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Abstract—In the Web there are a large number of (business)
services with complex behavior, such as e-commerce Web sites
that require multiple interactions with the user, as well as an
increasing number of Web automation scripts to coordinate the
execution of multiple complex services. However, while there
are a quite a few search techniques for atomic Web services,
search techniques for complex services are still rare and only
foundational. In this paper, we present behavior classes that
have formal semantics as well as human comprehensible names
in order to foster usability of specification of constraints, and
efficiency of search for complex services and processes. Our
approach enables automatic methods for (i) assigning behavior
classes to complex behavior descriptions, (ii) checking consistency
of such a classification, and (iii) computing behavior class
hierarchies. Furthermore, human comprehensible names for the
behavior classes increase usability by allowing for shorter service
descriptions and requests. Our evaluation results show that a
behavior class hierarchy can be exploited as an indexing structure
to gain performance of search.

I. INTRODUCTION

In the Web, a large number of services are offered in
form of Web sites that have complex behavior (multiple
interactions with the user that may even depend on the user
input at previous interactions of the same process run etc.).
Furthermore, there are often multiple Web sites offering the
same or similar functionalities and information. In order to
gain a broader overview of the desired product, information
or functionality, a user often needs to follow several paths on
various Web sites by providing right inputs at right time, and
accepting the (intermediary) outputs.

Different Web sites offer different granularities of infor-
mation and functionalities and have heterogeneous navigation
paths. Logical dependencies between the information and
functionalities provided by different Web sites effect the order
they are executed by a user. This makes it difficult for end
users to coordinate the execution of various Web sites, and ag-
gregate the information gathered from them. Web automation
scripts, originally developed for the purpose of testing Web
sites by developers, are turning out to be promising for end
users as well, since they can automate this tedious process to a
large extent. However, finding and composing Web automation
remains very difficult, since it requires a lot of manual effort
due to the huge gap between the user requirements and the
functionality offered by existing search techniques. In order to

find and compose complex executable models, users need to
be able to search by constraining the temporal behavior of the
models as well as the information they require and deliver at
various stages during their execution. However, existing search
techniques support such search functionality only for atomic
Web services. Search for Web sites and Web automation
scripts is based upon syntactic matching of keywords with
the content at the surface Web (as opposed to Deep Web),
or with manually added tags of the script respectively. Even
though the tags could hint at the functionality of a script,
tagging requires manual effort and is often faulty [1]. In
order to equip users with the power of finding, creatively
combining, and executing Web sites for emerging more and
more sophisticated use cases, a process-oriented view on
Web sites is required. Even if the syntactic keyword-based
approaches were extended to support the process-oriented
view, they would still be restricted to support end users only.
If an execution engine encounters problems like a failing
service during runtime, it is often desired that it finds and
composes an alternative solution automatically, and resumes
the execution. However, the requirements for an alternative are
known to system in form of structural constraints that have
a formal semantics in the first place, and not as ambiguous
natural language keywords. Formalisms available for modeling
complex distributed processes and automatic reasoning about
them including our previous work are neither easy to use
for end users, nor do the exhibit acceptable performance and
scalability for practical purposes.

In this paper, we propose a way out of this problem by
introducing the notion of behavior classes that have human
comprehensible names as well as formal definitions and ad-
vance our work on the classification of atomic services [2]. The
formalisms developed in our previous works [3] for seman-
tically describing the observable behavior, and for specifying
behavior constraints resp. are briefly presented in Section II. In
Section III, we extend our previous approach by allowing en-
richment of observable behavior description with not directly
observable temporal properties. In Section IV, we present
the syntax and semantics of behavior classes, and show how
hierarchies of behavior classes can be built and kept consistent.
We then show the added value of behavior classes in modeling
a complex behavior. In Section V, we show how behavior
classes can be used as predefined query fragments within a



search request, as well as exploited as an indexing structure
to achieve faster query answering. Section VI presents details
of the prototypical implementation of our approach as well
as performance evaluation results. We draw conclusions in
Section VIII, after discussing and relating our work with
existing approaches in Section VII.

II. PRELIMINARIES

Process formalisms allow for the description of observable
behavior of a service or a process by providing constructs for
modeling data and control flow. Concrete actions with concrete
parameter values occurring in process runs are aggregated to
variables. Behavioral constraints express desired properties of
a behavior. Model-checking techniques that check automati-
cally whether a given behavior description satisfies given set of
constraints serve as a fundamental reasoning task for searching
for complex services and processes.

