. If T € im T contains a node 0 starting two backwards counting paths with path sketches

s1 and s2, then for any element 0* in any unravelling holds: if the direct neighborhood
of 6* is isomorphic to that of § and §* starts a descending BCP with path sketch si
then it also starts a descending BCP with path sketch so.

Every J € limZ s collapsing-admissible.

Proof. 1. Let b be the branching degree of Z, let D,, be the (by assumption infinite) set

of all § € AT such that £’ = cut, (L) for some £ <16, and let J,, contain all those L.
Starting with & = n, we now iteratively increase k and construct sets J; and Dy and
tree interpretations L. On our way, we inductively prove some properties.

By induction hypothesis we know that Dy is infinite and there is some £; with £ =
cuty(M) for all M € Ji. By Lemma 25, there are only finitely many non-isomorphic
tree interpretations of depth k + 1 with branching degree b, and we can partition
Jk into finitely many sets Jx1,...,Jkm such that every two M, M’ from any J;
satisfy cutyi1(M) = cutyyq(M’). Likewise, we can define classes Dy 1, ..., Dy, with
Dy = D1 U...U Dy, such that 6 € Dy ; if there is an £ <6 with £ € Jj;. Now,
as Dy, is infinite, one of the Dy ; must be infinite as well and we can set Dj1 = Dy,
and Jip4+1 = Jr. Hence, we know that Dy, is infinite and there is some L£j41 with
L1 = cutpy (M) for all M € Jx11.

Thus, we have established an infinite sequence Ly, Ly41, ... with £; = cut;(L;) for all
j > i. Without loss of generality, we can assume that isomorphic nodes are named
identically, i.e., we even have £; = cut;(L;) for all j > i. Now we can define J as the
(non-disjoint) union of all £;. This way we have established the structure J for which
cuty(J) = Ly and we know that for every k there are infinitely many § (namely all
elements from Dy) such that cuty(L) = Ly, for some £ <1 6. Hence this 7 is the limit
element with the desired properties.

. Let (p,w) with w # ¢ be a node in J. Now choose a § € AT such that cuty,1(L) =

cut|y|41(J) for some £ <16 (by definition, there are even infinitely many such s to
choose from). Then £ contains a node §* whose direct neighborhood is isomorphic to
that of (p,w). However, as £ is contained in [(Z,0) and Z = K by assumption, it is
locally K'-consistent and hence 6* is. Therefore (p,w) is locally K'-consistent in 7.
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3. Assume the contrary, i.e., that some J € limZ has a BCP from the root (p, €) to some
(p,w) € A with (p,w) € NJ for some o € nom(K). Since we have only functionality
and by definition of BCPs, a BCP uniquely identifies one domain individual. By
definition of lim Z, however, there are infinitely many § € AT satisfying cuty, (£) =
cuty,|(J) for some J <16 and we have an infinite number of individuals with the same
counting path to of. This is a contradiction.

4. Choose k to be the maximum length of the two BCPs. By definition of the limit,
7 contains an element v such that cutj,| (L) = cut),41(J) for some £ <~. Now,
let & € AF be the element that (with respect to this isomorphism) corresponds to
§ € AJ. Then, ¢ is the origin of two descending BCPs with path sketches s; and
s9. Let Tail(¢") = 4. Since path sketches of descending BCPs uniquely identify one
domain individual, every node §* in any unravelling that starts a descending BCP
with path sketch s; must have been caused by +' as well. Furthermore (as their
direct neighborhoods are isomorphic and by the specific design of the choose function
from Definition 12 which renders all successors non-isomorphic), all successors of 6*
uniquely correspond to neighbors of 4" and in turn to successors of ¢'.

This in turn implies that, for every successor of *, one finds a successor of 4" with
isomorphic direct neighbourhood. Yet, this synchronicity argument can be inductively
applied and thereby iterated down the BCP. Thus, we obtain that 6* also starts a
descending BCP with path sketch so.

5. We define the function ch: (cI(K) x AY) — A7 essentially like in the proof of
Lemma 19, namely by referring to the function choose. For a given element § € A7
that starts a BCP of length £ in 7, choose a 6’ € AT such that cutis|¢(£) = cutis40(T)
for some £ <1¢'. As L is contained in |(Z, "), we can now proceed and define ch(C, ¢)

as demonstrated in the proof of Lemma 19.
O

Having defined limit elements as convenient building blocks for restructuring forest
quasi-interpretations, the following definition provides the first hints on where inside such
a structure one existing node (and all its sucessors) can safely be exchanged by a limit
element.

Definition 31 (n-Secure Replacement). Let K be an ALCOZFb knowledge base, Z a model
for K, J some forest quasi-model for K with § € A7. A strict tree quasi-interpretation
J' € lim7 is called an n-secure replacement for § if

e cut,([(J,9)) is isomorphic to cut,(J'),

e for every anchored n-component of 7’ with witness ¢’, there is an isomorphic anchored
n-component of 7 with witness 9.

