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Abstract

The increasing amount of data on the Web bears potential for addressing complex

information needs more effectively. Instead of keyword search and browsing along

links between results, users can specify their needs in terms of complex queries and

obtain precise answers right away. However, browsing is also essential on the Web

of data as users might not always know a specific query language and more im-

portantly, might not know the data. Particularly in cases where the information

need is fuzzy, browsing is useful for exploring the data. Faceted search allows users

to browse along facets. However, work on faceted search so far has been focused

on search rather than browsing. In this paper, we propose a facet ranking scheme

that targets the browsing experience. When there are too many facets given, user

obtain a ranked list of facets, where the rank represents the facets’ browse-ability.

Furthermore, facets might be associated with a large amount of values. Also target-

ing browse-ability, we propose clustering mechanisms to decompose such facets into

more fine-grained sub-facets. By means of a task-based evaluation, we demonstrate

that the proposed solution enables more effective browsing, when compared to the

state of the art that is rather focused on search-ability.
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Section 1

Introduction

1.1 The User Information Need

1.1.1 Problem Definition

We live in a world, where information handling, i.e. acquiring, storing and accessing

information, has become a key factor in everyday as well as professional life. To put

in other words: we live in an information age. One indicator for this development is

the amount of data available and how quickly it has increased over the last decades.

As simple example, consider usage statistics of the World Wide Web (WWW); from

2000 to 2009 alone, usage grew around 380 percent. Nowadays, more than 1.7 billion

people are connected via WWW.1 Other examples include information, which has

recently been made accessible via the Linked Open Data2 (LOD) initiative. How-

ever, as the data available increased dramatically, ways of making this information

searchable and manageable, became more and more challenging.

With respect to the underlying structure of the data, one has to distinguish between

unstructured and structured information. For the latter case, depending on the data

syntax used, formal query languages provide an efficient and effective way to access

information. However, these languages not only demand users to know a given syn-

tax, in which they may articulate their needs, they also require them to have a very

specific information need in the first place. In particular, the latter constraint, how-

ever, is not always holding. For the sake of clarity, consider the following example:

1 See also http://www.internetworldstats.com, revised Nov. 2009.

2 See also http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData,

revised Dec. 2009.

http://www.internetworldstats.com
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
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. Example 1.1. Mary is new to computer science - she just started her studies

at a local college. However, she is eager to learn more about this vast research field

and decided to start by searching for prestigious computer science researchers and

work they have done. Unfortunately, she does not know, how to search within the

data-space and what prestigious in this context means. Due to the lack of specific

domain knowledge as well as information about her item of interest, she makes use

of heuristics. First of all, Mary decides that she is only interested in researchers that

have already become a professor. However, Mary quickly notices that this helps only

very little. Therefore, she continues to look for rather big and old schools. Chances

might be high, Mary thinks, that people there are doing good research work. Also, as

Mary continues her exploration, she observes that some people published very little

papers, while others seem to have an endless publication list. Thus, she constraints

her search to those scientists, who wrote at least a dozen papers. Still having a lot

of different people satisfying her specifications, Mary continuous her quest.

As illustrated in the example above, searching is not always easy and it may differ,

with respect to the actual information need as well as user knowledge concerning

an item of interest. According to [Mar06], we may distinguish three elementary

information needs, they range “[. . . ] from basic facts that guide short-term actions

[. . . ] to networks of related concepts that help us understand phenomena or execute

complex activities [. . . ] to complex networks of tacit and explicit knowledge that

accretes as expertise over a lifetime [. . . ]”. The corresponding search types are:

lookup, learning and investigation.

- Lookup Search

Lookup search is the most common activity. Here, users have a very specific

information need and are able to fully express it by means of query searching.

Discrete and well-structured objects are returned as a result (cf. [Mar06]).

Consider e.g. an Information Retrieval (IR) context, where search is often

solely lookup-based. Roughly speaking, this retrieval model consists of four

parts: (1) the document collection being the data-source to be searched, (2)

the documents in an abstract representation, (3) the user information need

formulated as query and (4) the actual user information need (cf. [WR09]).

See also figure 1 (p. 3). Notice, variants of this model are the most commonly

used search implementations, with regard to the WWW.
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- Learning Search

In contrast to lookup tasks, learning searches require multiple human-computer

interactions (HCI), each returning a set of objects that requires cognitive

processing and interpretation. Search tasks falling under this category are

e.g. acquisition of new knowledge or searching in social network systems (cf.

[Mar06]).

- Investigation Search

Investigation searches, like learning tasks, also involve multiple HCI and may

require a long period of time. Here, typical tasks are the support of planing

and forecasting or the discovery of faulty data. Note, however, investigation

searches are generally more concerned with recall than precision. It is therefore

not supported by most of todays web search engines (cf. [Mar06]).

Figure 1: Lookup-based Information Retrieval (based on [WR09]).

Note, the above defined search activities are not strictly separated. On the contrary,

they may be quite overlapping. E.g. learning activities often also require one or more

lookup searches and so on. Furthermore, note that information needs differ from

task to task. On the one hand, having very precise information about an item of

interest, users may apply a simple lookup search. On the other hand, given rather

fuzzy knowledge, with regard to an information need, they might be required to

explore the underlying data-source and thus use a system supporting learning or

investigation search (cf. [WR09]). Please see also figure 2 (p. 4).

1.1.2 Traditional IR Concepts: Browsing & Query Searching

There are two fundamental information retrieval paradigms, namely browsing and

query searching. According to [Zha08], browsing and query searching respectively,

are defined as follows:
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Figure 2: Search Types (based on [Mar06]).

+ Definition 1.1. Browsing

“Browsing refers to viewing, looking around, glancing over, and scanning information

in an information environment.”, cf. [Zha08].

+ Definition 1.2. Query Searching

“Query searching is a complex task which involves the articulation of a dynamic

information need into a logical group of relevant keywords.”, cf. [Zha08].

Obviously, with respect to their intended goals, these paradigms are quite different

from each other. Browsing “[. . . ] is an extremely important means to explore and

discover information. [. . . ]”, cf. [Zha08]. Query searching, on the other hand,

provides users with a list of best-matching documents, given an information need.

Problems in this context arise from the translation of a need to its query as well as

the mapping from a document to its representation (cf. [Zha08]). Please see also

figure 1 (p. 3).

Hereafter, in compliance with [Zha08], I will further outline the differences between

browsing and query searching.

(i) Relevance judgment

Query searching is based on an automated keyword matching strategy, map-

ping terms, describing a query, to terms describing documents contained in a

collection. Also, in this context, relevance judgment is achieved solely by the

systems themselves and is entirely based on a keyword level. However, when

applying browsing strategies, relevance judgment is done manually by users,

on a conceptual level (see [TC89, Zha08]).
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(ii) Continuity

Browsing is a continuous process. The entire search, from selecting a browsing

path, to context examination as well as decision making, is stepless and con-

trolled by users. Query searching, on the other hand, is a rather interrupted

process. After issuing a query, matching and relevance judgment is done auto-

matically and works as a black box. Users regain control of the process, when

results are being returned and have to be examined (cf. [Zha08]).

