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ABSTRACT
The Resource Description Framework (RDF) has become
an accepted standard for describing entities on the Web.
At the same time, many RDF descriptions today are text-
rich – besides structured data, they also feature large por-
tions of unstructured text. Such semi-structured data is fre-
quently queried using predicates matching structured data,
combined with string predicates for textual constraints: hy-
brid queries. Evaluating hybrid queries efficiently requires
effective means for selectivity estimation. Previous works on
selectivity estimation, however, target either structured or
unstructured data alone. In contrast, we study the prob-
lem in a uniform manner by exploiting a topic model as
data synopsis, which enables us to accurately capture cor-
relations between structured and unstructured data. Relying
on this synopsis, our novel topic-based approach (TopGuess)
uses as small, fine-grained query-specific Bayesian network
(BN). In experiments on real-world data we show that the
query-specific BN allows for great improvements in estima-
tion accuracy. Compared to a baseline relying on PRMs we
could achieve a gain of 20%. In terms of efficiency TopGuess
performed comparable to our baselines.

1. INTRODUCTION
The amount of RDF available on the Web today, such as

Linked Data, RDFa and Microformats, is large and rapidly
increasing. RDF data contains descriptions of entities, with
each description being a set of triples: {〈s, p, o〉}. A triple
associates an entity (subject) s with an object o via a pred-
icate p. A set of triples forms a data graph, cf. Fig. 1.

Text-rich Data. Many RDF entity descriptions are text-
rich, i.e., contain large amounts of unstructured data. On
the one hand, structured RDF often comprises textual data
via predicates such as comment or description. Well-known
examples include datasets such as DBpedia1 or IMDB2.

1http://dbpedia.org
2http://www.linkedmdb.org

On the other hand, unstructured (Web) documents are fre-
quently annotated with structured data, e.g., RDFa or Mi-
croformats.3 Such interlinked documents can be seen as an
RDF graph with document texts as objects.

Conjunctive Hybrid Queries. The standard language
for querying RDF is SPARQL, which at its core features
conjunctive queries. Such queries comprise a conjunction
of query predicates 〈s, p, o〉. Here, s, p and o may refer to a
variable or a constant, i.e., an entity, a predicate or an object
in the data. Given text-rich data, a query predicate can
either match structured data or keywords in unstructured
texts (hybrid query). The latter is commonly handled via
string predicates modeling textual constraints. Processing
conjunctive queries involves an optimizer, which relies on
selectivity estimates to construct an “optimal” query plan,
thereby minimizing intermediate results.

Selectivity Estimation. Aiming at a low space and
time complexity, selectivity estimation is based on data syn-
opses, which approximately capture data value distribu-
tions. For simplicity, assumptions are commonly employed:
(1) The uniform distribution assumption implies that all

objects for a predicate are equally probable. For in-
stance, the probability for an entity x having name
“Mel Ferrer” is P (Xname = “Mel. . . ”) ≈ 1/|Ω(Xname)|
= 1/4 (Fig. 1). Thus, the probability for a query pred-
icate 〈x, name,“Mel. . . ”〉 is 1/4. Given entities with a
common name this leads to misestimates.

(2) Consider a second predicate 〈x, comment,“Audrey
Hepburn was. . . ”〉 (probability 1), the predicate value
independence assumption states that the two ob-
ject values are independent. Thus, P (Xname =
“Mel. . . ”, Xcomment = “Audrey. . . ”) ≈ P (Xname =
“Mel. . . ”) · P (Xcomment = “Audrey. . . ”) = 1/4 · 1.
However, there is no entity having both predicates
name and comment. Such misestimates are due to cor-
relations: Given a value for name, a particular value
for comment is more or less probable.

(3) The join predicate independence assumption (special
case of (2)) implies that the existence of a predicate is
independent of the value respectively existence of an-
other predicate. For instance, the existence of comment
and any value for name would be assumed independent.
Such a simplification results in errors, as comment only
occurs with name “Audrey Kathleen Hepburn”.

Such assumptions lead to severe misestimates, which in turn
results in costly query plans being constructed. Thus, there

3http://www.webdatacommons.org
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is a strong need for efficient and effective data synopses
(discussed in Sect. 3).

Synopses for Un-/Structured Data. A large body
of work has been devoted to synopses for structured data.
Assumption (1) is addressed by frequency statistics embed-
ded in, e.g., histograms [17]. Assumption (2)/(3) require
an approximation of joint distributions of multiple random
variables via join synopses [1], tuple-graph synopses [19] or
probabilistic relational models [12, 21, 22] (PRM).

In context of text-rich data, a key challenge is that random
variables have large sample spaces. That is, string predicates
comprise keywords, which match any text value that con-
tains such keywords. Thus, sample spaces (e.g., Ω(Xname)
Fig. 1) must comprise all words and phrases (sequences
of words) contained in text values. Addressing this issue,
string synopses summarizing string sets, such as Ω(Xname),
have been proposed. Synopses based on pruned suffix trees,
Markov tables, clusters or n-grams, have received much at-
tention [7, 13, 23]. However, such approaches solely address
one single string predicate, e.g., 〈x, name,“Mel. . . ”〉. In fact,
they do not consider any kind of correlations among multiple
string predicates and/or structured query predicates.

On the other hand, synopses for structured data do not
summarize texts. In fact, [12] noted the need for summaries
over such “large” sample spaces, and [22] addressed this is-
sue by a “loose coupling” of string synopses and PRMs.
However, no uniform framework for capturing correlations
between unstructured and structured data elements has
been proposed. In particular, [22] lacks a uniform synop-
sis construction, and suffers from an “information loss” due
to inaccurate string summaries.

Relational Topic Models. Recently, multiple works
targeting relational topic models [6, 24, 3] have extended tra-
ditional topic models to not only reflect text, but also struc-
ture information. In our selectivity estimation approach
(TopGuess), we exploit this line of work, in order to have
one single synopsis for text and structure information. That
is, we use Topical Relational Models (TRM), which have
been proposed as means for bridging the gap between text-
oriented topic models (e.g., LDA [4]) and structure-focused
relational learning techniques (e.g., PRMs) [3, Ch. 4]. In the
following, we show that using such a synopsis has a number
of key advantages over existing works.

Contributions. Let us outline our contributions in more
details: (1) In this work, we present a general framework for
selectivity estimation for hybrid queries over RDF and out-
line its main requirements. In particular, we discuss concep-
tual drawbacks of PRM-based solutions [12, 21, 22] in light
of these requirements. (2) We introduce a novel approach
(TopGuess), which utilizes a relational topic model based
synopsis, to summarize text-rich graph-structured data. We
provide space and time complexity bounds for TopGuess.
That is, we show that we can achieve linear space complexity
in its unstructured data size, and runtime estimation com-
plexity which is independent of the underlying synopsis size.
(4) In our experiments, we use baselines relying on indepen-
dence between query predicates (assumptions (2) and (3))
and PRM-based approaches. Our results suggest that esti-
mation effectiveness can be greatly improved by TopGuess.

Outline. First, in Sect. 2 we outline preliminaries. Sect.
3 introduces a general framework for selectivity estimation.
We introduce our novel TopGuess approach in Sect. 4. In
Sect. 5 we present evaluation results, before we outline re-
lated work in Sect. 6, and conclude with Sect. 7.
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Figure 1: RDF data graph about Audrey Hepburn
and her movie “Roman Holiday”.

2. PRELIMINARIES
We use RDF as data and conjunctive queries as query model:

Data. RDF data is following a graph model as follows:
Let `a (`r) denote a set of attribute (relation) labels. Data
is given by a directed labeled graph G = (V,E, `a, `r), where
V is the disjoint union V = VE ] VA ] VC of entity nodes
VE , attribute value nodes VA and class nodes VC . Edges
(triples) E = ER ]EA ] type are a disjoint union of relation
edges ER and attribute edges EA. Let relation edges connect
entity nodes, i.e., 〈s, r, o〉 ∈ ER iff s, o ∈ VE and r ∈ `r), and
attribute edges connect an entity with an attribute value,
〈s, a, o〉 ∈ EA iff s ∈ VE , o ∈ VA and a ∈ `a. The “special”
edge 〈s, type, o〉 ∈ E, s ∈ VE and o ∈ VC , models entity
s belonging to class o. For sake of simplicity we omit fur-
ther RDF features, such as blank nodes or class/predicate
hierarchies. If an attribute value o ∈ VA contains text, we
conceive it as a bag-of-words. Further, we say that a vocabu-
lary W comprises all such bags-of-words ∈ VA. An Example
is given in Fig. 1.

Conjunctive Hybrid Queries. Conjunctive queries
represent the basic graph pattern (BGP) feature of SPARQL.
Generally speaking, conjunctive queries are a core frag-
ment of many structured query languages (e.g., SQL or
SPARQL). We use a particular type of conjunctive queries,
hybrid queries, being a conjunction of query predicates of
the form: A query Q, over a data graph G, is a directed la-
beled graph GQ = (VQ, EQ) where VQ is the disjoint union
V = VQV ] VQC ] VQK of variable nodes (VQV ), constant
nodes (VQC ) and keyword nodes (VQK ), where o ∈ VQK is
a user-defined keyword. For simplicity, in this work we de-
fine a keyword node as “one word” occurring in an attribute
value. That is, a keyword is one element from a bag-of-words
representation of an attribute node. Corresponding to edge
types, `a, `r, and type, we distinguish three kinds of query
predicates: class predicates 〈s, type, o〉, s ∈ VQV , o ∈ VQC ,
relation predicates 〈s, r, o〉, s ∈ VQV , o ∈ VQC , r ∈ `r and
string predicates 〈s, a, o〉, s ∈ VQV , o ∈ VQK , a ∈ `a. An ex-
ample is given in Fig. 2. The query semantics follow those
for BGPs: results are subgraphs of a data graph matching
the graph pattern captured by the query. The only differ-
ence is due to keyword nodes: a value node o′ ∈ VA matches
a keyword node o′′ ∈ VQK , if words in o′ contain all words
from o′′. Lastly, a BGP query may contain attribute pred-
icates with other value domains such as date and time. In
this work, however, we focus on textual attributes.

In the following, we introduce two models, which we use
as selectivity estimation synopses:

Bayesian Networks. A Bayesian network (BN) is a
directed graphical model allowing for a compact represen-
tation of joint distributions via its structure and parame-
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Figure 2: Hybrid Query asking for movies with title
“Holiday” and starring “Audrey Hepburn”.

ters [14]. The structure is a directed acyclic graph, where
nodes stand for random variables and edges represent de-
pendencies. Given parents Pa(Xi) = {Xj , . . . , Xk}, a ran-
dom variable Xi is dependent on Pa(Xi), but conditionally
independent of all non-descendant random variables.
Example 1. See Fig. 3-a for an BN. Here, e.g., Xtitle
and Xmovie denote random variables. The edge Xmovie →
Xtitle refers to a dependency between the parent variable,
Xmovie = Pa(Xtitle), and the child Xtitle. Xtitle is, how-
ever, conditionally independent of all non-descendant vari-
ables, e.g., Xname or Xcomment.

BN parameters are given by conditional probability dis-
tributions (CPDs). That is, each random variable Xi is as-
sociated with a CPD capturing the conditional probability
P (Xi|Pa(Xi)). An extract of a CPD is shown in Fig. 3-b.
The joint distribution P (X1, . . . , Xn) can be estimated via
the chain rule: P (X1, . . . , Xn) ≈

∏
i P (Xi|Pa(Xi)) [14].