If a 6 € A7 has an n-secure replacement in lim Z, we call § n-replaceable w.r.t. Z, otherwise
we call § n-irreplaceable w.r.t. ZI. A

Figure 10 displays a 3-secure replacement in the considered unravelling of our example
model.
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Figure 10: Forest quasi-model (right) and according 3-secure replacement for § (left).

After having defined which elements of a forest quasi-model are eligible for being replaced
by a limit element, we have to make sure that not too many elements (actually defined in
terms of the original model) are exempt from being replaced.

Lemma 32. FEvery purified model I of an ALCOIFb knowledge base K contains only
finitely many distinct elements that start a BCP and are the cause for n-irreplaceable nodes
in the unravelling of Z.

Proof. Assume the converse: let a purified model Z of K contain an infinite set D of elements
giving rise to n-irreplaceable nodes in [(Z). Then there must be an £’ such that there is an
infinite set D’ C D such that every d' € D’ generates an £ for which cut, (£) = £ (since by
Lemma 25, there are only finitely many non-isomorphic choices for £’). This set D’ can be
used to guide the construction of a specific limit element J € limZ according to Lemma
30.1. Now, for an element (p,w) from J starting a BCP, let [, ,,) € IN be the length of
the shortest such BCP starting from (p,w). Then, let k be the maximum over all Lipuw) of
individuals (p,w) from J that start a BCP and for which |w| < n. By construction, D’
contains one element d” generating an £ with cutg(£) = cutx(J) (actually infinitely many).
By the choice of k and Lemma 30.4, we can conclude that 7 is an n-secure replacement for
the irreplaceable |(Z)-node caused by d” which contradicts the fact that d” € D. O

Now we know, which elements of a forest quasi-model can be replaced by a suitable limit
element. The following definition exactly tells us, how such a replacement is carried out:
the respective element and all its successors are deleted and the limit element (together
with its successors) is inserted at the same position.

Definition 33 (Replacement Step). Let K be an ALCOZFb knowledge base, Z a model
of K, and J a forest quasi-model of K, i.e., J = K’ = nomFree(K). Let (p,w) € A7 be
n-replaceable w.r.t. Z and J’ an according n-replacement for (p,w) from limZ with root

(s,€).

We define the result of replacing (p, w) by J’ as the interpretation R where
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Figure 11: Result of replacing the element § by the 3-secure replacement depicted in Fig-
ure 10. The inserted component is highlighted.

o AR = AT U{(p,wn") | (¢,u") € AT} with AT, = (AT \ {(p,ww') | || > 1})

e for cach A € con(K'), AR = (A7 N AT

red

) U{(p,ww') | (s,w') € AT}

o for each r € rol(K'),7® = (r7 N AL, x AT YU{{(p,ww"), (p, ww")) | ((s,w"), (s,w")) €
7'}
A

Figure 11 displays the result of carrying out this replacement step on our example.

The following lemma assures that during a replacement as described above, no new
anchored n-components are introduced, instead all anchored n-components present after an
n-secure transformation were present before or completely contained in the inserted limit
element.

Lemma 34. Let K be an ALCOZFb knowledge base, T a model for I, J a forest quasi-
model for K, i.e., J = K' = nomFree(K), and let (p,w) € A7 be n-replaceable w.r.t. T. Let

J' be an n-replacement for (p,w) with root (¢,&) and R be the result of replacing (p, w) by
J'. Then the following hold:

1. cut,(1(T, (p,w))) is isomorphic to cut,(L(R, (p,w))).
2. If n > 1, then R is locally K'-consistent.

3. Whenever R contains an anchored n-component C, then one of J or J' contains an
anchored n-component isomorphic to C.

36



Proof. 1. This is a direct consequence from Definitions 31 and 33.

2. We make a case distinction when element-wise investigating local consistency of R
(note that K and K’ are simplified and that local consistency of a node (p,v) € A®
depends only on this node and its direct neighbors):

e v = wuw for some w’ # &: then the direct neighborhood of (p,v) in R is isomor-
phic to the direct neighborhood of (¢,w’) in J’ (recall that (s,e) is the root of
J"). By Lemma 30.2, J’ is locally K'-consistent except possibly for (¢,e). Hence
also (p,v) is locally K'-consistent in R.

e v # wuw' for any w', i.e., (p,v) was not affected by the replacement: then the
direct neighborhood of (p,v) hasn’t changed by the replacement and, therefore,
the neighborhoods of (p,v) in J and R coincide. As J is locally K'-consistent
by assumption, so is (p,v) in R.

e v = w: in that case, the direct neighborhood of (p,v) has changed but remained
isomorphic. This follows from the preceding statement (34.1).