(iii) Time and effort costs

Browsing, in comparison to query searching, is a rather lengthy task. It might

be quite time consuming, since the actual browsing path is selected by users.

Each selection consists of multiple decisions, for which users have to pro-

cess context information, maybe correct browsing mistakes and recall previous

choices. When using a query searching mechanism, however, users solely ar-

ticulate their information needs via a query, no further interaction is necessary

(cf. [Zha08]).

(iv) Information seeking behavior

Browsing and query searching also differ, with regard to the underlying in-

formation seeking behavior. According to [Zha08], when browsing, users issue

queries like: Show me what you can offer. Whereas, when using query search

mechanisms, they ask something like: What do I want? Notice, these behav-

iors are quite contrary to each other. While the first one is a rather exploratory

way of fulfilling an information need, the latter is a much more focused and

straightforward approach (cf. [Zha08]).

(v) Iteration

With respect to the necessary search iterations, in order to reach an item

of interest, browsing requires in general multiple iterations. Browsing “[. . . ]

involves successive acts of glimpsing, fixing on a target to examine visually

or manually more closely, examining, then moving on to start the cycle over

again”, cf. [Bat02]. Query searching, however, comprises three single steps,

i.e. (1) definition of search terms (2) formulation of a query and (3) analysis

of returned, matching documents (cf. [Zha08]).
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(vi) Granularity

In compliance with [TC89], granularity refers to the “[. . . ] number of relevant

items that are evaluated at one time at in the process of feedback”. Query

searching returns a set of relevant items for a given query, issued by users.

Browsing differs here, as users may manually process only one item at a time,

in order to determine its relevance (cf. [Zha08]).

(vii) Clarity of information needs

As illustrated in example 1.1 (p. 2), user information needs may vary drasti-

cally, with respect to their fuzziness: (1) Some users may have a very detailed

and accurate need that they wish to be fulfilled with the least effort possi-

ble. (2) There might be other users, who have only a fuzzy need, resulting

from a lack of domain or context knowledge (cf. [Zha08]). In accordance with

[MS88], browsing is “[. . . ] especially appropriate for ill-defined problems and

for exploring new task domains.”. Query searching, being the complete oppo-

site, requires in general a precise and accurate information need, in order to

provide meaningful results (cf. [Zha08]).

(viii) Interactivity

As outlined above, query searching comprises very few steps, i.e. (1) defini-

tion of search terms, (2) articulation of a query and (3) analysis of returned,

matching documents. As a result, there is not much interaction required be-

fore an information need is fulfilled. Browsing, however, consisting of multiple

iterations and user decisions, generally leads to much more user interaction

necessary (cf. [Zha08]). Thus, according to [Zha08], browsing is “[. . . ] more

complicated and challenging because of the dynamic human factor”.

(ix) Retrieval Results

Also, with regard to returned results, query searching strategies differ from

browsing ones. While the former has a focus on single items or documents

contained in a database, the latter one may produce much more diverse out-

comes. More specifically, browsing may lead to contextual information, struc-

tural information, relational information, individual items or documents (cf.

[Zha08]).

As outlined above, query searching and browsing are two fundamentally different
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information retrieval approaches. However, both having their strengths and weak-

nesses, a combination and fluent interaction might prove to be beneficial. In the

following, I will present a concept coined exploratory search, enabling exactly this

integration of both paradigms.

1.1.3 Exploratory Search

1.1.3.1 Defining the Exploratory Search Concept

[Mar06] describe exploratory search (see section 1.1.1, p. 1) as an interaction of

learning and investigation search activities (see also figure 3, p. 7). As a practical

example, [Mar06] consider social searching, a task during which users intend to

locate communities or people of interest. Another simple example of an exploratory

search is Mary’s search for prestigious computer scientists, as outlined earlier. Please

remember, example 1.1 (p. 2) not only incorporates exploration, but also knowledge

acquisition and development of intellectual skills. Note, however, the definition given

in [Mar06], to be tightly coupled with Bloom’s taxonomy of educational objectives.

For further details, see [KBM56].

Figure 3: Exploratory Search (based on [Mar06]).

According to [WR09], exploratory search may be distinguished from other strategies

as follows:

(i) Time and Effort

Exploratory search may involve multiple iterations, possibly even multiple ses-

sions, in order to be completed. A system supporting such strategies, therefore
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has to provide ways for users to store queries as well as history over time (cf.

[WR09]).

(ii) Information Need

According to [WR09], user information need is “[. . . ] generally open-ended,

persistent and multifaceted. Open-endedness relates to the uncertainty over

the information available or incomplete information on the nature of the search

task”. In a similar manner, [Ber60] refers to information needs in this context

as “[. . . ] a mixture of specific and curiosities”, while also emphasizing the

involved learning and investigation tasks.

(iii) Goal

The goal behind an exploratory search goes beyond simple information lookup.

More precisely, search tasks tend to be either learning or investigation prob-

lems, in their nature. In most cases, the overall goal is, to help people in

making a decision or deepen their understanding, with regard to a topic of

interest (cf. [WR09]).

(iv) Interaction Behavior

Human-computer interactions used during an exploratory search are in most

cases a combination of query searching and browsing. Please note, browsing

here is mainly used to focus the search and resolve uncertainty (cf. [WR09]).

(v) Collaboration

Since information usage and information understanding are in general tightly

coupled with exploratory search, it is quite likely that a search may involve

more than one party. These parties may work together in setting the goals for

a given need or may simply be involved in solving the task (cf. [WR09]).

(vi) Evaluation Requirements

An evaluation in this context has to determine whether a system is capable

of addressing the fundamental elements of an exploratory search. Therefore,

in order to evaluate a system supporting exploratory search, a methodology

targeting learning and investigation, system outcome and system utility is

needed (cf. [WR09]).

Please note, two of the above outlined characteristics are of particular importance.
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First, exploratory search activities are always coupled with a vague and fuzzy in-

formation need. Reconsider example 1.1 (p. 2): Notice, Mary is not familiar with

the underlying domain, i.e. the field of computer science, or the characteristics of

her item of interest. Second, exploratory tasks require both of the above introduced

paradigms, namely query searching and browsing. The latter, however, plays an

important role, since it is used to resolve uncertainty, which in turn allows a more

focused search.

1.1.3.2 Usage Scenarios for an Exploratory Search

In accordance with [WR09], one may use exploratory search techniques, given a

context as outlined hereafter:

- Users may be unfamiliar with the domain of their information need. Therefore,

they first have to deepen their understanding of the underlying space, by means

of an exploration.