A. Description of Observable Behavior

We view the observable behavior of a complex service
or a process as a labeled transition system (LTS). An LTS
L = (S, T,→) is defined by a finite set S of states, a set T
of transition labels, and transitions →: S × T × S between
states. The knowledge of a state is described by the facts that
hold in the state. The transitions represent input, output, or
computational activities.

We use a combination of the SHOIN (D) description
logic (DL) ABox axioms [4] and the π-calculus process
algebra [5] to describe the executable behavior of complex
services and processes that can be interpreted as an LTS [3],
[6]. The language comprises constructs for input, output, and
computational activities, parallelism, conditions, invocation of
services and processes, and the specification of communication
channels. In a SHOIN (D) ABox we describe data objects
and their relationships within process expressions. Changes
that occur during the execution are modeled with ABox change
axioms like adding or deleting DL individuals or relations
among the individuals. Transition labels store information
about performed changes caused by input, output, or com-
putational activities.

Example1 A train booking Web site implements a complex
behavior described by a process. The user interactions im-
plemented by forms are modeled by input activities, e.g.,
asking for date, location, and preferences of a train connection.
Fetching available connections for the given requirements is
modeled by a computational activity. As an effect, the con-
nections are added as individuals related to the parameters of
the previous input activity into the state after the computation.

B. Specification of Behavior Constraints

The specification of the complex behavior of a service or a
process is achieved by the following syntax:

Ψ := Ψ ∧µ Ψ | ¬µΨ | µX.Ψ(X) | 〈A〉Ψ | P | > | ⊥

1We show the complete example in http://people.aifb.kit.edu/mju/suprime.
Domain ontologies originate from a service description example in [7].

Conjunction (∧µ) and negation (¬µ) allow to compose in-
clusions and exclusions of desired temporal behavior Ψ. The
terminals of the expression are propositions P , as well as >
and ⊥, which match all or no processes, resp. The existence of
an activity of type A followed by the constraint Ψ, which must
hold in the state subsequent to the activity, can be requested.
The minimal fixpoint operator (µX.Ψ(X)) allows for the
specification of formulas recursively. A proposition P is de-
scribed with SHOIN (D) TBox axioms. Analogously, input
and output parameter types and relationships, communication
channels, effects of computational activities are described by
SHOIN (D) TBox axioms.

Note, that disjunction, universal quantifier for actions as
well as maximal fixpoint operator can be built using the
above basic constructs. Furthermore, commonly used temporal
constructs like Ψ1 until Ψ2, eventually Ψ, and always Ψ
can be modeled with the help of the fixpoint operator.

The semantics [[Ψ]]V of a constraint Ψ is defined over an LTS
L = (S, T,→) and a valuation V for interpreting propositions.
In our case, V is the DL interpretation function, since our
propositions are DL TBox axioms. A formula Ψis interpreted
as a set of states of the LTS. We refer to [3], [8] for further
details on syntax and semantics of µ-calculus and that of its
combination with SHOIN (D).

III. ANNOTATION OF BEHAVIOR DESCRIPTIONS

Our first contribution is the extension of the behavior
description formalism with the ability to annotate them with
further constraints that cannot be expressed by formal process
expressions using π-calculus process algebra combined with
DL. We start motivating the need for behavior annotations
and provide the semantics of annotated behavior descriptions
afterwards.

Motivation: Behavior descriptions are suitable to describe
complete processes. All observable details of the modeled
system need to be known in order to describe an executable
process expression based on the closed world assumption. This
can be done by the provider, e.g. of an enterprise system,
who can derive the detailed facts from the implementation.
However, it is not realistic that any implementation details are
known to Web users. E.g., it is not important and perhaps not
possible to state which particular SSL certificate a Web site
uses for the payment process. However, the information that
the service supports SSL encrypted communication is relevant,
but cannot be expressed at the ABox level of process models
where the certificate instance is described. Rather, it needs to
be expressed on a logic level by using existential quantifiers,
e.g., declaratively expressed in the constraint formalism.

In contrast to behavior descriptions, the constraint language
allows for the exclusion of behavioral properties. Side effects
that are not observed by a user during execution can also be
expressed by the constraint formalism. E.g., π-calculus based
behavior description cannot express that a service will never
pass user-provided payment information to any other party.

Because it is typically impossible to observe complete
process behaviors in the Web and as there are behavioral



properties that cannot be captured by a process algebra,
we extend the behavior description formalism by declarative
constraints. Note, that modeling these properties is relevant in
the context of search for behaviors of processes and services.