Topic Models. Topic models are based on the idea
that documents are mixtures of “hidden” topics, where each
topic is a probability distribution over words. These top-
ics, constitute abstract clusters of words categorized ac-
cording to their co-occurrence in documents. More for-
mally, a document collection can be represented by K topics
T = {ti, . . . , tK}, where each t ∈ T is a multinomial distri-
bution of words P (w | t) = βtw and

∑
w∈W βtw = 1. Here,

W represents the vocabulary of individual words appearing
in the corpus. This way the entire corpus can be represented
as K topics, which leads to a low-dimensional representation
of the contained text.
Example 2. Three topics are shown in Fig. 5-c. Every topic
assigns a probability (represented by vector βt) to each word
in the vocabulary, indicating the importance of the word
within that topic. For example, word “Belgium” is more
important in the third topic (probability βtw = 0.014), than
for the other two topics.

Prominent topic models, e.g., Latent Dirichlet allocation
(LDA) [4], are modeled as graphical models (e.g., Bayesian
networks). They assume a simple probabilistic procedure,
called generative model, by which documents can be gener-
ated. To generate a document, one chooses a distribution
over topics. Then, for each word in that document, one se-
lects a topic at random according to this distribution, and
draws a word from that topic. Since initially the topic distri-
bution of the documents and the word probabilities within
the topics are unknown (hidden), this process is inverted
and the standard Bayesian learning techniques are used to
learn the hidden variables and topic parameters (e.g., βtw).
Recently, relational topic models [6, 24, 3] allowed capturing
dependencies between words ∈ W and structural informa-
tion, such as entity relations and classes.

Problem Definition. Given a hybrid query over an
RDF graph, we tackle the problem of effective and effi-
cient selectivity estimation. In particular due to the con-
tains semantics of string predicates, we face several issues
and challenges, which we also discuss in a formal manner
via a requirements analysis in Sect. 3. In the following, let
us outline them from an informal point of view.

(1) Efficiency Issues. If a vocabulary W of words occur-
ring in attributes ∈ VA is large, the data synopsis, e.g., a
PRM [12, 21], can grow exponentially and quickly become
complex. Recall, a synopsis needs to capture statistics for
all correlations among words ∈ W as well as other struc-
tured data (classes and relations). Consider, e.g., predi-
cate 〈p, name,“Audrey”〉, a data synopsis may summarize
the entity count of bindings for variable p as 2 (p1/2 in
Fig. 1). However, given a second query predicate, e.g.,
〈p, name,“Hepburn”〉 or 〈m, starring, p〉, correlations oc-
cur and a synopsis would need store the count of the con-
joined query (join predicate independence assumption fails).
Thus, it has to capture separate counts for name “Audrey”,
i.e., comprise all possible combinations with other words
(e.g., “Hepburn”) and structural elements (e.g., starring).
Clearly, creating such a data synopsis is infeasible for text-
rich datasets. Intuitively, a synopsis must “scale” well w.r.t.
vocabulary W respectively a string synopsis on W (see
Req.2). Further, an selectivity estimation that builds up
on the data synopsis must efficiently approximate the prob-
ability for a given query (see Req.4+5).

(2) Effectiveness Issues. Space and time efficiency should
not be “traded off” for effectiveness. That is, a vocabulary
W must be accurately represented within the data synopsis.
Thus, a synopsis should strive to capture “all important”
correlations between/among words and/or structured data
(see Req.1). Further, if a string synopsis is employed for
summarizing vocabulary W , there must not be an infor-
mation loss (see Req.3). Such a loss occurs, e.g., due to
eliminating “less important” strings (e.g., n-gram synopsis
[23]) or by capturing multiple strings with one single string
synopsis element (e.g., histogram synopsis [13]).

3. ESTIMATION FRAMEWORK
We now introduce a generic framework for selectivity es-

timation over text-rich RDF data and discuss requirements
necessary for efficient and effective instantiations.

Framework. Selectivity estimation strategies commonly
summarize a data graph G via a concise data synopsis, S,
and estimate the selectivity selG(Q) by using an estima-
tion function FS(Q) over this synopsis. In the presence of
text-rich data, a string synopsis function ν is defined as a
mapping from the union of words comprised in attribute
text values ∈ VA (W ) and query keyword nodes ∈ VQK to a
common representation space, denoted by C. This common
space C has the purpose to compactly describe the large set
W

⋃
VQK , while still capturing “as much information” as

possible. We define the estimation framework as:

Definition 1 (Estimation Framework). Given a data graph
G and a query Q, an instance of the selectivity estimation
framework selG(Q) is a tuple (S, FS(Q), ν), where the data
synopsis S represents a summary of the data graph G. The
estimation function FS(Q) approximates the selectivity of
query Q using S: selG(Q) ≈ FS(Q). ν represents a string
synopsis function defined as ν : W

⋃
VQK 7→ 2C .

Instantiations. The three framework components have
been instantiated differently by various approaches. For in-
stance, PRMs [12, 21], graph synopsis [19], or join samples
[1] have been proposed as a data synopsis S. Depending
on the synopsis type, different estimation functions were
adopted. For example, a function based on Bayesian in-
ferencing [12, 21] or graph matching [19]. Among the many
instantiations for S, PRMs [12, 21, 22] are closest to our
work. For string synopsis function ν, approaches such as
suffix trees, Markov tables, clusters or n-grams can be used

3
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[7, 13, 23]. Thus, a space C could, e.g., comprise of clusters of
strings or of histogram buckets. However, most appropriate
for the contains semantic of string predicates is recent work
on n-gram synopses [23]. In particular, this approach does
not limit the size of texts in the data, which is a key feature
for RDF. Combining a PRM with n-gram string synopses
results in a representation space C comprising n-grams (1-
grams to be precise), and resembles previous work in [22].
Here, a random variable Xa, capturing an attribute a in
the data graph, has all n-grams occurring in text values as-
sociated with a as sample space. Function FS(Q) can be
realized by transforming query predicates ∈ Q to random
variable assignments and calculating their joint probability
using BN inferencing [12, 21, 22].
Example 3. Consider the BN in Fig. 3-a with three kinds
of random variables: class (green), relation (blue) and at-
tribute (orange) variables. Class random variables, Xc, cap-
ture whether or not an entity has a particular class ∈ VC .
For instance, we have a random variable Xmovie for class
Movie. Further, a relation variable, Xr, models the event of
two entities sharing a relation r. Consider, e.g., Xstarring
referring to the starring relation. Each relation random
variable has two parents, which correspond to the “source”
respectively “target” of that relation. Class and relation
random variables are binary: Ω(Xr) = Ω(Xc) = {T,F}.
Last, attribute assignments are captured via random vari-
ables Xa with words as sample space. Xtitle, e.g., has words
comprised in movie titles as events.

Requirements for Instantiations. Several require-
ments are needed for an effective and efficient instantiation.
A synopsis S should summarize a data graph G in the “best
way possible”. In particular, S should capture correlations
among words, but also correlations between words and class-
es/relations. In simple terms, independence assumptions (1)
– (3), as presented earlier, have to be omitted due to their
error prone nature (Req.1). The synopsis size is crucial.
In fact, a synopsis should aim at a linear space complex-
ity w.r.t. the size of the string synopsis, i.e., |C| (Req.2).
Linear space complexity is required to eliminate the expo-
nential growth of a data synopsis w.r.t. its string synopsis
(representation space). Accordingly, the need to drastically
“reduce” the vocabulary W of words ∈ VA via a string syn-
opsis ν should not be necessary. This is crucial a more com-
pact C always introduces an information loss. For instance,
if a histogram-based string synopsis would reduce its num-
ber of buckets, more information from vocabulary W would
be lost. An information loss, in turn, directly affects Req.1
(Req.3). Since the estimation function FS operates at run-

time, it should be highly efficient (Req.4). Last, time com-
plexity of FS needs to be independent from the size of the
synopsis S (Req.5).

Discussion. As outlined, closest to our work is a frame-
work instantiation utilizing a PRM as data synopsis S and
a n-gram synopsis as string synopsis function ν [22]. Given
such an instantiation, correlations are captured via probabil-
ities in CPDs respectively a BN network structure. Learn-
ing techniques have been proposed to capture the most cru-
cial correlations efficiently [14]. However, when several val-
ues are assigned to the same query predicate respectively
random variable representing it, e.g., name=“Audrey” and
name=“Hepburn” (Fig. 2), an aggregation function must be
applied [20], resulting in one single random variable assign-
ment. Thus, dependency information can not be reflected
completely. This leads to misestimations, as we observed in
our experiments (partially fulfilled Req.1). Data synopsis
size of a BN is exponential in the string synopsis size, |C|.
Thus, Req.2 is not fulfilled. Further, there is the need to
reduce the representation space of ν comprising n-grams,
as the size of synopsis S is strongly affected by the size of
C. This, in turn, leads to an information loss (not meeting
Req.3): in the case of an n-gram string synopsis, reduc-
ing C means to select a subset of n-grams occurring in the
text. Note, discarded n-grams may only be estimated via
string synopsis heuristics. The probabilities computed from
these heuristics may not correspond to the actual probabil-
ity of the keyword in the query predicate. Our experiments,
as well as our previous work [22], show that these informa-
tion losses lead to significant misestimations. PRM-based
data synopses use BN inferencing in order to implement the
estimation function FS [12, 21, 22]. However, it is known
that inferencing is NP-hard [9]. Thus, “exact” computa-
tion of FS is not feasible – instead approximation strategies,
e.g., Markov Chain Monte Carlo methods, are used to guar-
antee an polynomial time complexity of FS [14] (partially
fulfills Req.4). Last, BN (PRM) solutions requires expen-
sive computation at runtime. (1) PRM approaches [12, 21,
22] require an unrolling procedure: a “query BN” is gener-
ated from a template using marginalization. (2) A (query)
BN is used for inferencing to compute the query probability.
For both such steps, however, computation time is driven by
CPD sizes, and thus, synopsis size and complexity of FS is
directly coupled (Req.5 fails).

4. TOPGUESS
TopGuess is another instantiation of our framework

(Def. 1): we present a synopsis S in Sect. 4.1, and an
estimation function FS in Sect. 4.2. Targeting the above
requirements, TopGuess adheres to several design decisions.

First, TopGuess utilizes a data synopsis S, which has lin-
ear space complexity w.r.t. its string synopsis (Req.2). In
particular, this data synopsis employs topic models to ob-
tain a effective representation of correlations between top-
ics and words respectively structural elements, i.e., classes
and relations (Req.1). In addition, the use of topics allows
TopGuess to exploit a complete vocabulary W as a string
synopsis, i.e., W equals the common representation space
C of string synopsis ν (Req.3). Our synopsis is used to
construct a small BN only for the current query at run-
time (“query-specific” BN). Essentially, our query-specific
BN follows the same intuition as an unrolled BN in a PRM
approach [14]. However, as we later show, it is much more
compact and its construction does not require expensive
marginalization. Further, we reduce computing the selec-
tivity estimation function FS , to the task of approximating
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the joint probability of that query-specific BN – without any
inferencing (Req.4). In order to better capture correlations
among query predicates, TopGuess utilizes an assumption as
follows: every query variable is modeled as a (hidden) mix-
ture of topics. The query probability can be computed based
on the topic mixtures associated with its query variables. In
addition, each query predicate separately contributes to the
topics of its corresponding query variable. Thus, in contrast
to a PRM-based synopsis, there is no need to use an aggre-
gation function, as multiple value assignments to a single
random variable are not possible (Req.1). TopGuess only
performs topic mixture learning in its estimation function to
enable a fine-grained “conditioning” of query predicates on
the topics. However, this learning process is bounded by the
query variables. In particular, the learning and, thus, the
computation of the estimation function FS is not affected
by the overall data (string) synopsis size (Req.5).