- Second, one may be uncertain, how to actually achieve a goals, i.e how to meet

an information need.

- Lastly, users may have no specific knowledge about their item of interest, i.e.

about its precise characteristics and relations to other items.

From another perspective, using the model introduced in [Mar06], users engage

in different kind of searches, depending on the actual information need (see sec-

tion 1.1.1, p. 1). In the past, especially in the WWW, systems mainly addressed

the support of efficient and effective lookup search tasks. However, as outlined by

[Mar06], there are other kinds of information needs, which are not met by simple

lookup search. Systems supporting exploratory search, on the other hand, provide

means of issuing queries that go far beyond simple fact retrieval. [Mar06] refer to

needs, requiring such queries, as higher-level needs.

1.2 A brief Introduction to Faceted Search

Over the last years, faceted search became a very popular paradigm. On the one

hand, with respect to the academic world, it has been proposed for searching docu-

ments [HSLY03, DRM+08, BYGH+08], for databases [DIW05, BRWD+08, ABC+02],
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as well as for RDF data [ODD06, SSO+05, HMS+05]. On the other hand, this tech-

nique also rapidly gained importance in commercial applications, consider e.g. Ebay3

or Amazon4. In the following, I would like to give a brief outline of its history, fol-

lowed by a definition of facets and facet values respectively. Lastly, the reader will

be presented one major benefit of faceted search, namely its role as an enabler for

exploration. Note, in section 2 (p. 17), I will show how faceted search may be

employed in a Semantic Web context.

1.2.1 What is the Faceted Search Paradigm?

1.2.1.1 A Short History of Faceted Search

Early days of Classification Taxonomy is originating from a combination of the

Greek τ άξις, meaning order or arrangement, and the Greek word νóµoς, referring

to science or law. From a historic perspective, Aristotle was the first researcher

making use of such a taxonomy in his work Classification of all living things. Here,

he created a system categorizing all living things, starting from a top-level perspec-

tive, dividing organisms into animals and plants and so on (see figure 4, p. 11).

“In modern use, taxonomy is any organization of things or abstractions into a hier-

archy, or a tree structure. In keeping with the tree as a metaphor [. . . ], there is a

root node at the top, leaves at the bottom, and branches connecting each nonleaf

parent node to its children. A parent may have many children, but each nonroot

node has exactly one parent.”, cf. [Tun09]. Such taxonomies are also referred to

as being strict. This definition may be extended to a so called polyhierarchy, which

allows an inner node to have multiple parents. Hereafter, however, the reader should

assume a taxonomy to be strict.

Notice, the above given definition to be a rather structural one. On a semantic

level, on the other hand, a taxonomy represents a tree with each edge being an is-a

connection. To be more precise, the root node of a taxonomy stands for a top-level

category, covering all elements, contained in a set to be described. This collection is

then split into disjoint subsets, each symbolized by a child of the root node. Those

subsets may again be split on a second hierarchical level, leading to further differ-

entiation and so on.

3 See http://www.ebay.com, revised Dec. 2009.

4 See http://www.amazon.com, revised Dec. 2009.

http://www.ebay.com/
http://www.amazon.com/
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According to [Tun09]: “a key property of a taxonomy is that, for every object or set

of objects that corresponds to a node, there is precisely one unique path to it from

the root node”. This property, however, imposes a harsh limitation, leading to a

very restricted design and practical usage of taxonomies. Addressing this shortcom-

ing, in the following, I will introduce the so called colon classification, a first version

of a faceted search mechanism.

Figure 4: Aristotle’s Classification of all living Things (based on [Tun09]).

The Colon Classification The first to observe the above outlined deficits, was

the Indian library scientist S. R. Ranganathan, who developed 1933 the so called

colon classification (cf. [Ran33]). Using his novel classification mechanism, Ran-

ganathan modeled the world using five fundamental, mutually exclusive, taxonomies:

personality, matter, energy, space and time. He described a specific item as a se-

quence of letters and numbers separated by colons, each block addressing a different

taxonomy. Thus, every item is not classified according to one, but with regard to

multiple taxonomies (cf. [Ran33]). The reader should notice that, to represent an

item by means of several categorizations, is the key element of the colon classifi-

cation. On the other hand, in contrast to a polyhierarchy, this separation enables

one, to extend each category independently. As example, consider the below given

classification of ’the statistical study of the treatment of cancer of the soft palate by

radium’ as ’L2153:4725:63129:B278 ’ (cf. [Ran50]):



1 INTRODUCTION 12

. Example 1.2. The Subject ’The statistical study of the treatment of cancer of

the soft palate by radium’ results in a term ’L2153:4725:63129:B278 ’. This classifi-

cation is based on the following four facets:

- Medicine (L) ↦ Digestive Systems (L2) ↦ Mouth (L21) ↦ Palate (L215) ↦
Soft Palate (L2153)

- Disease (4) ↦ Structural Disease (47) ↦ Tumor (472) ↦ Cancer (4725)

- Treatment (6) ↦ Treatment by chemical substances (63) ↦ Treatment by a

chemical element (631) ↦ Treatment by a group 2 chemical element (6312) ↦
Treatment by radium (63129)

- Mathematical study (B) ↦ Algebraical study (B2) ↦ Statistical study (B28)

1.2.1.2 Defining a Facet and a Facet Value respectively

In compliance with [TM06], facets are “clearly defined, mutually exclusive, and col-

lectively exhaustive aspects, properties or characteristics of a class or a subject”.

[Hea08], on the other hand, define a facet in a slightly different manner as: “[. . . ]

categories used to characterize information items in a collection”. [ODD06] have

yet another notion of a facet: “In faceted browsing the information space is parti-

tioned using orthogonal conceptual dimensions of the data. These dimensions are

called facets and represent important characteristics of the information elements”.

However, for the rest of this paper, I will use the following definition:

+ Definition 1.3. Facet

Facets represent mutually exclusive, conceptual dimensions of the underlying data

collection (based on [ODD06]).

Each facet may have one or more values. [Hea08] refer to these values as labels,

while [ODD06] call them restriction values. A value may be defined as:

+ Definition 1.4. Facet Value

A facet value is a concrete realization of the data dimension it refers to.

Hereafter, I will refer to these values simply as facet values. Note, facets may be fur-

ther classified according to their structure. [Hea08] distinguish flat from hierarchical

facets. The former corresponds to a data dimension, which is mutually exclusive

with regard to all other dimensions. In the latter case, two or more dimensions are
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correlated via an is-a relation.

On the other hand, not only for two given facets might an is-a relation hold, also

two values may be correlated in such a manner. Thus, one might wish to categorize

facet values as flat or as hierarchical, depending on their correlation to other values.