Annotation: We allow to annotate behavior descriptions
with a set of behavior constraints using the constraint formal-
ism introduced in Section II-B. An ordinary behavior descrip-
tion p1 is interpreted by an LTS Lp1 . Let p2 be a behavior
description that is annotated with a behavior constraint Φ, we
say Φ(p2). Then p2 is interpreted by Lp2 ∈ LΦ, where LΦ

denotes the set of LTS’ that fulfill the constraint Φ. That is, the
set of start states of the LTS’ in LΦ equals the set of start states
identified by [[Φ]]. Using the modelchecking technique [3] to
check whether the constraints of a class are fulfilled by a
behavior description, the consistency of class annotations is
automatically assured if no contradictions exist. A behavior
description p can also be annotated with several constraints
Φ1, ...,Φn with n ≥ 1 simultaneously. The semantics is
defined as follows.

Φ1(p), ...,Φn(p)⇔ Lp ∈
⋂

1≤i≤n

LΦi

IV. BEHAVIOR SPECIFICATION WITH BEHAVIOR CLASSES

We now introduce the notion of behavior classes. We
advance state of the art approaches with a hybrid description
formalism for behavior classes and highlight the benefits while
discussing their use in service modeling.

A. Behavior Classes

A behavior class is formally defined by a constraint Φc
and a class name (label) c. The class represents a set of
services or processes that share common behavioral attributes
declared by the class definition Φc. The name is a human
comprehensible textual representation of the asserted attributes
and is solely used for the purpose of increasing the usability.
Named classes have been widely used in taxonomies of
products and services (e.g., UNSPSC) and are a fundamental
concept in ontologies [9] in order to abstract from particular
concept or role definitions. In contrast to a taxonomy without
formal class definitions, our formal classification allows for
automatic and consistent classification of behavior descriptions
into existing classes. Also, tools are able to reason about the
attributes asserted by a manual class assignment.

Behavior Class Syntax The specification of behavior classes
is based on the constraint language introduced in Section II.
For class definitions, we extend the given syntax of constraints
by a choice for the inclusion of class names (C) as follows.

Φ := C | Φ ∧µ Φ | ¬µΦ | µX.Φ(X) | 〈a〉Φ | P | > | ⊥

Behavior Class Semantics The semantics [[c]] of a class c in a
constraint is defined over the LTS L = (S, T,→) of a behavior
description and corresponds to the set of states that fulfill the
constraint Φc. That is, [[c]]V = [[Φc]]V . We say that a service or
process p is member of a behavior class c, iff the start state

s0 ∈ S of the LTS Lp is in the set of states [[Φc]]V that comply
to the constraints of Φc.

Example A class named “WebTrainBooking” describes the
generic train booking behavior and is defined by Φcwtb

= φ∧µ
eventually 〈ch〈Ticket〉〉ϕ. The constraint Φcwtb

specifies
assumptions φ about the parameters start, end, and departure of
a trip given at the invocation of the process. φ may contains
a proposition like tc:trainTrip(Trip) ∧ tc:start(Trip,Start) ∧
tc:end(Trip,End). Members of the behavior class WebTrain-
Booking must eventually return a Ticket via a communication
channel ch. After the output took place, the following propo-
sition ϕ must hold.

ϕ =
(
po:dropShiftDelivery(Delivery)∨

po:onlineDelivery(Delivery)
)
∧

po:deliveryItem(Delivery,Product)

It states that the Product is either shipped via surface mail or
email. The Product is further defined in DL to describe the
relation between the produced Ticket and the given inputs.

B. Behavior Class Hierarchy

A class hierarchy C = (C,H) is a graph structure with a
finite set of behavior classes C and the subclass relationship
H over classes as the only relation. A class ci ∈ C is subclass
of cj ∈ C, we say (ci, cj) ∈ H , if all services and processes
that are member of class ci (i.e., model of the formal definition
Φci ) are also member of class cj (i.e., model of Φcj ). H is a
partial order that is not limited to be a tree structure; meshes
are possible.

Given a set of behavior classes C, a hierarchy C is derived
automatically based on class definitions Φc of each class
c ∈ C. We compute the relation H ⊆ C × C by comparing
pairs of class definitions Φci , Φcj and determine the subclass
relationship by adopting the technique from [10]. We first
replace class names by their formal definition. Then, µ-
calculus expressions are transformed into a normal form and
the relationship between both expression is determined. A
class ci is a subclass of cj iff any model of Φci is also model
of Φcj . In [11], the completeness of the axiomatization of the
proposition µ-calculus presented in [10] has been shown.