4.1 Topic-based Data Synopsis
We exploit a relational topic model [6, 24, 3] as data syn-

opsis S, thereby providing us a single, uniform synopsis for
structured and unstructured data. In this work, we use Top-
ical Relational Model (TRM) [3, Ch. 4], as it supports our
data model best. Further, TRM parameters may easily be
used for calculating query predicate probabilities – as dis-
cussed in the following. However, notice that our TopGuess
approach could be extended to other relational topic models.

Topical Relational Model. Intuitively speaking, a
TRM summarizes textual information via a small number
of topics. Additionally, it finds correlations between these
topics and structured data elements, i.e., classes and rela-
tions. More precisely, a TRM assumes that if entities exhibit
structural resemblances (i.e., have similar classes or rela-
tions), their words and topics respectively, shall also be sim-
ilar. Vice versa, given specific words and topics respectively,
some structure elements are more probable to be observed
than others. For instance, one may observe that words such
as “Hepburn” highly correlate with classes like Person and
Movie, as well as with other words like “play” and “role” in
the context of a relation starring.

A TRM captures correlations between text and structured
data via a set of K topics T = {ti, . . . , tK}. Each topic t ∈ T
is a multinomial distribution of words p(w|t) = βtw and∑
w∈W βtw = 1. As before, W represents the vocabulary,

which is derived from words attribute values. That is, for
each triple 〈s, p, o〉 ∈ EA we add all words ∈ o to W . See
Fig. 5 and Ex. 2 for our running example. In its learning
process, a TRM is modeled as a BN based on information
from the underlying data graph.
Example 4. Fig. 4 depicts an extract of a TRM BN con-
structed for entity p2 from the running example (Fig. 1).
Observed variables (dark Grey) consist of entity words (e.g.,
w(p2,“Audrey”) or w(p2,“Hepburn”)), entity classes (e.g.,
Person(p2)) and entity relations (e.g.,starring(m1, p2) or
spouse(p2, p3)). Dependencies among observed variables are
reflected by a set of hidden variables (light Grey), which are
initially unobserved, but inferred during learning: the vari-
able b(p2) is a topic vector indicating the presence/absence
of topics for entity p2. Note, a relation variable also de-
pends on a variable b, modeling the other entity involved
in the relation. This way b(p2) “controls” topics selected
for an entity according to structure information. In addi-
tion, θ(p2) models the topic proportion according to b(p2),
whereas each a variable z(p2, ∗) selects a particular topic for
each word by sampling over θ(p2).

Person(p2)

spouse(p2,p3)starring(m1,p2)

z(p2,audrey) z(p2,hepburn) ...

b(p2)

b(m1) b(p3)
θ (p2)

w(p2,audrey) w(p2,hepburn) ...

...

... β

ωstarring ωspouse

λperson

... ...

Figure 4: TRM BN extract for entity p2: observed
variables (dark Grey), hidden variables (light Grey)
and TRM parameters (rectangles). Note, relation
bornIn is not shown for space reasons.

A TRM is constructed using a generative process, which
is controlled via its three parameters: β, λ, and ω (shown in
rectangles in Fig. 4). Hidden variables as well as parameters
are inferred via a variational Bayesian learning technique as
an offline process. Further discussion on the construction is
unfortunately out of scope. For this work we apply standard
TRM learning – the reader finds details in [3, Ch. 4].

Important for selectivity estimation, however, are solely
the learned TRM parameters that specify the topics T and
also qualify the degree of dependency between structured
data elements and topics:

(1) Class-Topic Parameter λ. A TRM captures correla-
tions between classes ∈ VC and hidden topics ∈ T via a
global parameter λ that is shared among all entities in G.
λ is represented as a |VC | × K matrix, where each row λc
(c ∈ VC) is a topic vector and each element λct in that vector
represents the weight between class c and topic t.

(2) Relation-Topic Parameter ω. Given K topic ∈ T ,
the probability of observing a relation r is captured in a
K ×K matrix ωr. For any two entities s/o, such that s is
associated with topic tk and o with topic tl, the weight of
observing a relation r between these entities 〈s, r, o〉 is given
by an entry (k, l) in matrix ωr (denoted by ωrtktl). Note, a
TRM provides a matrix ω for each distinct relation in G.

Above TRM parameters are shared among all entities in
the data graph. See Fig. 5 for an example. Now, let us
formally show that TopGuess holds Req.2:

Theorem 1 (Synopsis Space Complexity). Given K topics
and a vocabulary W , a TRM requires a fixed-size space of
the order of O(|W | ·K + |VC | ·K + |`r| ·K2).

Proof. For each topic, we store probabilities of every word
in W , so the complexity of K topics is O(|W | ·K). λ can be
represented as a matrix |VC | × K, associating classes with
topics ∈ O(|VC | · K). Every relation is represented as a
matrix K×K, resulting in a total synopsis space complexity
O(|W | ·K + |VC | ·K + |`r| ·K2) �

Discussion. As a data synopsis S for selectivity estima-
tion a TRM offers a number of unique characteristics: (1)
First, learned topics provide a low-dimensional data sum-
mary. Depending on the complexity of the structure and
the amount of the textual data, a small number of topics
(e.g., 50) can easily capture meaningful correlations from
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Figure 5: TRM parameters for three topics: (a) Un-
normalized λmovie and λperson parameters over three
topics. (b) ω matrix for starring relation (rows
(columns) represent source (target) topics of the re-
lation). (c) Selected words in three topics with their
corresponding probabilities. Note, data is taken
from the running example, cf. Fig. 1.

the data graph. Notice, while we “manually” set the num-
ber of topics for our evaluation system, our approach could
be extended to learn the optimal number of topics via a
non-parametric Bayesian model [11]. By means of this low-
dimensional summary, a TRM provides a synopsis with lin-
ear space complexity w.r.t. the string synopsis (to be pre-
cise, linear in vocabulary W ), cf. Theorem 1. (2) Each
topic has a broad coverage, as every word in the vocabulary
is covered in every topic with distinct probabilities. See βtw
in the running example, Fig. 5-c. Thus, in contrast to syn-
opses based on graphical models, e.g., PRMs [14], a TRM is
not restricted to small samples. Given the contains seman-
tics of string predicates, sample spaces of attribute random
variables can quickly “blow up”. Reducing such large sam-
ple spaces via a string synopsis, as done in our previous work
[22], comes at the expensive on an information loss. (3) Cor-
relations between structure elements (classes and relations)
and words ∈ W are described in a compact way (between
the classes/relations and the topics) via the structural cor-
relation parameters λ and ω. Thus, no “separate” synopses
for structure and text are necessary – in contrast to [22].

Maintenance. In a real-world setting, a data synopsis
must be able to handle changes in its underlying dataset.
For a TRM-based synopsis dealing with changes is two-
fold. First, in case of minor variations, TRM parameters
may be still allow for accurate selectivity estimation. This
is due to the fact that a TRM captures dependencies be-
tween text and structured data elements via probability
distributions over topics. We observed in our experiments
that such probability distribution are invariant given small
changes in the data. We learned TRMs from different sam-
ples (sizes) of the underlying data, however, the resulting
selectivity estimations respectively topic distributions dif-
fered only marginally. Second, in case of major changes in
the data, TRM probability parameters must be recomputed.
In our experiments, TRM construction could be done in un-
der 10 hours. However, recent work on topic models [18]
has shown that this learning process can be parallelized,
thereby guaranteeing a scalable TRM construction even for
large data graphs. Furthermore, [2] introduced an algorithm
for incremental topic model learning over text streams. Both
such directions may be exploited in future work.

4.2 Selectivity Estimation Function

We address the problem of estimating selG(Q) via an es-
timation function FS(Q), which can be decomposed as [12]:

FS(Q) = R(Q) · P(Q)

Let R be a function R : Q → N providing an upper bound
cardinality for a result set for query Q ∈ Q. Further, let
P be a probabilistic component assigning a probability to Q
that models whether or not its result is non-empty. R(Q)
can be easily computed as product over “class cardinalities”
of Q [12, 22]. More precisely, for each variable v ∈ VQV
we bound the number of its bindings, R(v), as number of
entities belonging v’s class: |{s|〈s, type, c〉 ∈ E}|. If v has
no class, we use the number of all entities, |VE |, as estimate
for R(v). Then, R(Q) =

∏
v R(v).

For the probabilistic component P, we construct a query-
specific BN (Sect. 4.2.1), and show estimation of P(Q) by
means of this BN in Sect. 4.2.2 + 4.2.3.

4.2.1 Query-Specific BN
A query-specific BN is very similar to an “unrolled” BN

given a PRM [14]. In both cases, one constructs a small
BN at runtime only for the current query, by using prob-
ability distributions and dependency information from an
offline data synopsis. However, our query-specific BN has
unique advantages: (1) It follows a simple, yet effective fixed
structure. In particular, a query-specific BN comprises one
random for each query predicate, thus, no aggregations of
multiple assignments to a single random variable can oc-
cur. (2) Construction does not require any marginalization,
instead TRM parameters can be used directly. (3) No in-
ferencing is needed for estimating P(Q) (discussed in Sect.
4.2.2 + 4.2.3). Given no inferencing and marginalization, a
TRM synopsis may be kept on disk, in contrast to current
PRM implementations requiring an in-memory storage.

Now, let us present the query-specific BN in more detail.
We capture every query predicate as a random variable: for
each class 〈s, type, c〉 and relation predicate 〈s, r, o〉, we in-
troduce a binary random variable Xc and Xr, respectively.
Similarly, for a string predicate 〈s, a, w〉, we introduce a bi-
nary random variable Xw.4 Further, every query variable
v ∈ VQV is considered as referring to a topic in the TRM
and introduced via a topical random variable, Xv. However,
instead of a “hard” assignment of variable Xv to a topic,
Xv has a multinomial distribution over the topics. Thus,
Xv captures v’s “relatedness” to every topic:

Definition 2. For a set of topics T , a query Q and its
variables v ∈ VQV , the random variable Xv is a multinomial
topical random variable for v, with T as sample space.

Based on topical random variables, we perceive unknown
query variables as topic mixtures. Then, we establish de-
pendencies between topical random variables and random
variables for class (Xc), relation (Xr) and string predicates
(Xw). In order to obtain a simple network structure, we
employ a fixed structure assumption:

Definition 3 (Topical Independence Assump.). Given a
queryQ and its variables VQV , the probability of every query
predicate random variable, Xi, i ∈ {w, c, r}, is independent
from any other predicate random variable, given its parent
topical random variable(s), Pa(Xi) ⊆ {Xv}v∈VQV .