Please note, in the following, I will refer to hierarchical facets and facet values as

non-flat facets and facet values respectively.5 In order to clarify the above stated

definitions, let me give you a brief example:

. Example 1.3. Recall Mary from our previous example 1.1 (p. 2). In this

particular information space, there might be several dimensions of interest. First of

all, Mary restricts her search results via a facet value pair type:professor. As value

professor may have an is-a relation to a full professor or an assistant professor,

this value is coined non-flat. Furthermore, Mary sets as additional constraint that

institutions employing scientists of interest, should be rather old and big. In order to

specify this restriction, she chooses a facet works at. However, works at is a non-flat

facet, as there might be other facets, say works at full time and works at part time,

which are associated with works at via an is-a relation. On the other hand, given a

facet age, there is no such correlation, thus being referring to as flat.

A user selecting a facet value pair, say f:v, imposes a refinement of the currently given

result set. Previously imposed constraints, either by facet operations or by query

searching, are connected via conjunction with this new constraint, say ĉ. There-

fore, all items contained in the current result must fulfill ĉ, in addition to all other

given restrictions. Note, however, selecting f:v within a hierarchy is equivalent with

forming a disjunction over all facet value pairs subsumed by f:v (cf. [Hea08]).

1.2.2 Faceted Search as Enabler for Exploration

1.2.2.1 Features of an Exploratory Search System

As outlined earlier (see section 1.1.3, p. 7), exploratory search systems go far beyond

simple means, supporting solely lookup tasks. As prominent examples consider e.g.

systems like mSpace (cf. [SSO+05]), Relation Browser (cf. [MB03]) or flamenco (cf.

[HEE+02]).

5 More precisely, hierarchical facet values are a special case of non-flat values, given a Semantic

Web environment (see section 2, p. 17).
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According to [WR09], advanced systems, such as the above, have to provide a certain

set of features, in order to fulfill high-level information needs. Below, please find

these features outlined in more detail:

(i) Query Formulation & Refinement

A System must enable its users to articulate and instantly refine queries.

(ii) Facets & metadata-based Filtering

Facets need to be present, in order for users to quickly refine and explore a

given result set. Also filtering via document metadata has to be possible.

(iii) Utilize Search Context

Search context, user information and search task information, need to be used

for personalization of the search process.

(iv) Support Visualization

Systems must provide advanced result visualization means, for enabling deci-

sion making and gaining novel insights.

(v) Learning & Understanding

Information has to be visualized and processed in ways making it possible for

users to gain new knowledge and skills.

(vi) User Collaboration

In order to complete high-level information needs, collaboration in a syn-

chronous or asynchronous manner might be necessary.

(vii) History, Workspaces & Updates

Systems have to enable reversion and backtracking of user actions, visualization

of progress updates and storage as well as manipulation of information needed

during the completion of a particular task.

(viii) Task Management

Also, systems must enable multiuser and multisession usage and therefore pro-

vide means of a task management.
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1.2.2.2 Faceted Search as Part of an Exploratory Search System

As briefly described earlier (see section 1.2.2.1, p. 13), exploratory systems need a

set of features to be present, in order to support more advanced search tasks (cf.

[WR09]). One of these features is a faceted interface, as a basis for instant result

set refinement and user exploration of the underlying information space. In the

following, let me explain in more detail, on how a faceted search may contribute to

an exploratory search system.

In compliance with [WR09], “[. . . ] search systems must offer the ability for searchers

to filter result sets by specifying one or more desired attributes of the search results”.

Also, users are often overwhelmed by a given result set and wish to have a meaning-

ful grouping of the result items, in order to deepen their understanding and continue

the search process (cf. [Hea06]). This grouping may be accomplished by using either

clustering techniques or a faceted categorization (cf. [WR09]). According to [Hea06],

faceted categories summarize a given domain of interest, by providing a set of facets

and facet values to users. Thus, allowing them to quickly identify important con-

cepts and deepening their understanding of a given data-space. Furthermore, faceted

search interfaces assist users, when being lost and help getting back on the right

track, via expansion of the result set (cf. [WR09]).

On the other hand, there are also downsides associated with a faceted categoriza-

tion. First of all, many faceted interfaces still depend on manual creation of facet

hierarchies and their associated facet values. Please note, however, there are strong

research efforts on automatic facet hierarchy discovery (see [SH04, DIW05]). Also,

facets may restrict users in their exploration, due to the structural constraints, they

might be imposing (cf. [WR09]).

1.3 Outline of this Paper

Hereafter, I will present a framework for a more browse-able faceted search in a

Semantic Web environment. In contrast to current approaches, which are focused

on efficient query searching strategies, i.e. support for users, in order to issue precise

and specific information needs, rather than enabling them to browse and articulate

fuzzy knowledge. In section 2 (p. 17), I am going to outline a search process, which

allows a fluent interaction between keyword search and browsing. Also, I introduce

definitions for a data, a query as well as a facet model. Continuing in section 3 (p.
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36), again targeting at browse-ability, I will address the problem of vast and unclear

facet ranges. In order to enable users to better understand and access these sets, I

use clustering techniques for decomposing facets in more fine-grained sub-facets. In

section 4 (p. 70), I present a ranking scheme making use of this sub-facet clustering

as well as the individual facet characteristics. Keeping the above goals in mind, these

metrics aim to rank facets high, which support browsing and specification of fuzzy

knowledge, thus are suitable for exploration tasks. In section 5 (p. 91), I discuss

results I obtained from a task-based user study, for comparison of the outlined novel

ranking and clustering approach, with the current state of the art. Finally, in section

6 (p. 99), I present concluding remarks and give the reader a brief overview of future

work, I am planning on pursuing.



Section 2

Faceted Search in a Semantic Web Context

2.1 The Need for a more semantic Web

As briefly outlined in section 1.1.1 (p. 1), nowadays, we are living in an information

age. Efficient data storage as well as access, have become more and more challenging,

with the rapidly increasing amount of content available. However, the current state

of the art for data, or to be more precise, knowledge storage, bears significant flaws.

First, and perhaps most importantly, today data is stored without making its implied

semantics explicit. In other words, while data syntax is machine accessible, data

semantics are only readable for humans. To be more precise, currently, it is up

to the human reader to process a given information and understand its meaning.

Search engines, consider e.g. Yahoo6 or Google7, compensate this lack of intelligence

with IR strategies, trying to reconstruct the before lost semantics. In the long run,

however, it is quite obvious that semantics have to be stored along with their data

and should not be regenerated afterwards (cf. [AvH08, HKRS07]).

A second shortcoming of todays information storage results from its heterogeneity.

It is currently not possible to integrate or reuse given data in any way. For enabling

a more efficient data handling, on the other hand, it is essential to have a common

representation for knowledge (cf. [AvH08, HKRS07]).

Lastly, not all information is stored using an explicit manner. On the contrary, most

information needs are currently fulfilled, not by machines answering a query, but by

users reasoning on an information space. Clearly, this is not a desirable state, since

human reasoning capabilities are generally very limited (cf. [AvH08, HKRS07]).