Updates of the hierarchy are automatically managed due
to the formal class definitions. The sub- and super class
relationships between the new and existing classes are de-
termined. Then, a new class is inserted as a subclass of the
most specific super classes of the hierarchy. Changes in class
definitions are treated analogously. When a class c is removed
from a hierarchy, all subclasses of the deleted class c become
subclasses of the super classes of c.

C. Simplification of Behavior Modeling

Modeling complex behavior as presented in Section II
can become tedious. The complexity and length of behavior
descriptions as well as the modeling effort are reduced by the
use of classes without compromising on the expressivity. Users
modeling the behavior can reuse existing classes along with
further refinements for a specific behavior description instead



of a possibly very complex behavior specification formula.
In collaborative service modeling, only domain or modeling
experts will have the skills to model the service specifics
beyond the scope of behavior classes. Since users are able
to identify classes from a hierarchy by their descriptive name
without the need to understand its formal definition, behavior
descriptions can be created without any knowledge about
the underlying formalisms. Discovery of appropriate classes
currently remains a manual task including browsing of the
hierarchy or keyword-based search that is an additional but
less challenging effort for users. Then, the identified classes
can be further inspected in order to verify that they match
the user’s intention. In our prototype (see Section VI-A), the
keyword-based search for class names is made more flexible
by searching also for class names containing hypernyms and
hyponyms of the given keywords. Therefore, we use WordNet
as dictionary. In the present work, we will not further focus on
matching class names since it is not related to the contribution
of this work.

Example We revive the above example and skip the extensive
process modeling details and refer to an external resource1

where we show the reduction of the modeling effort wrt.
behavior descriptions. A train ticket behavior class such as
WebTrainBooking is used to reduce the description complexity.
While not all characteristics of a concrete service are covered
by the generic class WebTrainBooking, it captures the common
behavior of train ticket booking services and reduces the
exemplified manual modeling effort for the service.

V. EXPLOITING BEHAVIOR CLASSES IN SEARCH

A. Behavior Classes in Requests

The request language as introduced in Section II constrains a
desired behavior and, by this, spans a space of desired services
or processes. An offered behavior matches a request if the
offer equals a member of the set of desired behaviors. The
reduction of the request modeling effort and simplification of
requests is achieved by the reuse of behavior classes. The same
benefits as for the simplification of behavior descriptions apply
to requests, too.

In order to reuse existing behavior classes for expressing
requests, appropriate behavior classes are derived by from an
unstructured query from an end user, e.g., by mapping key-
words to class names (as already discussed in Section IV-C).
In this section, we consider formal requests, only.

The extended request formalism including behavior classes
from Section IV is used for search queries, too. The for-
malism’s semantics remains unchanged. Below, a request R
for a desired train ticket booking behavior with an additional
constraint on the acceptance of a credit card payment is shown.
Parts of the desired behavior are inherited from the class def-
inition Φtb of an existing TrainBooking behavior class shown
below. R is described as an extension of the TicketBooking
class by adding the constraint that the transacted purchase
was provided by a railway company: Φtb = TicketBooking∧µ
eventually

(
seller(Purchase,Seller)∧RailOperator(Seller)

)

The individual Purchase is already bound to this identifier in
the definition of the class TicketBooking. The same identifier
must be used in the definition of class TrainBooking and in
further constraints in order to refer to the same individual.
With the following example request, it becomes evident how
much more complex the request R would be if no classes
could be used for expressing the same set of constraints (that
is, the definitions of TrainBooking and TicketBooking would
be needed instead of the class name in the request below).
Therefore, we argue that using classes tremendously simplifies
and accelerates the specification of requests. As shown, the
request can be further refined if the search result set is too
coarse grained. Note, ∧ denotes the logic conjunction with
DL semantics while ∧µ was defined by the µ-calculus.

R = eventually
(
po:seller(Seller) ∧

acceptsPaymentMethod(Seller,PayMeth) ∧
pay:CreditCard(PayMeth)

)
∧µ TrainBooking

B. Search Based on Off-line Classification

Now we exploit the behavior classes for an efficient search
for processes and complex service behaviors. Besides the
advantages of the hybrid behavior class formalism we have
already shown, this section presents how the search perfor-
mance is increased by formal behavior classes.