4Note, attribute label a is omitted in the notation, since
topic models do not distinguish attributes.
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The topical independence assumption lies at the core of
our TopGuess approach. (1) It considers that query pred-
icate probabilities depend on (and governed by) the top-
ics of their corresponding query variables. In other words,
during selectivity estimation we are looking for a specific
(“virtual”) binding to each query variable, whose topic dis-
tribution is represented in its corresponding topical random
variable (initially unknown) and determined by query pred-
icates. (2) It allows to model the probability P(Q) in a
simple query-specific BN (cf. Fig. 6). Here, the probability
of observing a query predicate is solely dependent on the
topics of query variables, which enables us to handle de-
pendencies among query predicates in a simplistic manner
(Sect. 4.2.2). Note, a generic query-specific BN is given in
Fig. 6-a, while Fig. 6-b depicts a query-specific BN for our
running example. Our network structure leads to a valid
BN, as the following theorem holds:

Theorem 2. The query-specific BN constructed according
to the topical independence assumption is acyclic.

Proof Sketch. BN parts resembling class and string variables
form a forest of trees – each tree has depth one. Such trees
are combined via relation predicate variables, which have no
children (cf. Fig. 6-a). Thus, no cycle can be introduced �

Intuitively, the query probability P(Q) can be written as:

P(Q) = P (Xw = T ∧Xc = T ∧Xr = T) (1)

Let Xw, Xc and Xr refer to sets of string, class and relation
predicate variables in a query-specific BN for Q. For above
equation, we need the topic distributions of Xv. As Xv are
hidden, we learn such distributions from observed predicate
variables. In Sect. 4.2.2, we first discuss parameter learning
for observed random variables, given topical random vari-
ables, i.e., query variable topics, and subsequently present
learning of hidden topical random variables (Sect. 4.2.3).

4.2.2 Query Predicate Probabilities
Query predicates probabilities are influenced by their cor-

responding topical random variables (in a query-specific BN)
as well as their prior probabilities in the underlying TRM
synopsis. Thus, we can formulate the conditional probability
of each query predicate variable (Xc, Xr and Xw) by incor-
porating topic distributions of query variables (i.e., topical
random variables) with prior probabilities estimated using
TRM parameters (i.e., β, λ and ω). That is, probabilities
for query predicate variables are obtained as follows:

Class Predicate Variables. Adhering to the topical in-
dependence assumption, the probability of observing a class,
P (Xc = T), is only dependent on its topical variable Xs.
Here, we use TRM parameter λ to obtain the weight λct,
indicating the correlation between topic t and class c. The
probability of observing class c is given by:

P (Xc = T|Xs,λ) =
∑
t∈T

P (Xs = t)
λct∑

t′∈T λct′

Example 5. Fig. 6-b illustrates two class variables, Xmovie
and Xperson, which are dependent on the random variables
Xm and Xp, respectively. For computing query probabili-
ties, P (Xmovie = T) and P (Xperson = T), the correspond-
ing TRM parameters λmovie and λperson (Fig. 5) are used.
For instance, given P (Xm = t1) = 0.6, P (Xm = t2) = 0.1,
and P (Xm = t3) = 0.3, we have: P (Xmovie = T) = 0.6 · 3/4
+ 0.1 · 0/4 + 0.3 · 1/4 = 0.525.

Relation Predicate Variables. Every relation predi-
cate 〈s, r, o〉 connects two query variables, for which there

are corresponding topical variables Xs and Xo. The variable
Xr (representing this relation predicate) solely dependents
on the topics of Xs and Xo. The dependency “strength”
between r and topics of these two variables is captured by
parameter ωr in the TRM. Using ωr, the probability of ob-
serving relation r is:

P (Xr = T|Xs, Xo, ωr) =
∑
t,t′∈T

P (Xs = t) ωrtt′ P (Xo = t′)∑
t′′t′′′∈T ωrt′′t′′′

Example 6. In Fig. 6-b, there are two relation predicate
variables: Xstarring and Xbornin. Each of them is depen-
dent on two topical variables, e.g., Xm and Xp condition
Xstarring. Probability P (Xstarring = T) is estimated via
matrix ωstarring (Fig. 5).

String Predicate variables. For each string predicates
〈s, a, w〉 ∈ Q, there is a random variable Xw. The param-
eter βtw provided by a TRM represents the probability of
observing a word w given a topic t. Thus, the probabil-
ity P (Xw = T) is calculated as probability of observing w,
given the topics of its query variable Xs and β1:K :

P (Xw = T|Xs, β1:K) =
∑
t∈T

P (Xs = t)
βtw∑

t′∈T βt′w

Example 7. Fig. 6-b depicts four string predicate variables,
needed for the three string predicates comprised in our query
(Fig. 2). Note, for name = “Audrey Hepburn” two variables
Xaudrey and Xhepburn are necessary. Given P (Xm) as in the
example above, P (Xholiday = T) is:

P (Xholiday = T) = 0.6· 0.011

0.017
+0.1· 0.002

0.017
+0.3· 0.004

0.017
= 0.47

4.2.3 Learning Topics of Query Variables
The core idea of TopGuess is to find an optimal distribu-

tion of topical random variables, so that the joint probability
of the query-specific BN (Eq. 1) is maximized. Thus, as a
final step, we learn parameters for our initially unobserved
topical random variables, based on observed predicate vari-
ables. For computing these parameters, we first introduce
a set of topic parameters θvt for each topical random vari-
able Xv. θ = {θvt|v ∈ VQV , t ∈ T } denotes the set of
parameters for all topical variables. As before, Xw, Xc and
Xr denote string, class and relation predicate variables in
a query-specific BN. Then, we find parameters θ for topic
variables, which maximize the log-likelihood of Eq. 1. The
optimization problem is:

arg max
θ

`(θ : Xw,Xc,Xr)

where `(θ : Xw,Xc,Xr) is the log-likelihood defined as:

`(θ : Xw,Xc,Xr) = P (Xw,Xc,Xr|θ,β,ω,λ)

=
∑
v

∑
Xw∈Xvw

logP (Xw|Xv,β)

+
∑
v

∑
Xc∈Xvc

logP (Xc|Xv,λ)

+
∑
v,y

∑
Xr∈Xv,yr

logP (Xr|Xv, Xy,ω)

where Xv
w and Xv

w is the set of all string and class random
variables with a parent Xv. Xv,y

r is the set of all relation
random variables with parents Xv and Xy. We use gra-
dient ascent optimization to learn the parameters. First,
we parametrize each P (Xv = t) with θvt as P (Xv = t) =
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Figure 6: (a) Generic query-specific BN in plate notation. Notice, string predicate variables (Xw), class
predicates variables (Xc), and relation predicate variables (Xr) are only dependent on their topical random
variable Xv/Xy. (b) A query-specific BN for query in Fig. 2 with 3 topical variables (e.g., Xm), 2 class predicate
variables (e.g., Xmovie), 2 relation predicate variables (e.g., Xstarring) and 4 string predicate variables (e.g.,
Xholiday). Observed variables (dark Grey) are independent from each other and only dependent on hidden
topical random variables (light Grey) – adhering to the topical independence assumption (Def. 3).

eθvt∑
t′∈T e

θ
vt′

to obtain a proper probability distribution over

the topics. Obtaining the gradient requires dealing with
the log of the sum over the topics of each topical variable.
Therefore, we make use of theorem [14]:

Theorem 3. Given a BN and D = {o[1], . . . ,o[M ]} as a
partially observed dataset. Further, let X be a random vari-
able in that BN, and let Pa(X) denote its parents. Then:

∂`(θ : D)

∂P (x|pa)
=

1

P (x|pa)

M∑
m=1

P (x,pa|o[m],θ),

which provides the form of the gradient needed. Now, the
gradient of the log-likelihood w.r.t. parameter θvt is:

∂`(θ : Xw,Xc,Xr)

∂θvt
=
∂`(θ : Xw,Xc,Xr)

∂P (Xv = t)

∂P (Xv = t)

∂θvt
.

The first part of the gradient is obtained via Theorem 3:

∂`(θ : Xw,Xc,Xr)

∂P (Xv = t)
=

1

P (Xv = t)

 ∑
Xw∈Xvw

P (Xv = t|Xw,β)

+
∑

Xc∈Xvw

P (Xv = t|Xc,λ)

+
∑
y

∑
Xr∈Xv,yr

P (Xv = t|Xr, Xy,ω)


Using the Bayes rule we have:

∂`(θ : Xw,Xc,Xr)

∂P (Xv = t)
=∑

Xw∈Xvw

P (Xv = t)P (Xw|β, t)∑
t′ P (Xv = t′)P (Xw|β, t′)

+

∑
Xc∈Xvw

P (Xv = t)P (Xc|λ, t)∑
t′ P (Xv = t′)P (Xc|λ, t′)

+

∑
y

∑
Xr∈Xv,yr

P (Xv = t)
∑
t′ P (Xr|Xy,ω, t′)∑

t′′ P (Xv = t′′)
∑
t′′′ P (Xr|Xy,ω, t′′′)

Finally, the second part of the gradient is given by:

∂P (Xv = t)

∂θtv
=
eθtv

∑
t′−t e

θt′v

(
∑
t′ e

θt′v )2

4.2.4 Estimation Complexity
Finally, we give a complexity bound for query probability

estimation (Eq. 1).

Theorem 4 (Time Complexity of P(Q)). Given K topics
and a query Q, the time for computing P(Q) is ∈ O(ψ · |Q| ·
K), with ψ as number of iterations needed for optimization.

Proof. Complexity for P(Q) is comprised of (1) estimation
time for the joint probability of Q’s query-specific BN, and
(2) time necessary for learning optimal topic distributions.
Given topic distributions for each Xv, the former step re-
quires only a simple summing out of the variables Xv. Thus,
its time is ∈ O(|Q| ·K), with |Q| and K as number of query
predicates and topics, respectively. For the latter step, let
an optimization algorithm require ψ iterations to reach an
optimum. Note, ψ is a constant only driven by the error
threshold of the optimization problem, thus, independent
of |Q|, K or synopsis size S. For each such iteration we
require an update of variables Xw, Xc, and Xr, as well as
topic model parameter θ. Note, while the number of random
variables Xi, i ∈ {w, c, r}, is bounded by |Q|, θ is bound by
K. Thus, we update O(K · |Q|) values – each in constant
time, O(1). Overall, the second task requires a complexity
of O(ψ ·K · |Q|). Therefore, step (1) and (2) combined take
O(ψ ·K · |Q|) time �

Note, ψ is determined by the specific algorithm used for
optimization. We use a gradient ascent approach, which is
known to have a tight bound of iterations ∈ O(ε2), with an
arbitrarily small ε > 0 [5]. Overall, complexity for P(Q) is
independent of the synopsis size S (Req.5).

5. EVALUATION
We present experiment results to analyze the effective-

ness (Sect. 5.1, Req.1+3) and the efficiency (Sect. 5.2,
Req.2+4+5) of selectivity estimation using TopGuess. By
means of the former, we wish to compare the quality of es-
timates. Previous work has shown that estimation quality
is of great importance for many use cases, most notably for
query optimization [21]. The latter aspect targets the ap-
plicability of our solution towards real-world systems.

Building up on our recent work [22], we compare TopGuess
with two different kinds of baselines: (1) approaches that
assume independence among string predicates as well as be-
tween them and structured query predicates (ind). (2) Our
previous system [22], i.e., a PRM-based approach with in-
tegrated string synopses for dealing with string predicates
(bn). Our results are promising: as average over both
datasets a gain of 20% w.r.t. the best baseline could be
achieved by TopGuess. In terms of efficiency, TopGuess re-
sulted in similar performances as the baselines. However, we
noted that its efficiency was much less influenced by query
respectively synopsis size than ind or bn approaches.