Please note, a full discussion of the pros and cons of a Semantic Web is beyond the

6 See also http://www.yahoo.com, revised Nov. 2009.

7 See also http://www.google.com, revised Nov. 2009.

http://www.yahoo.com/
http://www.google.com/
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limits of this paper. For more details, please see [BLHL01, SBLH06]. Hereafter,

the reader is assumed to have basic knowledge of RDF(S) as well as Semantic Web

technologies in general.

2.2 Semantic Search Process

2.2.1 Search Process - A technical Point of View

In recent years, the amount of data stored, using semantic technologies has increased

drastically. As prominent indicators for more data being represented by means

of ontologies, consider e.g. the increasing usage of languages like RDFa8 or the

Linked Open Data9 initiative. This development enabled a new kind of information

access, providing ways reaching, beyond simple keyword search. Notice, there are

various definitions of semantic search, see e.g. [GMM03, ZYZ+05, CCPC+06]. In

the following, however, semantic search is defined in compliance with [THS09]:

+ Definition 2.1. Semantic Search

Semantic search is defined as an “[. . . ] information access, in which information

needs are addressed by considering the meaning of the user queries and available

resources”, cf. [THS09].

+ Definition 2.2. Semantic Faceted Search

Semantic faceted search, on the other hand, may be defined as semantic search,

employing the faceted search paradigm, in order to enable users to express their

information needs.

In this context, please recall the different information needs as discussed in section

1.1.1 (p. 1). Given data represented via semantic technologies, the question arises,

how to integrate the before introduced faceted search notion, within this new envi-

ronment. However, before discussing an application of faceted search, with respect

to a Semantic Web infrastructure, any further, allow me to first present semantic

search in more detail. According to [THS09], semantic search may be regarded as

a process having the following parts.

8 See also http://w3.org/TR/xhtml-rdfa-primer/, revised Dec. 2009.

9 See also http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData,

revised Dec. 2009.

http://w3.org/TR/xhtml-rdfa-primer/
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
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(i) Query construction

The query construction phase comprises three individual steps. First, users

specify their needs by means of query searching, i.e. a query consisting of one

or more keywords, summarizing their information need. Next, using a graph

exploration algorithm, one or more structured queries are computed for the

given keywords. Each structured query, represented as a graph10, stands for a

possible meaning. Note, since natural language is ambiguous, there might be

more than one structured query, resulting from this exploration phase. [THS09]

refer to such a query as interpretation, while the procedure, i.e. translation

from keyword query to structured query, is coined query translation. Lastly,

the computed interpretations are presented to users, enabling them to choose a

fitting one, thereby specifying their information needs precisely (cf. [THS09]).

(ii) Query processing

Query processing, i.e. the computation of a set, containing resources or literals,

satisfying given query constraints, is accomplished via two separate operations.

In order to reduce the number of joins and unions necessary as well as I/O,

a preprocessing step is employed. This procedure results in a set of so called

candidates. Each candidate is then further evaluated and matched against the

data-source, in order to verify whether or not he fulfills a query (cf. [THS09]).

(iii) Result presentation

Query results are visualized during the so called result presentation step. De-

pending on the structure of a query, notice, it may be a factual, entity or

general conjunctive query, different templates are used to present the current

result set (cf. [THS09]).

(iv) Query refinement

In a final phase, facets may be used, i.e. added, removed or edited, in order to

refine or expand the current result set. According to [THS09], these result set

operations might be necessary in several cases: Maybe a chosen interpretation

did not fit an information need precisely. Or, on the other hand, a need itself

might have been vague in the first place (cf. [THS09]).

10 For a formal graph definition, please see section 2.3 (p. 24).
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Figure 5: Overall Semantic Search Process (based on [THS09]).

Notice this search process to be summarized in figure 5 (p. 20). Further note,

this description is a rather technical one. More specifically, the main focus lies

on providing a complete overview of necessary steps, internal as well as external,

starting with an unfulfilled and ending with a fulfilled information need. In the

following, I will present another view on the very same search process, addressing

the user-system interactions during a search. Please keep in mind, however, while

having different angles, both views are fully complementary.

Lastly, the reader should be aware that semantic search is a broad research field

and the above stated search process as well as the definitions are intended to give

only a brief overview. For a more detailed introduction to semantic search, please

see [GMM03, Man07, ULL+07].

2.2.2 Search Process - An Information Retrieval Point of View

As mentioned earlier, being complementary to the above description, I would like to

introduce a process view, targeting more at user-system interactions. Please recall,

there are two fundamental IR approaches, namely query searching and browsing (see

section 1.1.2, p. 3). Also remember, in order to enable exploratory search strate-

gies and thereby the fulfillment of higher-level information needs, a combination is

necessary. The hereafter given definition aims at this fluent interaction of query

searching and browsing (based on [HSLY03]).

According to [HSLY03], one may distinguish three different stages during a search



2 FACETED SEARCH IN A SEMANTIC WEB CONTEXT 21

session. First of all, during the so called opening stage, users may familiarize them-

selves with a given information space. Next, there is the middle game, where users

have already narrowed their search space down and intend to further refine the cur-

rent result set via browsing. This phase is followed by what [HSLY03] coined the

end game. Here, a single item of interest, fulfilling an initial information need, is

presented to users. Please also find this process illustrated in figure 7 (p. 23).

In order to combine both IR paradigms in a meaningful manner, one has to make

assumptions, by what means users specify their needs. Please recall, for query

searching a well-defined and very specific information need is necessary. When us-

ing browsing, on the other hand, only vague needs are required. Also reconsider

that query searching is generally less expensive, with respect to time and effort (see

section 1.1.2, p. 3). Given these facts, first of all, I assume users to be aware of

these differences and more importantly, to act in a rational manner. By rational

manner, I mean that users prefer a cheaper path, leading to their item of interest,

over a more expensive one. Thus, without loss of generality, I may have assumptions

as follows:

ó Assumption 2.1.

Specific information needs are always articulated via query searching.

ó Assumption 2.2.

Fuzzy information needs are always entered via browsing.

Given these assumptions, one may combine them as:

ó Assumption 2.3.

First of all, I assume users to be provided with means of query searching as well as

browsing. Also, the reader may think of an information need as an abstract query,

say QNeed. With abstract in this context, I refer to queries being located at some

level between a user need and its machine readable representation. Furthermore, I

see QNeed as a tuple having two elements, say QS
Need and QF

Need with QS
Need resulting

from specific information needs and QF
Need from non-specific or fuzzy needs. Both,

i.e. QS
Need and QF

Need, may be empty. In conclusion, I assume users to articulate

QS
Need via query searching, while needs in QF

Need will be issued applying browsing

strategies.
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Please remember in this context also example 1.1 (p. 2). Reconsidering this scenario,

the reader should notice that there are two dimensions of fuzziness11: (i) Users

may only have vague knowledge, with regard to a given underlying domain. E.g.