A search engine verifies constraints for each offered behav-
ior individually and determines whether the offer fulfills them
or not. For each behavior description with or without behavior
class annotations, the search engine creates the corresponding
LTS. Each state of an LTS is represented by a separate
knowledge base. Due to the changes cause by state-changing
actions during execution, the knowledge within different states
can be contradicting and, thus, cannot be modeled in the same
knowledge base.

We assume that the search engine has an LTS-representation
of each behavior description in the repository D. A classi-
fication hierarchy C = (C,H) with formal class definitions
and the pre-computed hierarchic ordering over classes exists.
During the initialization phase of the search engine, existing
behavior descriptions are classified into existing classes auto-
matically. Therefore, the expensive modelchecking technique
determines whether behavior descriptions fulfill the constraints
of a class or not and assigns them to behavior classes accord-
ingly. Descriptions with class annotations are directly assigned
to the resp. behavior classes.

The search engine materializes the classification information
for its later use as an indexing structure i ⊆ C ×D. For each
behavior description Dp ∈ D, we add (c,Dp) to the index
i if the behavior p was determined to be a member of the
behavior class c ∈ C. The task of building a hierarchy and
classifying the behavior descriptions into the behavior classes
is done off-line and is not considered as a part of the query
answering task. The classification index i allows to request
behavior descriptions of desired classes immediately. By this,
it saves expensive logic modelchecking operations at query
answering time.



Let a request R specify constraints by means of desired
behavior classes CR ⊆ C of the hierarchy. In addition, R
contains further requirements which are explicitly modeled
and not captured by the classes CR (as in our example
above). In a first step, the search engine retrieves behavior
descriptions i(CR) from the index i. The first step returns all
behavior descriptions that are member of all desired classes. If
a request contains no behavior classes, the first step returns all
descriptions from D. This result serves as input for the second
step, where further explicit requirements from R (that were
not captured by the classes) are verified. The modelchecker
iterates over each LTS Lp of the behavior descriptions passed
from the first step and determines the set of states of the LTS
Lp in which the constraints of the request R are satisfied. It
breaks down composite into atomic formulas and aggregates
the individual results recursively. E.g., for an atomic constraint
P as part of R, the matchmaker iterates over the states of
the LTS and adds these states to the result set in which
the proposition P holds. A detailed explanation of the mod-
elchecking algorithm was given in [3]. When the verification
of a complete request R is terminated, the modelchecker
determines whether the offered service behavior satisfies the
requested behavior which holds iff the start state of the LTS
Lp is in the set of states returned by the modelchecker for R.

By the introduction of the index i and the use of behavior
classes, the number of behavior descriptions considered in
the second step for expensive modelchecking operations is
reduced. Further, the amount of constraints that are evaluated
at query time is reduced. Therefore, we assume that retrieving
instances that are member of a class or of several classes
simultaneously is faster than verifying all constraints at query
time. Obviously, many factors like the complexity of class
definitions, the size of the classification, and the number
of behavior descriptions have to be considered to let this
assumption hold.

VI. IMPLEMENTATION AND EVALUATION

In this section we describe the implementation of the
presented approach. The implementation is an integral part of
the suprime framework2 for intelligent usage and management
of services and processes. Afterwards, we describe the setup
of the experiments conducted in order to evaluate our claims
regarding the performance gain and discuss the impact of the
class granularity based on the measured results.

A. Implementation

1) Modeling Processes, Behavior Classes, and Queries: We
developed Java APIs for modeling and annotating executable
behaviors, and for specifying search queries for services and
processes with matching behavior. For the DL part, we use
the OWL API3 for semantically describing the processes
resources, and HermiT OWL reasoner4 for reasoning about
such semantically described resources.

2https://km.aifb.kit.edu/projects/suprime/
3OWL API is available at http://owlapi.sourceforge.net.
4Hermit OWL reasoner is available at http://hermit-reasoner.com.

Semantic behavior descriptions can also be created graph-
ically using our process modeling tool (part of the suprime
framework). For modeling behavior classes graphically, we
provide an assisted form based input mask that allows the user
to easily enter constraints like the existence of an input activity.
Existing classes are displayed in a tree-shaped structure and
can be selected for reuse.