Systems. As baselines, we consider two categories of ap-
proaches. (1) For selectivity estimation, string predicates
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are combined with structured predicates via an indepen-
dence assumption (ind). More precisely, the selectivity of
string and structured predicates is estimated using a string
synopsis and histograms, respectively. Obtained probabili-
ties were combined in a greedy fashion assuming indepen-
dence. (2) Multiple query predicates are combined relying
on a BN data synopsis (bn). That is, we reuse our work on
PRM approaches for selectivity estimation on text-rich data
graphs [22]. Note, Ex. 3 depicts an examplary PRM. The bn
baseline handles the problem of multiple value assignments
to a single random variable via aggregation functions. We
use a stochastic mode aggregation, which essentially uses all
assignments, but weights each one with its frequency [20].
As string synopsis function ν we exploited work on n-gram
string synopses [23]. A synopsis based on n-grams reduces
the common representation space by using a predefined deci-
sion criterion to dictate which n-grams to in-/exclude. Note,
we refer to discarded n-grams as “missing”. That is, a syn-
opsis represents a subset of all possible n-grams occurring
in the data graph. A simplistic strategy is to choose ran-
dom n-gram samples from the data. Another approach is
to construct a top-k n-gram synopsis. For this, n-grams are
extracted from the data graph together with their counts.
Then, the k most frequent n-grams are included in the rep-
resentation space. Further, a stratified bloom filter synopsis
has been proposed [23], which uses bloom filters as a heuris-
tic map that projects n-grams to their counts. We use these
three types of n-grams synopses in our experiments. The
probability for “missing” n-grams cannot be estimated with
a probabilistic framework, as such strings are not included
in a sample space. To deal with this case, a string predicate
featuring a missing n-gram is assumed to be independent
from the remainder of the query. Then, its probability can
be estimated based on various heuristics. We employ the
leftbackoff strategy, which finds the longest known n-gram
that is the pre- or postfix of the missing keyword and esti-
mates its probability based on the statistics for that pre- and
postfix [23]. Combining string synopses with our two cate-
gories of baselines results in six different systems: indsample,
indtop-k and indsbf rely on the independence assumption,
bnsample, bntop-k and bnsbf represent BN approaches.

Data. We employ two real-world RDF datasets for
evaluation: DBLP5 comprising computer science bibliogra-
phies and IMDB [8] featuring movie information. For both
datasets, we could extract large vocabularies containing
25, 540, 172 and 7, 841, 347 1-grams from DBLP and IMDB,
respectively. See also Table 1 for an overview. Notice, while
IMDB as well as DBLP both feature text-rich attributes like
name, label or info, they differ in their overall amount of
text: IMDB comprises large text values, e.g., associated via
info, DBLP, however, holds much less unstructured data.
On average an attribute in DBLP contains only 2.6 1-grams
with a variance of 2.1, in contrast to IMDB with 5.1 1-
grams, given a variance 95.6. Further, also the attribute
with the most text associated is larger, having 28.3 1-grams,
for IMDB, than for DBLP with 8.1 1-grams (cf. Table 1).
Our hypothesis is that these differences will be reflected in
different degrees of correlations between text and structured
data. Moreover, we are interested in comparing performance
of bn and TopGuess w.r.t. varying amounts of texts. In par-
ticular, given TopGuess using a topic model data synopsis,
we wish to analyze its effectiveness in such settings.

5http://knoesis.wright.edu/library/ontologies/
swetodblp/

Table 1: Dataset Statistics
IMDB DBLP

# Triples 7, 310, 190 11, 014, 618
# Resources 1, 673, 097 2, 395, 467
# Total 1-grams 7, 841, 347 25, 540, 172
# Avg. 1-grams Mean 5.1 2.6
# Avg. 1-grams Variance 95.6 2.1
Max. attr. # avg. 1-grams 28.3 8.1
# Attributes 10 20
# Relations 8 18
# Classes 6 18

Table 2: Storage Space (MByte)
IMDB DBLP

Data
Disk 1600 5800

Data Synopsis
bn & ind TopGuess bn & ind TopGuess

Mem. {2, 4, 20, 40} ≤ 0.1 {2, 4, 20, 40} ≤ 0.1
Disk 0 281.7 0 229.9

Queries. For our query load we reuse existing work on
keyword search evaluation [16, 8]. We form queries adher-
ing to our model by constructing graph patterns, comprising
string, class, and relation predicates that correspond to the
given query keywords and their structured results. We gen-
erated 54 DBLP queries based on “seed” queries reported
in [16]. That is, for each query in [16], we replaced its key-
word constants with variables, evaluated such seed queries,
and generated new queries by replacing a keyword variable
with one of its randomly selected bindings. Additionally, 46
queries were constructed for IMDB based on queries taken
from [8]. We omitted 4 queries in [8], as they could not
be translated to conjunctive queries. Overall, our load fea-
tures queries with [2, 11] predicates in total: [0, 4] relation,
[1, 7] string, and [1, 4] class predicates. As our query model
allows solely single keywords to be used, we treat string
predicates with phrases as several predicates. During our
analysis, we use the number of predicates as an indicator
for query complexity. We expect queries with a larger num-
ber of predicates to be more “difficult” in terms effective-
ness and efficiency. Further, we expect correlations between
query predicates to have a strong influence on system effec-
tiveness. Note, we observe during structure learning of the
bn baseline systems different degrees of correlations in DBLP
and IMDB. More precisely, we noticed that there are more
correlated predicates in IMDB, e.g., name (class Actor) and
title (class Movie), than in DBLP. Query statistics and a
complete query listing are given in the appendix (Sect. 9).

Synopsis Size. Using the same configurations as in [22],
we employ different synopsis sizes for our baselines ind and
bn. The factor driving the overall synopses size for ind
and bn is their string synopsis size, i.e., the size of their
common representation space |C|. This effect is due to |C|
determining the size of the (conditional) probability dis-
tribution in ind∗ (bn∗). Note, CPDs are very costly in
terms of space, while other statistics, e.g., the BN struc-
ture, are negligible. We varied the number of 1-grams cap-
tured by the top-k and sample synopsis: #1-grams per at-
tribute ∈ {0.5K, 1K, 5K, 10K}. For the sbf string synopsis,
we captured up to {2.5K, 5K, 25K, 50K} of the most fre-
quent 1-grams for each attribute and varied the bloom fil-
ter sizes, resulting in similar memory requirements. Note,
the sbf systems featured all 1-grams occurring in our query
load. Except for TopGuess, all systems load the synop-
sis into main memory. To be more precise, only bn∗ ap-
proaches require the synopsis to be in-memory for inferenc-
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ing. For comparison, however, we also load statistics for
ind∗ approaches. As shown in Table 2, different string syn-
opses (sizes) translate to approaches consuming {2, 4, 20, 40}
MByte of memory. As opposed to bn∗ and ind∗ approaches,
TopGuess keeps a large topic model at disk, and constructs
a small, query-specific BN in memory at runtime (memory
consumption ≤ 100 KBytes on average). Thus, all query-
independent statistics remain on the hard-disk. The large
disk size (∈ [220−280] MByte) of TopGuess comes from the
use of all 1-grams available in the data. Such a fine-grained
model enables very accurate estimations, as we will show
in the following. However, it still preforms comparable in
terms of efficiency. Table 2 shows an overview of the main
memory and disk usage required by the different systems.

Implementation and Offline Learning. For baselines
bn∗ and ind∗ [22], we started by constructing string syn-
opses. Each synopsis, including sbf-based synopses, was
learned in ≤ 1h. As bn∗ and ind∗ use the same probabil-
ity distributions (BN parameters), parameters were trained
together. For bn∗ we use a PRM construction as done in
[22]. That is, we capture un-/structured data elements us-
ing random variables and learn correlations between them,
thereby forming a network structure. For efficient selectivity
estimation the network is reduced to a “lightweight” model,
capturing solely the most important correlations. Then, we
calculate the model parameters (CPDs) based on frequency
counts. For ind∗ systems, we do not need the model struc-
ture and merely keep the marginalized parameters. Struc-
ture and parameter learning combined took in the worst
case up to three hours. The structure and the parameters
are stored in a key-value store outside the database system
– both were loaded at start-up. Depending on the synop-
sis size, loading the model into memory took up to 3s. The
inferencing needed by the bn∗ systems for selectivity estima-
tion is done using a Junction tree algorithm [22]. TopGuess
exploits a TRM for which we use the learning procedure
from [3, Ch. 4]. For TRM learning, a reasonable sample of
the dataset is sufficient, instead of learning over the whole
dataset. We sampled up to 30K entities per class from each
dataset, to ensure that all classes and relations are equally
represented. The number of topics in a TRM is an impor-
tant factor, determining which correlations are discovered
from the underlying dataset. That is, a “sufficient” number
of topics is needed to correlate the textual information to a
heterogeneous set of classes and predicates. Note, a TRM
is a supervised topic model which handles the sparseness of
these topics correlated to structure information. In other
words, some topics can be correlated with many structure
elements, whereas others are not. We experimented with a
varying number of topics ∈ [10 − 100] and found that, for
datasets employed in our evaluation, 50 topics are enough
to capture all important correlations. Notice, a TRM may
easily be extended to determine the number of topics based
on the data in an unsupervised fashion, by using a non-
parametric Bayesian model [11]. The TRM learning took
up to 10 hours, and the resulting models were stored in an
inverted index on hard disk (cf. Table 2). At query time, we
employed a greedy gradient ascent algorithm for estimation
of the probability distributions of hidden topic variables. To
avoid local maxima, we used up to 10 random restarts.

We implemented all systems and algorithms using Java
6. Experiments were run on a Linux server with two Intel
Xeon 5140 CPUs (each with 2 cores at 2.33GHz), 48 GB
RAM (with 16 GB assigned to the JVM), and a RAID10
with IBM SAS 148GB 10k rpm disks. Before each query

execution, all OS caches were cleared. The presented values
are averages collected over five runs.

5.1 Selectivity Estimation Effectiveness
We employ the multiplicative error metric (me) [10] for

measuring estimation effectiveness.

me(Q) =
max(sel(Q), sel(Q))

min(sel(Q), sel(Q))

with sel(Q) and sel(Q) as exact and approximated selec-
tivity for Q, respectively. Intuitively, me gives the factor to
which sel(Q) under- or overestimates sel(Q).

Overall Results. Fig. 7-a, -b and -e, -f show the mul-
tiplicative error vs. synopsis size for DBLP and IMDB,
respectively. As expected, baseline system effectiveness
strongly depends on the (string) synopsis size. That is, for
small synopses ≤ 20 MByte, ind∗ and bn∗ performed poorly.
We explain this with the information loss, due to omitted
1-grams in the common representation space (Req.3). That
is, the employed string synopsis traded space for accuracy,
and heuristics had to used for probability estimation. In
fact, in case of bn∗, the information loss is aggravated as
missed keyword can not be added to an unrolled BN, in-
stead one must assume independence between such a string
predicate and the remainder of the query [22]. TopGuess,
on the other hand, did not suffer from this issue, as all
query-independent statistics could be stored at disk, and
solely the query-specific BN was loaded at runtime. Thus,
TopGuess could exploit very fine-grained probabilities, and
omitted any kind of heuristics. We observed that, on aver-
age, TopGuess could reduce the error of the best perform-
ing bnsbf by 20%, and the best system using the indepen-
dence assumption, indsbf, by 93%. As in previous work
[22], different string synopses in ind∗ and bn∗, yielded dif-
ferent estimation effectiveness results. Sampling-based sys-
tems were outperformed by systems using top-k n-grams
synopses, which in turn, performed worse than sbf-based
approaches. These drastic misestimates come from query
keywords being “missed” in the string synopsis. Thus, we
can see estimation quality being strongly influenced by fine-
grained, accurate string probabilities. We argue that such
results clearly show the need for a data synopsis that is con-
ceptually different from current approaches – allowing for
effective on-disk storage of large statistics (Req.2).