Mary cannot precisely define the term prestigious, whereas a domain expert would

know that famous computer scientists often won a Turing Award. (ii) Secondly,

users might have vague information, concerning the characteristics of their item of

interest. Mary e.g. is not aware of name or age of any prestigious scientist. Below,

also consider example 2.1 (p. 22), to further clarify assumption 2.3 (p. 21), as well

as the outlined notion of fuzziness.

. Example 2.1. In figure 6 (p. 22), please find the novice computer science

student Mary. Her initial information need was to find famous computer science

researchers and learn more about their work. As shown below, this need may be

represented by queries of different granularity.

Figure 6: Information Need as an abstract Query QNeed

Hereafter, I will further discuss the above mentioned search process model (based

on [HSLY03]). I am going to present each stage as well as the transitions between

the stages in more detail.

11 In the following, fuzzy, vague or unspecific will be used synonymously.
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Figure 7: Integration of Query Search and Browsing (based on [HSLY03]).

+ Definition 2.3. Opening Game

“The primary aims of the opening are to present a broad overview of the entire

collection and to allow many starting paths for exploration”, cf. [HSLY03].

In order to provide users with the means to familiarize themselves with a informa-

tion space, top-level facets are presented, summarizing its dimensions. Also, systems

should enable users to start a search process via query searching, if the user has spe-

cific knowledge, or otherwise, via browsing. Thus, in the beginning phase, refinement

operations either using browsing strategies, i.e. facet addition, or query searching

techniques, i.e. issuing an initial keyword query, should be possible. These refine-

ment constraints may lead either to the middle game or the end game, depending

on whether or not an information need is fulfilled (cf. [HSLY03]).

+ Definition 2.4. Middle Game

“In the middle game the result set is evaluated and manipulated, usually to narrow

it down”, cf. [HSLY03].

In the middle game phase, an initial result set has been refined via browsing or query

searching. However, further refinement using facets is necessary, in order to fulfill

a user information need. On the other hand, if previously selected restrictions led

to a result set not containing the item of interest anymore, a new search may be
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started or the current result set may be expanded, using facet removal means (cf.

[HSLY03]).

+ Definition 2.5. End Game

“The endgame shows a single selected item in the context of the current query”, cf.

[HSLY03].

Lastly, during the end game, an item of interest has been discovered and is to be

further explored. Also, a new search process may be started or, if related items are

of interest, the result space may be expanded, using facet operations (cf. [HSLY03]).

2.3 Terminology & Definitions

Hereafter, I will first present basic definitions for the underlying data and schema

model, as well as the query model. In a second step, I will introduce definitions

for facets as well as facet values, given a Semantic Web context. Please note, there

are several different definitions for the data, the semantic or the query model, com-

monly used in the literature. I, however, will use these concepts in compliance with

[THS09], as defined below.

2.3.1 Data Model

According to [THS09], the data model or resource space, may be defined as:

+ Definition 2.6. Resource Space

Let SR be the resource space, i.e. is a set of RDF graphs gR = (V R, LR,ER), where

- V R is a finite set of vertices. V R is a disjoint union V R
E ⊎ V R

V with E-vertices

V R
E (entities) and V-vertices V R

V (data values),

- LR is a finite set of edge labels, subdivided by LR = LRR ⊎ LRA, where LRR are

relation labels and LRA are attribute labels.

- ER is a finite set of edges of the form e(v1, v2) with v1, v2 ∈ V R and e ∈ LR.

Moreover, the following types are distinguished:

- e ∈ LRA (A-edge) iff v1 ∈ V R
E and v2 ∈ V R

V ,

- e ∈ LRR (R-edge) iff v1, v2 ∈ V R
E ,

- and type, a predefined edge label that denotes the class membership of

an entity (based on [THS09]).
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In other words, the resource space contains all resources of interest, i.e. all items

made available for searching. These resources are represented as vertices in SR,

while relations and attributes are mapped to edges. Please note, in SR, classes,

i.e. groupings of similar instances, are not distinguished from resources. To be more

precise, [THS09] do not differentiate schema knowledge from instance knowledge. In

the hereafter defined schema space, on the other hand, both are made distinguishable

(cf. [THS09]).

Also note, in the previous sections, I imprecisely referred to the resource space also

as information space or data-space. Furthermore, for clarification purposes, please

consider the exemplary resource space below.

. Example 2.2. Please reconsider Mary, the novice computer science student

(example 1.1, p. 2). Her local college may be modeled as a resource space SR, in

compliance with the above given definition (see figure 8, p. 25).

Figure 8: Resource Space Example (based on [THS09]).

2.3.2 Semantic Model

+ Definition 2.7. Schema Space

Each resource graph has an associated schema, which here is a subset of RDFS. Let

SS be the schema space, i.e. a set of schema graphs gS = (V S, LS,ES), where

- V S is a finite set of vertices. V S is a the disjoint union V S
C ⊎ V S

R ⊎ V S
A ⊎ V S

D with

C-vertices V S
C (classes), R-vertices V S

R (relations), A-vertices V S
A (attributes),
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and D-vertices V S
D (datatypes).

- LS consists of the labels: subClassOf, domain, range, subPropertyOf.

- ES is a finite set of edges of the form e(v1, v2) with v1, v2 ∈ V S and e ∈ LS,

where

- e = domain iff v1 ∈ V S
A ∪ V S

R and v2 ∈ V S

- e = range iff v1 ∈ V S
A , v2 ∈ V S

D or v1 ∈ V S
R , v2 ∈ V S

C , and

- e = subclassof iff v1, v2 ∈ V S
C (based on [THS09]).

. Example 2.3. Continuing the example 2.2 (p. 25), below, please see figure 9

(p. 26) for a schema space associated with Mary’s resource space SR.

Figure 9: Schema Space Example (based on [THS09]).

2.3.3 Query and Result Model

After introducing the resource space SR and schema space SS, in the following I will

focus on the query model. Please recall in this context the above (see section 2.2,

p. 18) outlined search process. Specifically reconsider that an information need,

formulated as keyword query, is mapped to an interpretation. This interpretation is

represented as a so called query graph. In compliance with [THS09], for computing

an interpretation, given a keyword query, three steps are necessary: “(i) Construc-

tion of the query space, (ii) top-k query graph exploration and (iii) query graph

ranking”.

With respect to the scope of this paper (see section 1.3, p. 15), the query graph as

well as its underlying semantic model, i.e. the query space, are of great interest. Fur-

thermore, hereafter, I will define facet operations as a special case of a query graph.
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These facet constraints allow users to iteratively construct a query, matching their

information needs (cf. [THS09]). Outlining the computation of an interpretation,

however, exceeds the limits of this paper. The interested reader may see [TWRC09].