2) Search: Search queries are passed to the search engine.
In a first step, the search space is reduced by retrieving
behavior descriptions from requested classes. This is done
by invoking a HermiT Reasoner instance with the repository
ontology OD. For a given hierarchy and a set of behavior
descriptions, the ontology OD models (1) each behavior class
as an OWL class, (2) the hierarchical relationships of the
behavior classes as OWL subclass-relations, and (3) each
behavior description as an individual. The individuals are
member of those OWL classes that correspond to behavior
classes for which the behavior description is a model of. When
the search engine is initialized, the repository ontology OD
is created and loaded. A request is processed as described
in the previous section. First, the instances of desired classes
are retrieved from OD. Then, further constraints that were not
covered by the requested behavior classes are verified on the
behavior descriptions retrieved in the previous step. The results
of the second step, i.e. services or processes that fulfill all
the constraints of the query are displayed to the user in the
implementation of our graphical search interface.

B. Evaluation

We conducted several experiments that show the benefits
of the presented approach wrt. search performance. In our
experiments we examine the impact of the classification
hierarchy on the search performance. As we apply logic-
based model-checking and classification techniques, it is not
necessary to evaluate the quality (soundness and completeness)
of search results. Instead, we compare the query answering
times for equivalent queries with and without the use of
behavior classes. Further, we differentiate between various
class complexities and class hierarchy sizes. We developed
a class hierarchy with formal class definitions and measured
the search performance for varying behavior class granularity.
This means, given a fixed number of services or processes,
applying a hierarchy with coarse-grained classes corresponds
in average to a small hierarchy (number of classes), and few
formal constraints per class. In contrast, fine-grained classes
lead to a larger hierarchy, more constraints per class.

1) Test Data: The test data is derived from given descrip-
tions of processes that coordinate existing Web based services.
We use CoScripts from the IBM CoScripter repository5. Co-
Scripts describe executable processes. The script language is
directly mapped to our behavior description language. Our
analysis of CoScripts from different domains like travel and

5The IBM CoScripter repository at http://coscripter.researchlabs.ibm.com/
coscripter provides approx. 5800 scripts for automating Web processes.



TABLE I: Behavior description characteristics per process.

Process Behavior Characteristics Range
Number of activities 3± 1
Number of parameters per I/O activity 3± 2
DL Axioms per I/O parameter 3± 2
Behavior class annotations 3± 2

TABLE II: Different levels of behavior class granularities.

Class Granularity Fine Medium Coarse
Number of behavior classes 60 40 20
Simple constraints per class 3 2 1

real estate6 resulted in the observation that many end user
browsing processes are rather short comprising a small number
of activities performed sequentially. The reason is that most
of the currently available CoScripts automate interactions with
only one Web site. More precisely, scripted travel processes,
e.g., for flight or hotel offers typically involve approximately
3 (mainly input) activities (with about 3 parameters per input
operation in average). The desired information within the
returned Web page was often not explicitly extracted for
further processing. So, there is only one parameter per output
activity on average.

Based on the analysis of the CoScripts, we generated seman-
tic behavior description within the characteristics summarized
in Table I. The correctness wrt. to content of existing CoScripts
cannot be guaranteed, as we do not focus on automatic
learning of semantic behavior descriptions. Still, we can argue
that the behavior complexity of our test data corresponds to
the complexity of the behaviors described by the CoScripts.
In our experiments we used 2000 generated descriptions. In
average, our behavior descriptions describe each input/output
parameter by three DL Axioms (i.e., at least its data type
plus its relationship to other process resources). In Table II,
the numbers of classes are related to the number of simple
constraints. A simple constraint can be one of eventually φ,
always φ, where φ is a simple constraint like a proposition
P or the existence of an activity a (〈a〉P ).

We created several search queries composed (∧µ, ∨µ, ¬µ)
out of 9 simple constraints. Analogously to the descriptions,
the complexity of each proposition and parameters of desired
activities is set to an average of 3 ± 2 DL axioms (class and
object property assertions, e.g., P ≡ Flight(f) ∧ Time(t) ∧
departureTime(f, t))7. A desired action is expressed by its type
(class assertion) and the description of types and relationships
between messages.

2) Results: Tables IIIa and IIIb show the measured query
answering time for varying class granularities and proportion
of behavior classes used in the queries for 1000 and 2000
behavior descriptions respectively. The baseline are queries Q3

in which no behavior classes are used. The opposite extreme
is Q0 which consists of a combination of classes only. The

6We used the repository’s keyword based search facilities which by no
means guarantees the completeness of the search results.

7The travel domain ontology is available at http://www.w3.org/2000/10/
swap/pim/travelTerms.rdf.

relative search performance gain is expectedly high.

TABLE III: Query answering time and relative gain.