3. Let (p/,w’) be the witness of C. We distinguish three cases:

e o) = pand w is a prefix of w’. Then, clearly C is completely contained in J.

e o) = pand w is a prefix of w. Let C’ be the structure obtained by restricting C
to all elements of the form (p, ww”) and then renaming every element (p, ww’)
to (g,w”), where (s,€) is the root of J’. Then C’ is an anchored n-component
in J' with witness (¢,e). Now, by definition of replacing, J must contain an
isomorphic copy of ¢’ with witness (p,w). Since the other part of C (consisting
of those nodes (p/,w’) such that w is not a prefix of w’) has not been altered by
the replacement, we can conclude that J must contain an isomorphic copy of C.

e Neither of the above. Then, (p/, w’) and the subtree rooted in (p’, w’) is contained
in J as this part of J has not been affected by the replacement. Then, clearly
also C is contained in J.

O

We are now ready for defining the whole process of restructuring a forest quasi-model
essentially by substituting as many nodes as possible by appropriate limit elements.

Definition 35 (n-Secure Transformation). Let Z be a model of some ALCOZFb knowledge
base K and J an unravelling for Z. An interpretation 7’ is called an n-secure transformation
of J if it is obtained by (possibly infinitely) repeating the following step:

Choose one unvisited and w.r.t. tree-depth minimal node (p,w) that is n-replaceable
w.r.t. Z. Replace (p,w) with one of its n-secure replacements from limZ and mark (p, w)
as visited. A

Note that this is well-defined as every node is visited at most once and no formerly
irreplaceable node ever becomes replaceable. Hence for every k € IN, the “initial segment”
cut(J) of the current intermediate structure 7 is already isomorphic to the initial segment
cutg(J’) of J' after a bounded number of replacement steps, due to the fact that all involved
structures have bounded branching degree.
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Figure 12: Result of collapsing the forest quasi-model displayed in Figure 11.

By now, the whole effort might still look a bit contrived and pointless, however, the
following lemma establishes a bunch of properties that in the end allow us to deduce the
existence of a very well-behaved countermodel whenever there is any at all.

We show that the process of unravelling, n-secure transformation and collapsing pre-
serves the property of being a model of a knowledge base and (with the right choice of n)
also preserves the property of not entailing a conjunctive query. Moreover, this model con-
version process ensures that the resulting model contains only finitely many new nominals
(witnessed by a bound on the length of BCPs). Figure 12 illustrates these properties for our
example model. Note that only two new nominals are left whereas collapsing the original
unravelling yields infinitely many.

Lemma 36. Let T be a purified model of some ALCOZFb knowledge base K, J an unrav-
elling of T, and J' an n-secure transformation of J. Then the following hold:

1. J' is a strict forest quasi-model for K.
J' is collapsing-admissible.

collapse(J’) is a model of K.

e e

There is a natural number m such that J' does not contain any node whose shortest
descending BCP has a length greater than m.

5. If J' contains an anchored n-component C, then J contains an anchored n-component
isomorphic to C.

6. If, for some union of conjunctive queries u = qu V...V qn, we have J pu and n >
MaAXge{qr,....an} 1(q), then J' B u.
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7. If, for some union of conjunctive queries u = q1 V ...V qp, we have T = u and
n > maXge(q,..qn} 1(9), then collapse(J') |~ u.

Proof. 1. Let K’ = nomFree(K). Due to Lemma 13, J is a strict forest quasi-model
for K. By Lemma 34.2, each replacement step preserves local K'-consistency and re-
sults, thus, in a forest quasi-model for . Since each n-replacement is a strict tree
quasi-interpretation also strictness is preserved. By induction it follows that every in-
terpretation produced in the n-secure transformation procedure is a strict forest quasi-
model for K. For every node in J’, its direct predecessor and direct successors have
not changed any more after finitely many replacement steps and local K'-consistency
depends solely on those neighbors. Hence J is also locally K’-consistent.

2. By Lemma 19, J is collapsing-admissible, by Lemma 30.5 every limit of 7 is. More-
over, as is obvious from the proofs of both propositions, it is possible to define the
respective ch-functions recurring to the original choose-function on Z, hence every two
elements from (even different) unravellings or limits that start descending BCPs with
identical path sketches correspond to the very same element in Z whence the separate
ch-functions are compatible with each other. Therefore, replacing an element in the
unravelling yields a strict forest quasi-model that is collapsing-admissible. Applying
the same argument inductively yields that every intermediate strict forest quasi-model
during the n-secure transformation is collapsing-admissible. Finally, as the accord-
ing ch-function stabilizes after finitely many replacement steps (together with the
neighborhood of the considered elements), also J’ is collapsing-admissible.