2.3.3.1 Query Model

In accordance with [THS09], the query space, i.e. the underlying semantic model of

the query graph, may be given by:

+ Definition 2.8. Query Space

Let SQ(S̃S,NK) be the query space, comprising keyword matching elements NK

(computed for a keyword query q) and elements of a special schema space, say S̃S.

SQ consists of the graphs gS(V Q, LQ,EQ), where

- V Q is conceived as the disjoint union V S
C ⊎ V S

R ,

- LQ comprises the predefined edge labels subClassOf, domain, range and

subPropertyOf

- EQ is a finite set of edges e(v1, v2) with v1, v2 ∈ V Q and e ∈ LQ (based on

[THS09]).

NK , i.e. elements fulfilling keyword constraints, may be computed via matching

keywords against labels of elements contained in SR. Also note S̃S being a slightly

modified version of our schema space SS. S̃S is similar to the above schema space,

however, it does not contain vertices v̂ ∈ VA ⊎ VD, i.e. attributes or datatypes.

Construction of S̃S seems necessary, as paths in SS end at a datatype vertex and

any edge e(v1, v2), where v1 ∈ VA and v2 ∈ VD, is thus not useful within this context

(cf. [THS09]).

. Example 2.4. Given SR as defined in example 2.2 (p. 25), and SS as defined

in example 2.3 (p. 26). Now, consider as a toy example a keyword query professor

teaches Mary 19, say q̂. Please see the resulting search space in figure 10 (p. 28),

with elements matching keywords being colored in red.

Finally, a query graph gq for a given query q, is defined as:

+ Definition 2.9. Query Graph

Given SQ = (S̃S,NK) as query space and K = {k1, . . . , kn} as a set of keywords.

Let f ∶ K ↦ 2VK ⊎EK be a function that maps keywords to sets of corresponding
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Figure 10: Search Space Example (based on [THS09]).

graph elements (where V Q
K , E

Q
K ⊆ NK). Then, a query graph is a matching subgraph

gq = (Vq, Lq,Eq) with

- Vq ⊆ V S
C ⊎ V S

R ⊎ NK ⊎ V Q
V with V Q

V being a set of variables and

- Lq, Eq comprising elements of S̃S.

Furthermore, the following constraints have to hold:

- ∀k ∈ K: f(k) ∩ (Vq ∪ Eq) ≠ ∅, i.e. gq contains at least one representative

keyword matching element, for each keyword contained in K, and

- gq is connected, i.e. there exists a path from every graph element to every

other element (based on [THS09]).

Note that there might more than one matching query graph for a given query space.

For finding the best, i.e. top-ranked, k graphs gqi , [THS09] employ a top-k ex-

ploration procedure. Again, for details on the exploration algorithm, please see

[TWRC09]. Hereafter, I assume to have gq given and thus will treat the underlying

algorithm as a black box.

. Example 2.5. Given example 2.2 (p. 25) as resource space, example 2.3 (p. 26)

as schema space and example 2.4 (p. 27) as query space. After the exploration, a

possible query graph is shown in figure 11 (p. 28). Please note, variables are marked

blue and keyword matchings in red.

Figure 11: Query Graph Example (based on [THS09]).
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2.3.3.2 Result Model

+ Definition 2.10. Result Space

A result space for a query interpretation gp = (Vq, Lq,Eq) is a set, say SRes, contain-

ing j result graphs gResi = (V Res, LRes,ERes) with i ≤ j. Each gResi = (V Res, LRes,ERes)
is a subgraph of one of the resource graphs gR (see definition 2.6, p. 24). Further-

more, each gResi satisfies gp. More precisely, gResi is said to satisfy gp iff

- ERes = Eq, i.e. every edge contained in gq must be contained in gRes,

- LRes = Lq, i.e. labels for these edges have to match,

- ∀ v̂ ∈ Vq /V Q
V ∶ v̂ ∈ V Res and

- there exists a surjective function h ∶ V R
E ↦ V Q

V , so that there is exactly one

mapping V R
E ↦ V Q

V , for each v̂ ∈ V R
E .

Note, however, the definition of a result space to be depending on a given query graph.

With respect to the chosen interpretation, the result space may vary significantly.

. Example 2.6. Reconsider the earlier examples. For a possible result space,

given the above introduced resource space and query graph, please see figure 12 (p.

30). Notice the coloring to be consistent with the one before.

2.3.3.3 Facet & Facet Value Model

Facet and Facet Value Definitions In the following, I will introduce a facet

model specifically suited for our Semantic Web context. Remember, I see facet

constraints as a special case of a query graph and therefore will use them as means

for specifying an information need.

+ Definition 2.11. Facet & Facet Domain

Given a resource space SR with gR, a result space SRes with gResi and a query graph

gq, the set containing all facets, say F , may be defined as a k-tuple of sets with

F = {Fi}1≤ i≤k and k = ∣V Q
V ∣. Note that for each vi ∈ V Q

V , there exists a set, say

V R
Ei

⊆ V R
E , containing its associated entities. To be more precise, there is an inverse

relation h−1 ∶ V Q
V ↦ V R

E and V R
Ei

= {v̂ ∈ V R
E ∣ v̂ ∈ h−1(vi)} (see definition 2.10, p.

29). Now, let Fi be a set defined as Fi = {e ∈ LR ∣ e(v1,∗) ∈ ER ∧ v1 ∈ V R
Ei
}, i.e. Fi

contains all outgoing edge labels of an entity ê ∈ VEi . Finally, a facet f̂i is given by

one element of Fi, i.e. f̂i corresponds to one ê ∈ Fi. Hereafter,
b= is used to associate
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Figure 12: Result Space Example

a facet with its edge label. Informally speaking, one may say that f̂i is based on

ê ∈ Fi. Note, Fi describes all facets for a given set of entities V R
Ei

, which are mapped

to a variable in the query graph vi. vi is in the following referred to as domain of

facets in Fi. Furthermore notice, the set of all facets, given a resource space SR,

is denoted by FR. Lastly, the reader should be aware that Fj ∈ {Fi}1≤ i≤k do not

necessarily have to be pairwise disjoint, in fact, they might be overlapping.

Note that there are several varying definitions of a facet, given a Semantic Web

context (see [ODD06, SVH07, HMS+05]). The above terminology is most similar to

[ODD06], where facets are informally defined according to RDF triples. In [ODD06]

predicates correspond to facets and their objects are mapped to facet values. How-

ever, there are also significant differences between our definition and the one given

in [ODD06].

First of all, [ODD06] do not distinguish between incoming and outgoing predicates12.

Therefore, both directions may be used as basis for a facet. I, on the other hand,

argue, in accordance with RDF terminology (see e.g. [CK00]) as well as our defini-

12 Note, predicate is used here in compliance with RDF terminology.
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tions of a resource space and a schema space, that, given a triple (subject, predicate,

object), the object, in combination with the predicate, specifies the subject and not

the other way around. Thus, I think that only outgoing properties may provide a

meaningful basis for a facet definition. Also, note that our terminology incorporates

the different points of origin facets may have. Given a query graph, every variable

v ∈ V Q
V may have its own facets associated. This leads to a far more advanced

way of query modifications and thereby enables users to specify their needs more

precisely.