(a) 1,000 behavior descriptions

Class Granularity Fine Medium Coarse
time [s] gain time [s] gain time [s] gain

Q0 (classes only) 0.010 99% 0.009 99% 0.009 99%
Q1 (66% classes) 3.32 61% 3.21 64% 3.35 63%
Q2 (33% classes) 5.46 37% 6.10 32% 6.28 30%
Q3 (no classes) 8.63 0 9.02 0 9.05 0

(b) 2,000 behavior descriptions

Class Granularity Fine Medium Coarse
time [s] gain time [s] gain time [s] gain

Q0 (classes only) 0.012 99% 0.018 99% 0.019 99%
Q1 (66% classes) 10.47 67% 11.83 65% 11.21 68%
Q2 (33% classes) 19.22 39% 22.06 34% 24.01 31%
Q3 (no classes) 31.32 0 33.40 0 34.98 0

An interesting outcome of this experiment is that the class
granularity is not crucial to the absolute query answering
times and the relative gains. Although a slight but steady
performance decrease is measured for coarse grained classes,
it shows that the overhead of fine grained classes (i.e., having
many classes in a hierarchy) does not add significant penalties
wrt. search performance. This observation is attributed to
efficient instance retrieval provided by ontology reasoners in
case of a relatively large ABox as compared to the TBox.
Consequently, the experiments show that a hierarchy can
easily grow as can be expected for a Web of services.
This argument is underpinned by applicable optimizations
that exist for this particular reasoning task [12]. The off-line
computation of behavior class memberships further reduces the
instance retrieval time. Furthermore, the query answering time
increases significantly for larger numbers of available behavior
descriptions. The query answering takes up to 3.9 times longer
for 2000 descriptions than for 1000 descriptions if no classes
are used (Q3). If only classes are used (Q0), the factor can be
reduced to 1.2. Thus, the importance of the performance gain
by classes becomes even more important when the number of
behavior descriptions increases.

VII. RELATED WORK

A. (Semantic) Business Processes

In [13], a process query language (PQL) has been intro-
duced. PQL is based on an interpretation of process models
as entity-relationship diagrams. A query is a regular expression
that allows the usage of ’*’ for the occurrence of sub-task re-
lationships. Apart from the lack of temporal operators needed
for reasoning about the process behavior, the pattern matching
based query answering algorithm cannot find answers (process
models) that use syntactically different terminology than the
one used in the query.

BPMN-Q [14] is a graphical query language that uses
concepts and notations from BPMN. BPMN-Q matches a
query graph pattern against a process graph and considers
control flow and names of the activities. This approach can be



compared to our model checking technique developed in our
previous works except that with our model checking technique
we are able to reason about the data flow and resources as well.

The Business Process Execution Language for Web Ser-
vices (BPEL4WS) [15] can be compared to our language
for describing executable observable behavior. In this paper,
our focus was on the usage and impact of behavior classes
on process descriptions and search. Therefore, our constraint
specification formalism (with or without classes) can be used
for compliance checking and search for BPEL4WS process
models if the latter could be interpreted as an LTS.

There are a couple of efforts for adding semantics to the
business processes by aligning process resources to domain
ontologies and reasoning over the process with an ontology
reasoner. However, these approaches have to rely on treating
transitions between states as logical implications within a
state, which restricts them to only those processes that have
a priori known fixed number of states. A process algebra
for modeling complex process behavior using ontologies for
semantically describing the process resources was proposed
in [6]. However, models described with process algebras
need to be treated with closed world semantics, which is
often a restriction in case of Web-based processes. Therefore,
we advanced this approach by capability to add declarative
constraints to process models.

B. Semantic Web Services

The OWL-S Service Profile aims at the description of
atomic services and also implements the concept of a service
classification [16]. However, the relation between service
classification and the rest of the service description is not ex-
ploited in existing OWL-S based matchmakers (e.g. [17]). The
Process Model supports specification of complex behavior. In
contrast to the Service Profile, the Process Model does not
directly support the use of classification. Even though a service
classification can be introduced by adding subclasses to this
class Service, it is not possible to reason about the dynamics
of complex service behavior due to missing formal execution
semantics of the OWL-S Process Model.

WSMO [18] supports the semantic description of both
atomic and complex services. WSMO-Lite [19] is a vocabu-
lary for annotating (SA)WSDL [20] service descriptions with
semantically described service properties, e.g. a subclass of
FunctionalClassificationRoot. However, as in OWL-S Pro-
file, functional classification is isolated from other functional
properties such as preconditions and effects. Thus, service
classifications contradicting the remaining service description
are possible. An approach presented in [21] uses functional
classifications to achieve efficient discovery of atomic Web
services. Furthermore, the formal class definitions are not
allowed to be used in combination with formal query parts
in a requests.