3. This follows from the two previous facts (36.1 and 36.2) together with Lemma 20.

4. Consider the set D of all § € A causing n-irreplaceable nodes in 7. By Lemma 32,
D is finite. We obtain D’ by removing all § from D that do not start any descending
BCPs.

For § € D', let dABCP(6) denote the set of descending BCPs starting in 6 and choose

m := max min _|[p|
seD’ \ pedBCP(5)

Now assume there were a &' € AT having a shortest descending BCP of length greater
than m. Obviously, as &' € D', there must be a (p,w) generated by ¢ that is n-
replaceable. However, during the n-secure transformation all n-replaceable elements
have been replaced by elements that do not start any descending BCPs at all due to
Lemma 30.3.

5. We prove this by induction on the replacement steps of the n-secure transformation
process by showing that this is true for every intermediate replacement result R'.

The claim for J’ then follows from the fact that, for every considered C (which is
always finite), only a finite part cut,(J’) is relevant and that for every ¢, there is a
bounded number of replacement steps after which we have cuty(R’) = cuty(J’) for
every further intermediate R’'.
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As base case (zero replacement steps carried out), we find that for R’ = 7, the claim
is trivially true.

Now assume, the claim has been established for R and has to be shown for R’ that is
created by replacing (p, w) in R with some J”. By Lemma 34.3, we then know that
one of the following is the case:

e R contains C. Yet, we can apply the induction hypothesis and conclude that also
J contains C as claimed.

e 7" contains C. But, since C is finite, it is already contained in cutg(J") for some
k € N and, as J” is a limit element, we find one § € A? with cuty([(Z,0)) =
cuty(J"). Since T is purified, we find a (p, w) € A7 that corresponds to §, i.e.,
J contains an isomorphic copy of |(Z,d) which in turn contains an isomorphic
copy of C.

6. This is actually a straightforward consequence from the preceding proposition and the
definition of quentailment.

For the indirect proof, we suppose J Fu and n > maxycqq,,.. 4.} #(¢) and J' R u, the
latter witnessed by J' kg for a ¢ € {q1,...,qn}. By definition, the latter assures the
existence of adequate anchored m-components in 7’. Then, applying the preceding
proposition (36.5), we obtain that isomorphic copies of all those anchored n-compo-
nents are contained in J which, by definition, just means J ke ¢ and, therefore, J ke u.
Hence, we have a contradiction, which proves the claim.

7. We prove this indirectly, so assume Z = u,n > max,e(q, ... 4.} £(q), and collapse(J’) |=
u, witnessed by collapse(J’) = ¢ for a g € {q1,...,qn}-

Then, from Lemma 28.2, it follows that J’' k¢. By the previous proposition (36.6),
we conclude J k¢, which in turn implies Z = ¢ by Lemma 28.1. This implies Z = u,
a contradiction.

O

Now we are able to establish our first milestone on the way to showing finite repre-
sentability of countermodels.

Theorem 37. For every ALCOZFb knowledge base K with IC = u, there is a forest model
T of K with finitely many roots such that Z |~ u. Moreover, I has bounded branching degree.

Proof. Let u= ¢ V...V qn. Since an inconsistent knowledge base entails every query, we
can assume that K is consistent and, since K [= u, there is a model Z of K with 7 F~ u.
Choose an n > maXgc(q,....qn} #(¢) and let J’ be obtained by carrying out an n-secure
transformation on | (Z) and let 7' = collapse(J’). We know that Z’ is a model of K (via
Lemma 36.3) and that Z' £ u (by Lemma 36.7).

By Lemma 36.4, we know that there is a fixed natural number m such that the shortest
descending BCP started by any node in J' is shorter than m. Note that there are only
finitely many path sketches of length < m. This means that every node in J’ that starts
a descending BCP at all can be assigned to one such path sketch. However, this entails
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that there are only finitely many elements (i.e., ~-equivalence classes) in Z’ that contain
J'-elements starting descending BCPs in J'. This implies, via Lemma 24, that Z’ contains
only finitely many roots.

The fact that Z’' has bounded branching degree is a direct consequence from the fact
that the initial unravelling has bounded branching degree, that replacement do not change
the branching degree nor do collapsings as assured by Lemma 20. O