Synopsis Size. Fig. 7-a/-e shows estimation errors w.r.t.
synopsis size and memory consumption, respectively. One
can see that, compared to other approaches, TopGuess mem-
ory usage is a small constant ≤ 0.1 MByte. This extremely
compact BN can be explained with TopGuess only using ran-
dom variables that either are binary or have a sample space
bound by the number of topics, K. Note, both such fac-
tors are constant in the overall data synopsis size. Further,
we noted the performances of the sbf-based approaches to
be fairly stable, while top-k and especially sample-based n-
gram systems were strongly affected by the (string) synopsis
size. That is, both performed poorly given small synopsis
size (≤ 4 MByte), with increasing synopses, however, the
performances of the top-k and sbf-based approaches con-
verge. Overall, while sbf-based approaches proofed to be an
effective strategy, they also suffer from limit (in-memory)
space, and thus must discard words in the vocabulary. In-
stead, TopGuess resolves the issue of missing n-grams com-
pletely: the query-independent TRM stored on disk cap-
tures statistics for all n-grams. At runtime, TopGuess re-
trieves the necessary n-grams for a particular query, and
constructs its query-specific BN (Req.3).
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Figure 7: Evaluation Results for DBLP and IMDB.

Correlations and Degree of Text Data. Following
our initial hypothesis, we found performances for IMDB and
DBLP to vary. That is, given IMDB TopGuess and bnsbf

could reduce errors of the indsbf approach by 99% and 93%,
respectively. On the other hand, for DBLP improvements
were much smaller. These differences are due to the varying
degree of correlations in our two datasets. While learning
the BNs for bn, we observed significantly less correlations in
DBLP than in IMDB. More importantly, many of the DBLP
queries include string predicates such as name and label,
for which we could not observe any correlations. For such
queries, the probabilities obtained by bn∗ were close to the
ones computed by ind∗. At the same time, we noted that
the degree of correlation between un-/structured data, is
greatly influenced by the number/size of text values. Essen-
tially, we noted that given attributes with more text values,
more correlations among them respectively structured data
elements tend to occur. For instance, given queries involv-
ing attribute name in DBLP, with only 2.4 1-grams (variance:
2.1 1-grams, cf. Table 1), with measured over 30% less corre-
lations than for queries on IMDB with attribute info. These
effects confirm our hypothesis that the degree of text influ-
ences correlations, which in turn drive system effectiveness.
However, compared to bn∗, TopGuess relies on a more fine-
grained BN: while bn∗ exploits correlations observed in the
data graph before query time, TopGuess utilizes all query
predicate correlations via a query-specific BN at runtime.
Thus, a TopGuess BN is able to capture even “minor” cor-
relations, which may have been discarded by bn∗ in favor of
a compact structure. Note that previous works on PRMs
for selectivity estimation [21, 22], aim at a “lightweight”
model structure, i.e., dependency informations is traded for
efficient storage and inferencing. Such trade-offs, however,
are not necessary for TopGuess. Thus, even for the less cor-
related dataset DBLP, TopGuess outperforms the baseline
indsbf and bnsbf by 20% and 15%. We argue that this result
also confirms the general applicability of TopGuess. Even for
“little” textual data, the TRM synopsis was able to capture
meaningful topics, leading to accurate probability estimates
for query-specific BNs (Req.1).

Query Size. In Fig. 7-b/-f we depict multiplicative error
(average over synopsis sizes) vs. number of query predicates.
As expected, estimation errors increase for all systems in the

number of query predicates. For our baselines, we explain
this behavior via: (1) given a higher number of predicates
chances of “missing” a keyword increase, and (2) when miss-
ing an n-grams, the error is propagated to the estimate for
the remainder of the query (which might have been fine oth-
erwise). However, while the TopGuess approach also led to
more misestimates for larger queries, the degree of this in-
crease was smaller. In particular, considering highly corre-
lated queries for IMDB with size ∈ [7− 11], we can observe
(Fig. 7 -f) TopGuess to perform much more stable than
bn∗ or ind∗. As observed in [22], we also noticed misesti-
mates of bn due to inaccurate stochastic value aggregation.
This effect led to ind∗ outperforming bn∗ for some queries.
TopGuess does not suffer from such a problem, because its
random variables are “predicate-specific”, i.e., we construct
one single random variable for each query predicate at run-
time. Overall, compared to bn∗ respectively ind∗, TopGuess
yielded the most accurate and stable performance.

5.2 Selectivity Estimation Efficiency
Let us analyze the estimation efficiency for varying syn-

opses sizes (Fig. 7-c/-g) and query complexities (Fig. 7-
d/-h). As TopGuess uses a query-specific model, its times
comprise model loading and construction as well as learn-
ing. For bn and ind, the reported times represent solely the
inference task, i.e., time for model construction and loading
have been omitted.

Overall Results. As noted in [22], we also observed
that for bn/ind not BN inferencing, but the string synopsis
was driving the performance. Intuitively, the more n-gram
were missed, the “simpler” and the more efficient these sys-
tems became. However, such performance gains come at
the expense of estimation effectiveness – the fastest baseline
system relied on sample-based synopses. In fact, the very
same systems performed worst in terms of effectiveness.

Comparing the two systems with best effectiveness, i.e.,
TopGuess and bnsbf, TopGuess led to a better performance
by 29%. However, in comparison to top-k systems, TopGuess
resulted in a performance decrease of 28%. We explain these
performance drawbacks with the time-consuming disk I/O,
which was needed for loading the necessary statistics.

However, TopGuess performance results are still promis-
ing: (1) Its efficiency it is not driven by the overall synopsis
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size. That is, while bn and ind clearly outperform TopGuess,
given small synopses ≤ 4 MByte, TopGuess results are bet-
ter respectively comparable for synopses ≥ 20 MByte. We
expect such effects to be even more drastic for “very large”
bn (ind) synopses � 100 MByte. (2) As we will discuss be-
low, we also found that TopGuess performance was much less
driven by query size. Considering both aspects, TopGuess
guarantees a much more “stable” behavior (Req.5).

Synopsis Size. Fig. 7-c/-g shows selectivity estimation
time vs. synopsis size. For baseline systems we can see
a strong dependency between synopsis size and their run-
time behavior (Req.5 fails). While bn and ind reach high
efficiency for synopses ≤ 4 MByte, there performance de-
creases rapidly with synopses ≥ 20 MByte. Note, sbf-based
approaches, are an exception, as there computational costs
are determined by bloom filters and not their overall number
of 1-grams. TopGuess, does not suffer from this issue. As
our approach does not require any marginalization or infer-
encing, constructing a query-specific BN and computing its
joint probability is independent from the size of the TRM.

Query Size. We observe that for all systems estimation
times increase with query size (cf. Fig. 7-d/-h). However,
as TopGuess exploits an extremely compact query-specific
BN, we expect it’s performance to be much less influenced
by query size. To confirm this we compared the standard
deviation of the estimation time between TopGuess and bn∗
w.r.t. different sizes. The standard deviations was 82, 48
ms and 213, 48 ms for TopGuess and bn∗, respectively. The
low deviation for TopGuess indicates that the required I/O
and probability estimations times varied little w.r.t. query
size. For bn∗, however, its high variance suggests that the
performance is strongly affected.

6. RELATED WORK
For selectivity estimation on structured data, works ex-

ploit table-level data synopses, which capture attributes
within the same table (e.g., [17]). Other approaches focus on
schema-level synopses, which are not restricted to a single
table, but capture attributes and relations: graph synopses
[19], join samples [1], and graphical models [12, 21, 22].

In contrast to TopGuess, such approaches do not summa-
rize correlations in unstructured data. In fact, in our recent
work [22] we only loosely integrated graphical models and
string synopses. However, [22] does not provide a uniform
framework, thus, does not provide effective means to cap-
ture correlations between un-/structured data. Further, it
suffers from the same problems as previous PRM-based so-
lution [12, 21]. We discussed their drawbacks in depth in
our framework, Sect. 3, as well as evaluation, Sect. 5, part.

For estimating selectivities of string predicates, on the
other hand, language models and other machine learn-
ing/NPL techniques have been utilized [7, 13, 15, 23]. Here,
some works aim at substring respectively fuzzy string match-
ing [7, 15], while other approaches target “extraction” oper-
ators, e.g., dictionary-based operators [23].

However, these approaches do not consider dependencies
among various string predicates and/or with query predi-
cates for structured data. In contrast, we present a holistic
approach for hybrid queries.

7. CONCLUSION
We aim at a holistic system for selectivity estimation of

hybrid queries. For this, we presented a novel approach,
TopGuess, which enables effective and efficient estimations
over RDF data. We conducted experiments on real-world

datasets, which featured two kinds of baselines. (1) Ap-
proaches using independence assumptions, ind, and (2) so-
lutions building up on PRM approaches, bn. Our results
suggest that correlations, if present in the data, drive the
selectivity estimation effectiveness. In particular, in the
skewed IMDB dataset we observed bn baselines to outper-
form the ind approaches, by 12% on average. TopGuess led
to even more accurate estimates and allowed an additional
gain of 20% over the best bn system. Considering efficiency
aspects, TopGuess performed comparable to the baselines.
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9. APPENDIX
Below, we present statistics as well as a complete listing of

queries used during our experiments. Note, queries for the
DBLP dataset are based on [16], while IMDB queries are
taken from [8]. All queries are given in RDF N36 notation.

Table 3: Query Statistics
Predicates: #Relation #String

0 1 [2, 4] [1, 2] 3 [4, 7]
# Queries 33 44 23 28 35 26
Predicates: #Class #Total

1 2 [3, 4] [2, 3] [4, 6] [7, 11]
# Queries 49 30 21 28 31 41

Listing 1: Queries for DBLP [16]

# @pr e f i x dc :
# http :// pur l . org /dc/ e lements /1.1/> .
# @p r e f i x f o a f :
# <http :// xmlns . com/ f o a f /0.1/> .
# @p r e f i x rd f :
# <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#> .
# @p r e f i x r d f s :
# <http ://www.w3 . org /2000/01/ rdf−schema#> .
# @p r e f i x dblp :
# <http :// l s d i s . c s . uga . edu/ p r o j e c t s / semdis /opus#> .

# q1
?x rd f s : l a b e l ” c l i q u e ” .
?x dblp : l a s t mod i f i e d da t e ”2002−12−09” .
?x rd f : type dblp : A r t i c l e i n P r o c e e d i n g s .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ” n ikos ” .

# q2
?y rd f : type f o a f : Person .
?y f o a f : name ” n ikos ” .
?y f o a f : name ” zotos ” .

# q3
?x rd f s : l a b e l ” c on s t r a i n t ” .

6http://www.w3.org/TeamSubmission/n3/

?x dblp : l a s t mod i f i e d da t e ”2005−02−25” .
?x rd f : type dblp : A r t i c l e i n P r o c e e d i n g s .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”chuang” .

# q4
?x rd f s : l a b e l ”mining” .
?x r d f s : l a b e l ” c l u s t e r i n g ” .
?x dblp : year ”2005” .
?x rd f : type dblp : A r t i c l e .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ” n ikos ” .