C. Further Service Modeling Approaches

UDDI [22] allows for coarse-grained service discovery
based on the classification meta data. It still suffers from

underspecified classes from standardized or proprietary clas-
sifications and also from an XML based data model which
lacks explicit semantics. Such classification taxonomies like
the United Nations Standard Products and Services Code (UN-
SPSC) were also used in OWL-S service matchmakers [17].
Then, a matchmaker simply evaluates class assignments to
determine matches but no class semantics is given or used.

Corella et al. also indicate the potential of service classi-
fications that offer an intuitive and coarse-grained service re-
trieval mechanism by investigating how services can be semi-
automatically classified based on the similarities to previously
classified services [23]. A Bayes-based method to classify
services automatically [24] also promises high accuracy but
lacks support for logical consistency since the classes were
only described by class identifiers and not formally defined.

Based on the assumption that matchmaking of desired
service classification with offered service classifications is less
expensive than the DL-based matchmaking of the functionality
description, Lara et al. presented a service discovery approach
in [25], with the help of formally defined service classes with
WSML-DL+. In our approach, we can use classes in service
descriptions when concrete property values are not known or
cannot be revealed. Furthermore, we allow usage of classes
in a request together with further constraints, whereas the
approach presented in [25] supports only predefined classes
in a request.

Our modeling approach is similar to the state-transition
system based process modeling approach for BPEL4WS pre-
sented in [26], as well as to the Finite State Machines (FSM)
based approach for modeling Web services presented in [27].
[28] presents a Linear Temporal Logic based approach for
verifying business constraints at runtime. In contrast to our
approach, in which we describe and reason about the data
content of a state semantically with description logics, none
of them allows reasoning about the data objects involved in
a process. Still, our behavior classes can be used to classify
and find BPEL4WS processes and Web services as well, given
that a semantics as a mapping to an LTS is provided.

A pragmatic temporal logic for reasoning about time in-
tervals of events by proposing a set of relationships between
time intervals was introduced in [29]. Even though there are
no results about the expressivity of the interval relationships to
the best of our knowledge as well as the fact that µ-calculus is
point-based, we believe that the interval relationships can be
expressed by µ-calculus. While the interval relationships due
to their pragmatic meaning could serve as a good basis for
obtaining the end user query language, there are differences in
the semantics that need to be taken care of while defining the
translation of an interval relationship to a µ-calculus formula.
An example for such a difference is “negation”. In interval
logic negation of “before” is “after”, while in µ-calculus
negation of “before” is “not before”, which has a different
meaning than “after”.

Our query specification formalism falls in the category of
DL with modal operators [30]. Since we use constant domain
terminologies (expressed as DL TBox), we are able to use a



more expressive temporal logic than the ones discussed in [30]
while still ensuring decidability.

VIII. CONCLUSIONS AND FUTURE WORK

Our work was primarily motivated by our observation that
despite most of the interesting services are not atomic but
rather have complex behavior, there are hardly any convenient
specification and search techniques available for such services.
In this paper, we showed how the description of observable
service behavior can be annotated with behavior specification
formulas. Then, we introduced the notion of behavior classes
that have human comprehensible names as well as formal
definitions. We showed how behavior classes can be exploited
for annotating the behavior descriptions as well as in process
search queries. Furthermore, we exploit the behavior class
hierarchy for pre-computing and cache class memberships of
descriptions in order to save on-line query time. We have
implemented the presented specification and search approach
and showed with our evaluation results the positive impact of
behavior classes on the search performance.

In the future we will focus on the exploitation of the
formal Web process descriptions that leads to the automatic
orchestration of them for the creation of more complex Web
applications. Web processes with similar functionalities can
be automatically aggregated in order to allow users to gain
a broad overview. Due to the automation, Web applications
like travel booking or price comparison portals can be created
dynamically for any domain. A convenient query language and
the automatic derivation of structured queries will be investi-
gated to address practicability. Finally, an efficient retrieval
technique is the prerequisite for an efficient composition.
Therefore, we wish to investigate (1) the automatic creation
of behavior classes by using frequent request patterns and
clustering existing service descriptions, (2) increased use of
classes in requests by query rewriting, and (3) hierarchy update
strategies for dynamically updating the classification hierarchy.
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