7. Finite Representations of Models

In this section, we show how we can construct a finite representation of a forest model
of a knowledge base that has only a finite number of roots. We then show that these
finite representations can be used to check query entailment. In order to do this, we use a
technique that is very similar to the blocking techniques used in tableau algorithms (see, e.g.,
(Horrocks & Sattler, 2007)). A tableau algorithm builds a (so called completion) graph that
is a finite representation of a model. A completion graph has essentially the same structure
as as our forest quasi-models. It contains root nodes for the nominals occurring in the input
knowledge base plus further root nodes for new nominals that start BCPs. Each (new and
old) nominal is the root of a tree and relations only occur between direct neighbors within a
tree, between elements within a tree and a root, or between the roots. An initial completion
graph contains only nodes for the nominals occurring in the input knowledge base. Concepts
are expanded according to a set of expansion rules, and new nodes are added to the graph
when expanding existential restrictions. New nominals are added by the so called NN-rule
whenever an element from within a tree has a relationship with an inverse functional role
to a root node that represents a nominal from the input knowledge base, i.e., when a BCP
is created. In order to obtain a finite representation, tableau algorithms usually employ
some cycle detection mechanism, called blocking. Otherwise the depth of the trees and
the number of new nominals might grow infinitely. For logics as expressive as ALCOZFb,
blocking usually requires two pairs of elements. In our notation, a (non-root) node n with
predecessor n' blocks a node m with predecessor m/, if (n',n) = (m/,;m). In order to
obtain a real model from the finite representation, the part between n and m is copied
and appended infinitely often. We use a similar technique to obtain a finite representation
for a forest model. Since we want to preserve non-entailment, working with just pairs of
elements is not sufficient. Instead, we take the length n of the query into account and use
isomorphic trees of depth n to define blocking. This technique has first been employed for
deciding query entailment in ALCN with role conjunctions (Levy & Rousset, 1998) and
has recently been extended to the logics ACCHZQ, ALCHOQ, and ALCHOZ (Ortiz, 2008;
Ortiz, Calvanese, & Eiter, 2008) and extends, as our result, to the DLs SHZQ, SHOQ,
and SHOZ (i.e., with transitivity) as long as the query contains only simple roles.

As for forest quasi-interpretations, we use isomorphisms between forest interpretations
or parts of them.

Definition 38 (Isomorphism between Forest Interpretations). Let K be an ALCOZIFb
knowledge base and 7 = (A%, 1), 7’ = (AT, .T') two forest interpretations of K. Without
loss of generality, we assume from now on that each root in § = (p,e) € AZ is in the
extension of a unique concept Ny that does not occur in con(K). Then Z and Z’ are called
isomorphic w.r.t. IC, written: T = 7', iff there is a bijection ¢ : AT — AT such that:
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e §y is a successor of 8y iff (1) is a successor of ¢(d2) for all §1, 6o € AT,

(61,02) € L iff (@(61), 0(02)) € rT for all 61,80 € AT and 7 € rol(K),

5 e AT iff p(8) € AT for all 6 € AT and A € con(K) U {N;|d = (p,e) € AT}
5 = oF iff p(§) = o* for all § € AT and o0 € nom(K).

A
Usually, we omit the subscript I from =, and assume that it is clear from the context.

Definition 39 (n-Blocking). Let n € IN be a fixed natural number and Z = (A%, 1) with
(5,w) € AT, w # ¢ a forest interpretation for some ALCOZFb knowledge base K. An
n-blocking-tree w.r.t. (0, w), denoted block7(d,w), is the interpretation obtained from Z by
restricting Z to elements in {(6, ww’) | |[w'| < n}U{(p,e) | (p,e) € AT}. An n-blocking-tree
block’ (4, w) n-blocks an n-blocking-tree block’ (4, ww') if

1. block’Z(d, w) and block?(d, ww’) have disjoint domains except for root elements,

2. there is a bijection ¢ from elements in block?(d, w) to elements in block?(d, ww') that
witnesses block? (9, w) 2 blockZ(d, ww'’), and

3. for each descendant (§,wv) of (§,w), there is no inverse functional role f and root
(p,e) € AT such that ((6,wv), (p,e)) € f7*.

A node (6,v) € A7 is n-blocked, if (6,v) is either directly or indirectly n-blocked; (3, v) is
indirectly n-blocked, if one of its ancestors is n-blocked; (4, v) is directly n-blocked if none
of its ancestors is n-blocked and (,v) is a leaf of some n-blocking-tree block’(d, ww’) in Z
that is n-blocked; in this case we say that (9, v) is (directly) n-blocked by ¢~ (8, ww') for ¢
the bijection witnessing ==.

Without loss of generality, we assume that the n-blocking-trees used above are minimal
w.r.t. the order of elements in AZ (cf. Definition 16).

A forest interpretation Z = (AZ,-T) for K is an n-representation of K if

1. A7 is finite,
2. AT contains no indirectly n-blocked nodes,

3. for each o € nom(K), there is one element of the form (p,e) € A such that of =
(p,e)%,

4. each element that is not directly n-blocked is locally K-consistent.