# q5
?x rd f s : l a b e l ” s p a t i a l ” .
?x dblp : l a s t mod i f i e d da t e ”2006−03−31” .
?x rd f : type dblp : A r t i c l e i n P r o c e e d i n g s .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ” pa t e l ” .

# q6
?x rd f : type dblp : A r t i c l e .
?x r d f s : l a b e l ”middleware” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”zhang” .

# q7
?x rd f : type dblp : A r t i c l e i n P r o c e e d i n g s .
?x r d f s : l a b e l ”middleware” .
?x r d f s : l a b e l ” optimal ” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ” ronald ” .

# q8
?x rd f : type dblp : A r t i c l e i n P r o c e e d i n g s .
?x r d f s : l a b e l ” p a r t i t i o n ” .
?x r d f s : l a b e l ” r e l a t i o n a l ” .
?x r d f s : l a b e l ”query” .

# q9
?x rd f : type dblp : A r t i c l e i n P r o c e e d i n g s .
?x r d f s : l a b e l ” p a r t i t i o n ” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ” pa t e l ” .

# q10
?x rd f : type dblp : Proceed ings .
?x r d f s : l a b e l ” r e c o gn i t i o n ” .
?x r d f s : l a b e l ” speech ” .
?x r d f s : l a b e l ” so f tware ” .
?x dc : pub l i s h e r ?p .

# q11
?x rd f : type dblp : Proceed ings .
?x r d f s : l a b e l ”data” .
?x r d f s : l a b e l ”mining” .
?x dc : pub l i s h e r <http ://www. sp r i n g e r . de/> .

# q12
?x rd f : type dblp : Proceed ings .
?x r d f s : l a b e l ” a u s t r a l i a ” .
?x r d f s : l a b e l ” stream” .
?x dc : pub l i s h e r <http ://www. sp r i n g e r . de/> .

# q13
?x dblp : year ”2002” .
?x rd f : type dblp : Proceed ings .
?x r d f s : l a b e l ” i n d u s t r i a l ” .
?x r d f s : l a b e l ” database ” .
?x dc : pub l i s h e r ?p .
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# q14
?x rd f : type dblp : A r t i c l e i n P r o c e e d i n g s .
?x dblp : l a s t mod i f i e d da t e ”2006−03−09” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ” j i gn e sh ” .

# q15
?x rd f : type dblp : A r t i c l e i n P r o c e e d i n g s .
?x r d f s : l a b e l ” a lgor i thm” .
?x r d f s : l a b e l ” incomplete ” .
?x r d f s : l a b e l ” search ” .

# q16
?x dblp : journal name ”SIGMOD” .
?x rd f : type dblp : A r t i c l e .
?x r d f s : l a b e l ”web” .
?x r d f s : l a b e l ” search ” .

# q17
?x rd f : type dblp : A r t i c l e i n P r o c e e d i n g s .
?x r d f s : l a b e l ” s emi s t ruc tured ” .
?x r d f s : l a b e l ” search ” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”goldman” .

# q18
?x rd f : type dblp : A r t i c l e i n P r o c e e d i n g s .
?x r d f s : l a b e l ”query” .
?x r d f s : l a b e l ” co s t ” .
?x r d f s : l a b e l ” opt imiza t i on ” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ” arvind ” .

# q19
?x dblp : year ”2007” .
?x r d f s : l a b e l ” so f tware ” .
?x r d f s : l a b e l ” time” .
?x rd f : type dblp : A r t i c l e .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”zhu” .

# q20
?y rd f : type f o a f : Person .
?y f o a f : name ”zhu” .
?y f o a f : name ”yuntao” .

# q21
?x dblp : year ”2003” .
?x r d f s : l a b e l ”data” .
?x r d f s : l a b e l ” content ” .
?x rd f : type dblp : A r t i c l e i n P r o c e e d i n g s .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ” n ikos ” .

# q22
?x rd f s : l a b e l ” s p a t i a l ” .
?x rd f : type dblp : A r t i c l e i n P r o c e e d i n g s .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ” j i gn e sh ” .

# q23
?x rd f s : l a b e l ” a lgor i thms ” .
?x r d f s : l a b e l ” p a r a l l e l ” .
?x r d f s : l a b e l ” s p a t i a l ” .
?x rd f : type dblp : A r t i c l e i n P r o c e e d i n g s .
?x dblp : author ?y .
?x dc : r e l a t i o n ” conf ” .
?y rd f : type f o a f : Person .
?y f o a f : name ” pa t e l ” .

# q24
?x rd f s : l a b e l ” implementation ” .
?x r d f s : l a b e l ” eva lua t i on ” .
?x rd f : type dblp : A r t i c l e i n P r o c e e d i n g s .
?x dblp : l a s t mod i f i e d da t e ”2006−03−31” .
?x dblp : c i t e s ? c .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ” pa t e l ” .

# q25
?x rd f s : l a b e l ” opt imiza t i on ” .
?x r d f s : l a b e l ”query” .
?x rd f : type dblp : A r t i c l e i n P r o c e e d i n g s .
?x dblp : author ?y .
?x dblp : year ”2003” .
?y rd f : type f o a f : Person .
?y f o a f : name ?n .

# q26
?x rd f s : l a b e l ”xml” .
?x r d f s : l a b e l ” t o o l ” .
?x rd f : type dblp : A r t i c l e i n P r o c e e d i n g s .
?x dblp : year ”2004” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ” pa t e l ” .

# q27
?x rd f : type dblp : A r t i c l e i n P r o c e e d i n g s .
?x r d f s : l a b e l ” a r c h i t e c t u r e ” .
?x r d f s : l a b e l ”web” .
?x dblp : l a s t mod i f i e d da t e ”2005−09−05” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”wu” .

# q28
?x rd f : type dblp : A r t i c l e i n P r o c e e d i n g s .
?x r d f s : l a b e l ” language ” .
?x r d f s : l a b e l ” so f tware ” .
?x r d f s : l a b e l ” system” .
?x dblp : year ”2001” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ” ro land ” .

# q29
?x rd f : type dblp : A r t i c l e i n P r o c e e d i n g s .
?x r d f s : l a b e l ”middleware” .
?x dblp : l a s t mod i f i e d da t e ”2006−01−17” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ” sihvonen ” .

# q30
?x rd f : type dblp : A r t i c l e i n P r o c e e d i n g s .
?x r d f s : l a b e l ”middleware” .
?x r d f s : l a b e l ” v i r t u a l ” .
?x dblp : year ”2001” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”kwang” .

# q31
?x rd f : type dblp : A r t i c l e .
?x r d f s : l a b e l ” java ” .
?x r d f s : l a b e l ” code” .
?x r d f s : l a b e l ”program” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ” ro land ” .

# q32
?x rd f : type dblp : A r t i c l e .
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?x r d f s : l a b e l ” s i g n a l ” .
?x r d f s : l a b e l ” space ” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”zheng” .

# q33
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ” f a g i n ” .
?y f o a f : name ” ro land ” .

# q34
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ”zheng” .
?y f o a f : name ” qui ” .

# q35
?x rd f : type dblp : A r t i c l e i n P r o c e e d i n g s .
?x r d f s : l a b e l ” p ro c e s s i ng ” .
?x r d f s : l a b e l ”query” .

# q36
?x rd f : type dblp : A r t i c l e i n P r o c e e d i n g s .
?x r d f s : l a b e l ”xml” .
?x r d f s : l a b e l ” p ro c e s s i ng ” .

# q37
?x rd f : type dblp : A r t i c l e i n P r o c e e d i n g s .
?x r d f s : l a b e l ” b i o l o g i c a l ” .
?x r d f s : l a b e l ” sequence ” .
?x dblp : l a s t mod i f i e d da t e ”2007−08−21” .
?x dblp : author ?y .
?y rd f : type f o a f : Person .
?y f o a f : name ” j i gn e sh ” .

# q38
?x rd f : type dblp : Book .
?x r d f s : l a b e l ” d e c i s i o n ” .
?x r d f s : l a b e l ” i n t e l l i g e n t ” .
?x r d f s : l a b e l ”making” .
?x dc : pub l i s h e r <http ://www. sp r i n g e r . de/> .

# q39
?x rd f : type dblp : Proceed ings .
?x r d f s : l a b e l ” databases ” .
?x r d f s : l a b e l ” b i o l o g i c a l ” .
?x dc : pub l i s h e r <http ://www. sp r i n g e r . de/> .

# q40
?x rd f : type dblp : Book .
?x r d f s : l a b e l ”mining” .
?x r d f s : l a b e l ”data” .

# q41
?x rd f : type dblp : Book .
?x r d f s : l a b e l ”mining” .
?x r d f s : l a b e l ”data” .
?x dc : pub l i s h e r <http ://www. sp r i n g e r . de/> .
?x dc : r e l a t i o n ” t r i e r . de” .
?x dc : r e l a t i o n ”books” .

# q42
?x rd f : type dblp : Book .
?x r d f s : l a b e l ” i n t e l l i g e n c e ” .
?x r d f s : l a b e l ” computat ional ” .
?x dc : pub l i s h e r <http ://www. sp r i n g e r . de/> .
?x dc : r e l a t i o n ” t r i e r . de” .
?x dblp : year ”2007” .

# q43
?x rd f : type dblp : Book .
?x r d f s : l a b e l ” b i o l o g i c a l l y ” .
?x r d f s : l a b e l ” i n s p i r e d ” .
?x r d f s : l a b e l ”methods” .

# q44
?x rd f : type dblp : Book .
?x r d f s : l a b e l ”networks ” .
?x r d f s : l a b e l ” neura l ” .

# q45
?x rd f : type dblp : Book .
?x r d f s : l a b e l ” l e a rn i ng ” .
?x r d f s : l a b e l ”machine” .
?x dc : pub l i s h e r <http ://www. sp r i n g e r . de/> .

# q46
?x rd f : type dblp : Book .
?x r d f s : l a b e l ” so f tware ” .
?x r d f s : l a b e l ” system” .
?x dc : pub l i s h e r <http ://www. sp r i n g e r . de/> .

# q47
?x rd f : type dblp : Book .
?x r d f s : l a b e l ” a r c h i t e c t u r e ” .
?x r d f s : l a b e l ”computer” .

# q48
?x rd f : type dblp : Book .
?x r d f s : l a b e l ”web” .
?x dblp : year ”2006” .
?x dc : pub l i s h e r ?p .
?x dblp : e d i t o r ? e .
? e f o a f : name ”kandel ” .
? e f o a f : name ”abraham” .

# q49
?x rd f : type dblp : Book .
?x r d f s : l a b e l ” t h e o r e t i c a l ” .
?x r d f s : l a b e l ” s c i e n c e ” .
?x dc : pub l i s h e r <http ://www. e l s e v i e r . n l/> .

# q50
?x rd f : type dblp : Book Chapter .
?x r d f s : l a b e l ” search ” .
?x r d f s : l a b e l ” semantic ” .

# q51
?x rd f : type dblp : A r t i c l e .
?x r d f s : l a b e l ” search ” .
?x r d f s : l a b e l ” concept ” .
?x r d f s : l a b e l ”based” .

# q52
?x dblp : journal name ”sigmod” .
?x rd f : type dblp : A r t i c l e .
?x r d f s : l a b e l ”model” .
?x r d f s : l a b e l ” in fo rmat ion ” .