A

Note that n = 1 is more restrictive than standard pairwise blocking since two trees of
depth one need to be isomorphic before blocking occurs, whereas standard blocking already
occurs for two isomorphic pairs of nodes. For DLs as expressive as ALCOZFb, blocking
with n = 0 (trees of depth 0) would not necessarily result in finite representations of models
of the knowledge base. We now show that each knowledge base has an n-representation for
some fixed n € IN and, afterwards, that we can use an n-representation build a model for
the knowledge base.
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Lemma 40. Let K be a consistent ALCOZFb knowledge base and uw = q1 V...V qn a union
of conjunctive queries and n a fized natural number greater than maxi<i<pl|gi|. If K F u,
then there is an n-representation of K that does not satisfy u.

Proof. By assumption, K is consistent and K [~ u. Then, by Theorem 37, there is a forest
model Z of K with finitely many roots and branching degree bounded in |cl(K)|, and some
q € {q,...,qn} such that 7 |~ q. We show that we can find an n-representation R for Z.

We use a similar argumentation as in Lemma 25 to show that there are only finitely many
non-isomorphic n-blocking trees. We again denote this bound by T,,. Let ¢ = |cl(K)|,r =
[rol(K)|, and m the (finite) number of roots in Z. Each root p € A’ is annotated with a
special concept N, by assumption. For n = 0, we again have 2¢ choices. For n > 0, each
element can have between 0 and ¢ successors and between 0 and m relations with roots.
For roots we have 2T choices for the concepts. We use 2" as bound for the choice of
concepts for roots and this clearly bounds the choice for non-roots as well. Each non-root
node in a level smaller than n is the root of a tree with depth n — 1 and each node in the
sub-tree can again have up to m relations to a root. Assuming that we have only a single
role name 7 € rol(K), we get a bound of O(2°cmT<™,) for the number of non-isomorphic
sub-trees of depth n with relations to the at most m roots. Since we have not only one
but a choice of r roles, we get a bound of O(2°(cmT™)"). We now abbreviate 2¢(cm)”
with « and ¢mr with a and rewrite the obtained bound as T;, = O(x(T,,—1)*). Unfolding
yields T, = O((zltot-+a""")(Ty)®") which is bounded by O((z%")(2°)7") = O((229)").
By expanding the abbreviated symbols, we obtain a bound for T}, of O((2¢(em)")(em)™).

Together with the fact that Z is obtained from a collapsing and relations from elements
within a tree to a root in collapsings are never for inverse functional roles, this shows
that there is an n-representation of Z because for each tree rooted in a node (§,¢) € A
with depth greater than T),, there are two nodes (4, w) and (§, ww’) such that block’ (8, w)
n-blocks block?(d, ww'), and we can simply discard indirectly n-blocked nodes from Z to
obtain the desired n-representation.

Since Z [~ ¢q and the n-representation is a restriction of Z, non-entailment of ¢ is clearly
preserved. ]

Please note that we would not obtain such a bound if we had not fixed a bound on the
number of new nominals (roots) beforehand and that we cannot use the standard tableau
algorithms to obtain this result. The reason for this is that the number of new nominals
(roots) in the tableau algorithms depends on the length of the longest path before blocking
occurs. For our n-blocking-trees, however, we also have to consider relations back to the
roots, which means that blocking occurs the later the more roots we have. On the other
hand, delaying blocking may lead to the introduction of more and more new roots. Due to
this cyclic argument, termination cannot be guaranteed for the tableau algorithms unless
we have fixed a bound on the number of new nominals beforehand. This is also the reason
why the tableau algorithm for entailment of conjunctive queries with only simple roles
in the query of Ortiz et al. is sound, complete, and terminating on SHZQ, SHOQ, and
SHOT knowledge bases, but is not guaranteed to terminate on SHOZQ knowledge bases
(transitivity, i.e., having a DL with S instead of ALC does not have any impact one this).
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We now show how we can obtain a model for a knowledge base K from some n-representation
of K. We use a technique that is directly inspired from tableau algorithms and resembles
the process of building a tableau from a complete and clash-free completion graph. In par-
ticular the tableau algorithm by Ortiz et al. (Ortiz, 2008; Ortiz et al., 2008) is very similar
as it also uses tree blocking.

Definition 41 (Models for n-Representations). Let 7'\’, (AT, .R) be an n-representation

of some ALCOZFb knowledge base K. Let s = g e 5;: be a sequence of pairs of elements

from AR. With |s| we denote the length m of s. For such a sequence s, we set last*(s) = 4/,
/ / 5

and last,(s) = d,,. By s | ’”E we denote the sequence %’ el gm, 5:11

The set of R-induced elements, denoted elem(R), is inductively defined as follows:

o If § = (p,e) € AR, then % € elem(R).

o If s € eIem(R) § = (p,w) € A § is not n-blocked, and § is a successor of last*(s),
then s | 4 € elem(R).

e If s € elem(R),0 = (p,w) € AR, § is directly n-blocked by some §' € AR, and § is a
successor of last*(s), then s | %/ € elem(R).

We define the interpretation Z = (AZ,-7) induced by R as follows:
o AT =elem(R),

e for each s € AT and A € con(K), s € AT iff last*(s) € AR,

e for each s € A and o € nom(K), s = o? iff last*(s) = o”,

e for each s, s’ € A% and r € rol(K), r =

s,8') |8 =s]| %’ and (last*(s), last.(s")) € 7™ }U
&
0

(s;8")
{(s,8') |s=¢"| % and (last,(s), last*(s)) € rR}U
{(s,8) | s = g and (last*(s),d) € rR}IU
{(s,8') | s= % and (3, last*(s')) € r"}.

A

The interpretation of nominals is well-defined since n-representations are forest inter-
pretations for IC (hence, there is a unique root for each nominal) and pairs g with 6 = (p, €)
are never appended to sequences in elem(R).

Lemma 42. Let K be a consistent ALCOZFb knowledge base, w = q1 V ...V qn a union
of conjunctive queries, and n a fired natural number greater than mazi<i<p|q|. If R is an
n-representation of K such that R [~ u, then there is a model T of K such that T - u.
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The proof is essentially as the one by Ortiz et al. (Ortiz et al., 2008), but adapted to
our case, where we work completely on interpretations. Our n-representations correspond
to completion graphs and our models to tableaux in their case.

Proof. Let Z be an interpretation induced by R. Since n-representations do not contain
relations from an element within a tree to a root for an inverse functional role by definition,
functionality restrictions are not violated in Z. Further, since K is simplified and R is a forest
interpretation for K such that all elements apart from (directly) n-blocked ones are locally
K-consistent, it is quite straightforward that each element in the induced interpretation is
locally K-consistent. Together with the restriction on nominals (property 3), this implies
that 7 is a model for K. This is essentially the same principle as the one used to prove that
tableaux constructed from completion graphs are proper representations of models of the
input knowledge base.

Assume, to the contrary of what is to be shown, that Z = u. Then there is a disjunct
qg€{q,-..,qn} and a match p for ¢ such that Z =* q. We use p to construct a match 7 for
g in R by “shifting” the mapping for variables into parts that have no direct counterpart
in R upwards.

We define the match graph G for ¢ in Z as an undirected graph containing a node s for
each s € AT such that pu(z) = s for some z € var(g) and containing an edge (s,s’) for each
s,s’ € AT such that there is an atom r(x,y) € ¢, u(x) = s, and u(y) = s’. We call nodes of
G that correspond to roots in A% root nodes of G (i.e., nodes s such that s = g) and we
call all other nodes tree nodes. Note that the restriction of G to tree nodes is a set of trees
that we refer to as GG1,..., G and that each such tree has a depth smaller than n.

For each = € var(q) Such that p(z) = ¢ (g is a root node in G), we set 7w(x) = Iast*(g).
Note that § is a root node in R.

For each G; € {G1,...,Gy}, we distinguish two situations:

1. G; contains a node s such that last*(s) # last.(s) (i.e., G; contains a path from within
an n-blocking tree to a copy of the path starting from the node that blocks). Due
to the use of n-blocking, a single tree (G; can never cover more than one n-blocking
tree and it can use at most nodes from two n-blocking trees (leaving one and then
entering the next one in less than n steps). For each node s’ in G; such that |s'| < |s|
and x € var(q) such that u(z) =/, we set 7(z) = p(last*(s’)). For each s’ in G; with
|s’] > |s| and z € var(q) such that p(x) =, we set w(x) = last*(s’).

2. G, contains no node s such that last*(s) # last,.(s) (i.e., G; contains a path that lies
completely within an n-blocking tree or from a path outside of an n-blocking-tree into

an n-blocking-tree). For each node s in G; and x € var(q) such that u(x) = s, we set
m(x) = last*(s).

By definition of 7, 7 as an induced model of R, and n-blocking, we immediately have
that, for each A(x) € q, m(z) € A®. We show that, for each r(z,y) € ¢, (r(z),n(y)) € r*
which proves R |= ¢q. We distinguish three cases:

pu(x) = 5 for some § € A®. Then 7(x) = § = (p,e) € AR. We distinguish three cases
for n(y )
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(a) u(y) = % is also a root, then 7m(y) = &' = (p',&) € AT and, since y is a match
for ¢ in Z and by definition of Z as an induced interpretation of R, we have that
(m(x),m(y)) = (8.8') € ™.

(b) u(y) is a successor of u(z) in Z, ie., p(y) =s = %|§—:. Then s is not n-blocked
and 7(y) = & = (p',c) € AR for ¢ € N. Again, since u is a match for ¢
in 7 and by definition of 7 as an induced interpretation of R, we have that
(m(z), 7(y)) = (6,0") € ™.