# q53
?x dblp : journal name ”sigmod” .
?x rd f : type dblp : A r t i c l e .
?x r d f s : l a b e l ”dynamic” .
?x r d f s : l a b e l ”networks ” .

# q54
?x rd f : type dblp : A r t i c l e i n P r o c e e d i n g s .
?x r d f s : l a b e l ” s t o rage ” .
?x r d f s : l a b e l ” adapt ive ” .
?x dblp : author ?y .
?x dblp : year ”2003” .
?y rd f : type f o a f : Person .
?y f o a f : name ” j i gn e sh ” .

Listing 2: Queries for IMDB [8]

# @pr e f i x imdb :
# <http :// imdb/ p r ed i c a t e/> .

15



# @pr e f i x imdb c la s s :
# <http :// imdb/ c l a s s /> .
# @p r e f i x rd f :
# <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#> .

# q1
?x rd f : type imdb c la s s : name .
?x imdb : name ”washington” .
?x imdb : name ” denze l ” .

# q2
?x rd f : type imdb c la s s : name .
?x imdb : name ”eastwood” .
?x imdb : name ” c l i n t ” .

# q3
?x rd f : type imdb c la s s : name .
?x imdb : name ” john” .
?x imdb : name ”wayne” .

# q4
?x rd f : type imdb c la s s : name .
?x imdb : name ” smith” .
?x imdb : name ” w i l l ” .

# q5
?x rd f : type imdb c la s s : name .
?x imdb : name ” fo rd ” .
?x imdb : name ” ha r r i s on ” .

# q6
?x rd f : type imdb c la s s : name .
?x imdb : name ” j u l i a ” .
?x imdb : name ” robe r t s ” .

# q7
?x rd f : type imdb c la s s : name .
?x imdb : name ”tom” .
?x imdb : name ”hanks” .

# q8
?x rd f : type imdb c la s s : name .
?x imdb : name ” johnny” .
?x imdb : name ”depp” .

# q9
?x rd f : type imdb c la s s : name .
?x imdb : name ” ange l i na ” .
?x imdb : name ” j o l i e ” .

# q10
?x rd f : type imdb c la s s : name .
?x imdb : name ” freeman” .
?x imdb : name ”morgan” .

# q11
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ”gone” .
?x imdb : t i t l e ”with” .
?x imdb : t i t l e ” the ” .
?x imdb : t i t l e ”wind” .

# q12
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ”wars” .
?x imdb : t i t l e ” s t a r ” .

# q13
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ” casab lanca ” .

# q14
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ” the ” .
?x imdb : t i t l e ” l o rd ” .
?x imdb : t i t l e ” r i n g s ” .

# q15
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ” the ” .
?x imdb : t i t l e ”sound” .
?x imdb : t i t l e ”music” .

# q16
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ”wizard ” .
?x imdb : t i t l e ”oz” .

# q17
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ” the ” .
?x imdb : t i t l e ”notebook” .

# q18
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ” f o r r e s t ” .
?x imdb : t i t l e ”gump” .

# q19
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ” the ” .
?x imdb : t i t l e ” p r i n c e s s ” .
?x imdb : t i t l e ” br ide ” .

# q20
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ” the ” .
?x imdb : t i t l e ” god father ” .

# q21
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : c a s t i n f o ? z .
? r rd f : type imdb c la s s : char name .
? r imdb : name ” f i n ch ” .
? r imdb : name ” a t t i c u s ” .
? z rd f : type imdb c la s s : c a s t i n f o .
? z imdb : r o l e ? r .

# q22
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : c a s t i n f o ? z .
? z rd f : type imdb c la s s : c a s t i n f o .
? r imdb : name ” ind iana ” .
? r imdb : name ” jone s ” .
? z imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .

# q23
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : c a s t i n f o ? z .
? z rd f : type imdb c la s s : c a s t i n f o .
? z imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .
? r imdb : name ” james” .
? r imdb : name ”bond” .

# q24
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : c a s t i n f o ? z .
? z rd f : type imdb c la s s : c a s t i n f o .
? z imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .
? r imdb : name ” r i c k ” .
? r imdb : name ” b l a i n e ” .

# q25
?x imdb : t i t l e ? t .
?x imdb : c a s t i n f o ? z .
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? z rd f : type imdb c la s s : c a s t i n f o .
? z imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .
? r imdb : name ” kaine ” .
? r imdb : name ” w i l l ” .

# q26
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : c a s t i n f o ? z .
? z rd f : type imdb c la s s : c a s t i n f o .
? z imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .
? r imdb : name ”dr . ” .
? r imdb : name ” hannibal ” .
? r imdb : name ” l e c t e r ” .

# q27
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : c a s t i n f o ? z .
? z rd f : type imdb c la s s : c a s t i n f o .
? z imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .
? r imdb : name ”norman” .
? r imdb : name ” bates ” .

# q28
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : c a s t i n f o ? z .
? z rd f : type imdb c la s s : c a s t i n f o .
? z imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .
? r imdb : name ”darth ” .
? r imdb : name ”vader ” .

# q29
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : c a s t i n f o ? z .
? z rd f : type imdb c la s s : c a s t i n f o .
? z imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .
? r imdb : name ” the ” .
? r imdb : name ”wicked” .
? r imdb : name ”witch ” .
? r imdb : name ” the ” .
? r imdb : name ”west ” .

# q30
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : c a s t i n f o ? z .
? z rd f : type imdb c la s s : c a s t i n f o .
? z imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .
? r imdb : name ”nurse ” .
? r imdb : name ” ratched ” .

# q31
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : mov i e in fo ? i .
? i rd f : type imdb c la s s : mov i e in fo .
? i imdb : i n f o ” f r ank l y ” .
? i imdb : i n f o ”dear ” .
? i imdb : i n f o ”don ’ t ” .
? i imdb : i n f o ” g ive ” .
? i imdb : i n f o ”damn” .

# q32
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : mov i e in fo ? i .
? i rd f : type imdb c la s s : mov i e in fo .

? i imdb : i n f o ” going ” .
? i imdb : i n f o ”make” .
? i imdb : i n f o ” o f f e r ” .
? i imdb : i n f o ”can ’ t ” .
? i imdb : i n f o ” r e f u s e ” .

# q33
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : mov i e in fo ? i .
? i rd f : type imdb c la s s : mov i e in fo .
? i imdb : i n f o ”understand” .
? i imdb : i n f o ” c l a s s ” .
? i imdb : i n f o ” contender ” .
? i imdb : i n f o ” coulda ” .
? i imdb : i n f o ”somebody” .
? i imdb : i n f o ” in s t ead ” .
? i imdb : i n f o ”bum” .

# q34
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : mov i e in fo ? i .
? i rd f : type imdb c la s s : mov i e in fo .
? i imdb : i n f o ” toto ” .
? i imdb : i n f o ” f e e l i n g ” .
? i imdb : i n f o ”not” .
? i imdb : i n f o ” kansas ” .
? i imdb : i n f o ”anymore” .

# q35
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : mov i e in fo ? i .
? i rd f : type imdb c la s s : mov i e in fo .
? i imdb : i n f o ”here ’ s ” .
? i imdb : i n f o ” l ook ing ” .
? i imdb : i n f o ” kid ” .

# q36
?x rd f : type imdb c la s s : t i t l e .
? c rd f : type imdb c la s s : c a s t i n f o .
?x imdb : c a s t i n f o ? c .
? c imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .
? r imdb : name ” skywalker ” .
? c imdb : person ?p .
?p rd f : type imdb c la s s : name .
?p imdb : name ” hami l l ” .

# q37
?x imdb : year ”2004” .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ? t .
?x imdb : c a s t i n f o ? c .
? c rd f : type imdb c la s s : c a s t i n f o .
? c imdb : person ?p .
?p rd f : type imdb c la s s : name .
?p imdb : name ”hanks” .

# q38 #
? r imdb : name ? rn .
? r rd f : type imdb c la s s : char name .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ” yours ” .
?x imdb : t i t l e ”mine” .
?x imdb : t i t l e ” ours ” .
?x imdb : c a s t i n f o ? c .
? c rd f : type imdb c la s s : c a s t i n f o .
? c imdb : r o l e ? r .
? c imdb : person ?p .
?p rd f : type imdb c la s s : name .
?p imdb : name ”henry” .
?p imdb : name ” fonda” .

# q39
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?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ” g l a d i a t o r ” .
?x imdb : c a s t i n f o ? c .
? c rd f : type imdb c la s s : c a s t i n f o .
? c imdb : r o l e ? r .
? r imdb : name ? rn .
? r rd f : type imdb c la s s : char name .
? c imdb : person ?p .
?p rd f : type imdb c la s s : name .
?p imdb : name ” r u s s e l l ” .
?p imdb : name ”crowe” .

# q40
?x rd f : type imdb c la s s : t i t l e .
?x imdb : t i t l e ” s t a r ” .
?x imdb : t i t l e ” t r ek ” .
?x imdb : c a s t i n f o ? c .
? r rd f : type imdb c la s s : char name .
? r imdb : name ? rn .
? c rd f : type imdb c la s s : c a s t i n f o .
? c imdb : r o l e ? r .
? c imdb : person ?p .
?p rd f : type imdb c la s s : name .
?p imdb : name ” sp in e r ” .
?p imdb : name ”brent ” .

# q41
?x imdb : year ”1951” .
?x imdb : t i t l e ? t .
?x rd f : type imdb c la s s : t i t l e .
?x imdb : c a s t i n f o ? c .
? c rd f : type imdb c la s s : c a s t i n f o .
? c imdb : person ?p .
?p rd f : type imdb c la s s : name .
?p imdb : name ”audrey” .
?p imdb : name ”hepburn” .

# q42
?p rd f : type imdb c la s s : name .
?p imdb : name ?n .
? c imdb : person ?p .
? c rd f : type imdb c la s s : c a s t i n f o .
? c imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .
? r imdb : name ” jacques ” .
? r imdb : name ” c louseau ” .

# q43
?p rd f : type imdb c la s s : name .
?p imdb : name ?n .
? c imdb : person ?p .
? c rd f : type imdb c la s s : c a s t i n f o .
? c imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .
? r imdb : name ” jack ” .
? r imdb : name ”ryan” .

# q44
?p rd f : type imdb c la s s : name .
?p imdb : name ” s t a l l o n e ” .
? c imdb : person ?p .
? c rd f : type imdb c la s s : c a s t i n f o .
? c imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .
? r imdb : name ” rocky” .

# q45
?p rd f : type imdb c la s s : name .
?p imdb : name ?n .
? c imdb : person ?p .
? c rd f : type imdb c la s s : c a s t i n f o .
? c imdb : r o l e ? r .
? r rd f : type imdb c la s s : char name .
? r imdb : name ” terminator ” .

# omitted q46 to q49

# q50
?a rd f : type imdb c la s s : t i t l e .
?a imdb : t i t l e ” l o s t ” .
?a imdb : t i t l e ” ark” .
?a imdb : c a s t i n f o ? ca .
? ca rd f : type imdb c la s s : c a s t i n f o .
? ca imdb : person ?p .
?p rd f : type imdb c la s s : name .
?p imdb : name ?n .
? c i rd f : type imdb c la s s : c a s t i n f o .
? c i imdb : person ?p .
? i rd f : type imdb c la s s : t i t l e .
? i imdb : c a s t i n f o ? c i .
? i imdb : t i t l e ” ind iana ” .
? i imdb : t i t l e ” j one s ” .
? i imdb : t i t l e ” l a s t ” .
? i imdb : t i t l e ” crusade ” .
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