(c¢) p(y) is neither a root (u(y) # % for any ¢ € AR) nor a successor of u(x) in Z
(u(y) # g]g—: for any &' € AR). Then pu(y) belongs to some graph match compo-
nent G; and w(y) = last*(u(y)) or m(y) = ¢~ (last*(1(y))). Since the isomorphism
between n-blocking trees also takes the relations to root nodes into account and
other parts have direct counterparts in R, we have that (r(z),7(y)) € r*.

2. pulz) =s # % for any § € AR, The cases when u(y) = g—: for some &' € AR is as
above. We assume, therefore, that u(y) = s’ with [s’| > 1. By definition of Z, this
means that either s = §/| or 8’ = s|J for some 6,0’ € AR. We assume s’ = s|J. The
opposite case is analogous. By definition of the match graph G, there is a component
G; of G that contains both s and s’. We distinguish two cases:

(a) The component G; contains a node § such that last*(s) # last,(5). The most
interesting case is when last*(u(y)) # lasti(u(y)), ie., 8§ = s’. Then w(x) =
¢~ (last*(s)) and m(y) = last*(s’). Since last*(s’) # last,(s’), we have that last*(s’)
is the node that directly n-blocks last,(s’) and, by definition of the bijection
¢, which witnesses the isomorphism, we have that 7w(x) = ¢~ (last*(s)) is the
predecessor of 7(y) = last*(s’) and, by definition of Z from R, that (7 (z),7(y)) €

r

(b) The component G; contains no node § such that last*(s) # last.(S). Then 7(z) =
last*(u(z)) and 7(y) = last*(u(y)). By definition of Z from R, we immediately
have that (7(zx),n(y)) € r~<.

In any case, we have that (m(z),7(y)) € r, which implies R =" ¢ contradicting the initial
assumption. ]

Now Lemma 40 guarantees that, in case KC [~ ¢, there is always a finite n-representation
R for K such that R [~ ¢ and Lemma 42 guarantees that R can be transformed into a
model Z of K such that Z (£~ q. This suffices to show that we can enumerate all (finite)
n-representations for I and check whether they entail a disjunct of the union of conjunctive
queries. Together with the semi-decidability result for FOL, we get the following theorem.

Theorem 43. Let K be an ALCOZFb knowledge base and u = q1 V ...qn a union of
conjunctive queries. The question whether IC |= u is decidable.

8. Conclusions

We have solved the long-standing open problem of deciding conjunctive query entailment in
the presence of nominals, inverse roles, and qualified number restrictions. We have shown
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that the problem is decidable by providing a decision procedure and proving its correctness.
Since the approach is purely a decision procedure, the computational complexity of the
problem remains open.

Our result also shows decidability of entailment of unions of conjunctive queries in
SHOZIQ and SROZQ (underlying OWL DL and OWL 2) if we disallow non-simple roles
as binary query predicates. We thereby have reached a first important milestone towards
tackling the problem of conjunctive queries for OWL DL and OWL 2 DL.

Entailment of unions of conjunctive queries is also closely related to the problem of
adding rules to a DL knowledge base, e.g., in the form of Datalog rules. Augmenting a
DL KB with an arbitrary Datalog program easily leads to undecidability (Levy & Rousset,
1998). In order to ensure decidability, the interaction between the Datalog rules and the
DL knowledge base is usually restricted by imposing a safeness condition. The DL+log
framework (Rosati, 2006a) provides the least restrictive integration proposed so far and
Rosati presents an algorithm that decides the consistency of a DL-+log knowledge base
by reducing the problem to entailment of unions of conjunctive queries. Notably, his re-
sults (Rosati, 2006a, Thm. 11) imply that the consistency of an ALCHOZQb knowledge
base extended with (weakly-safe) Datalog rules is decidable if and only if entailment of
unions of conjunctive queries in ALCHOZ Qb is decidable, which we have established.

Corollary 44. The consistency of ALCHOZQb+log-knowledge bases (both under FOL
semantics and under non-monotonic semantics) is decidable.

Another related reasoning problem is query containment. Given a schema (or TBox) S
and two queries ¢ and ¢/, we have that ¢ is contained in ¢’ w.r.t. S iff every interpretation 7
that satisfies S and ¢ also satisfies ¢’. It is well known that query containment w.r.t. a TBox
can be reduced to deciding entailment for unions of conjunctive queries w.r.t. a knowledge
base (Calvanese, De Giacomo, & Lenzerini, 1998a). Decidability of unions of conjunctive
query entailment in ALCHOZ Qb implies, therefore, also decidability of query containment
w.r.t. to an ALCHOZQb TBox.

There are two obvious avenues for future work. We will embark on extending our
results in order to allow non-simple roles as query predicates. This is a non-trivial task
as our current approach heavily relies on a certain locality of query matches, which has
to be relinquished when considering non-simple roles. On the other hand, we are eager to
determine the associated computational complexities and provide techniques that can form
the basis for implementable algorithms.
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