+ Definition 2.12. Facet Value

Given a resource space SR with a graph gR, a result space SRes with gResi , a query

graph gq and facets F = {Fi}1≤ i≤k with k = ∣V Q
V ∣. For a facet f̂ ∈ Fi ∈ F , there is a

set of associated resources13 Oi(f̂) = {vj ∈ V R ∣ ê(vi, vj) ∈ ER ∧ vi ∈ V R
Ei
∧ f̂ b= ê}.

Now, facet values may be defined as a set FVi(f̂) with FVi(f̂) being a subset of the

power set of Oi(f̂), i.e. FVi(f̂) ⊆ P (Oi(f̂)). Finally, given a facet f̂ , a single facet

value is hereafter denoted by fvi(f̂) ∈ FVi(f̂). In the following, the set of all facet

values is referred to as FV R. Furthermore, the reader should be aware that FVi(f̂)
may be pairwise overlapping, with regard to different facet domains vi.

Notice, since facet definitions tend to differ within the literature, other facet value

definitions are also common (see [ODD06, SVH07, HMS+05]). Again, [ODD06] use

the most similar terminology, to the one introduced. Recall, [ODD06] define facets

and facet values respectively, according to RDF triples. Therefore, given a facet f̂ ,

the set of all facet values, i.e. FV∗(f̂), equals the set O∗(f̂) as defined above.

I, on the other hand, argue that, in order to truly support exploration (see section

1.1.3, p. 7), not only single facet values are necessary, but also partitions of the

value space. Thus, our definition comprises not solely O∗(⋅), but rather P (O∗(⋅)).
Clearly, this goes hand in hand with facet value clustering techniques, taking O∗(⋅)
as an input and resulting in a value partitioning. For more details on the actual

algorithms, please see section 3 (p. 36). Furthermore, since I defined facets in a

domain specific manner (see definition 2.11, p. 29), facet values are automatically

also domain specific, allowing users to specify informations needs more accurately.

With respect to the query model, facets, more precisely, facet value pairs f̂ :fv, cor-

respond query predicates. Like predicates, f̂ :fv may be combined via conjunction.

13 Note that using RDF terminology, these resources would be referred to as objects.
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More specifically, given a query graph gq = (Vq, Lq,Eq), for each variable vi ∈ V Q
V

and each fv ∈ FVi(f̂), a predicate, having a structure ê:v̂ with f̂
b= ê and v̂ ∈ fv,

may be added to vi in gq. This results in new graphs {giq}i with 1 ≤ i ≤ ∣fv∣. Note,

these {giq}i are independent query graphs, each having an result space associated.14

Furthermore, in a similar manner, a facet value pair may be removed from a current

query graph.

+ Definition 2.13. Facet Value Count

Given a resource space SR with gR, a result space SRes with gResi , a query graph gq

and facets F = {Fi}1≤ i≤k, where k = ∣V Q
V ∣. I distinguish two different facet value

counts :

(i) Source Count

Given a facet f̃ , the so called source count, say countS, of a facet value fv ∈
FV∗(⋅) is defined as: countS(fv) = ∣CS(fv) ∶= {v ∈ V Res ∣ ∀ v̂ ∈ fv ∶ ẽ(v, v̂) ∧
f̃

b= ẽ}∣. Note, what I coined source count is known in the literature simply as

count (cf. [Tun09]).

(ii) Value Count

Please reconsider, according to definition 2.12 (p. 31), I essentially define

facet values for a facet f̃ , as an arbitrary set of objects connected via an edge

ẽ ∈ ERes and f̃
b= ẽ. Therefore, I argue that a second count, reflecting the size

of the set, represented by a facet value, is necessary. In conclusion, given a

facet value fv, I define countV as: countV (fv) = ∣CV (fv) ∶= fv∣.

Note that both sets, i.e. CS as well as CV , are defined as mathematical sets, i.e.

each element is only allowed one membership. I will refer to counts associated with

these sets as non-overlapping. However, for ranking purposes (see section 4, p.

70), I extend above defined sets to multisets, say CO
S and CO

V respectively, thereby

allowing elements to have more than membership. Counts resulting from CO
S or CO

V ,

I refer to as being overlapping. This differentiation is of particular importance in our

context, since subjects may be mapped to objects15 in a one-to-one, one-to-many,

many-to-one or many-to-many manner. Please see figure 13 (p. 33) for a generic

example.

14 Clearly, depending on gi
q, its result space may be empty.

15 Note, the terms subject and object are used according to RDF terminology.
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Figure 13: Subject to Object Mapping Example

+ Definition 2.14. Given a set of facets F , where F = {Fi}1≤ i≤k. Facet f ′′ ⊑ f ′

(f ′ is said to subsume f ′′) holds iff subPropertyOf(e′′, e′) with e′′
b= f ′′ and e′

b= f ′.

. Example 2.7. Continuing our example, please see figure 14 (p. 34) for a facet

model, given our result space. Facets are colored in green, while facet values are

gray or black, depending on whether or not they are contained in the query graph.

Furthermore, there are two facet domains given, say ’1’ for the professors and ’2’ for

the students; both are marked blue. More precisely, facets are given by F = {F1, F2}
with F1 ={name, teaches, works for} and F2 ={name, age}. Facet counts are as

follows: countS(S2) = 2, countS(Tracy) = 1, countS(Paul) = 1, countS(U1) = 2,

countS(Mary) = 1, countS(19) = 1 and for all value counts, countV (⋅) = 1 holds.

Facet Characteristics Facets as described in definition 2.11 (p. 29), may be

characterized with respect to different angles. Hereafter, I introduce flat and non-

flat, predefined and non-predefined as well as attribute- and relation-based facets.

Note, however, these characteristics are overlapping in their nature.
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Figure 14: Facet Model Example

(i) Flat & Non-Flat Facets

One may distinguish flat or non-hierarchical facets, from facets that are non-

flat or hierarchical. A facet f̂ , is said to be non-flat iff ∃ f̃ ∶ f̃ ⊑ f̂ or f̂ ⊑ f̃

holds. If, on the other hand, no such f̃ exists, then f̂ is said to be flat or

non-hierarchical.

(ii) Predefined & Non-predefined Facets

With respect to the underlying language used to describe the resource space

SR, as well as the schema space SS, one may differentiate between predefined

and non-predefined relations and facets respectively. Please recall, I assume

RDF(S) as a description language for the data model. Now, given RDF(S),

there are several predefined relations, offering an interesting basis for a facet

definition. Most notably, there is rdf:type, rdf:label and rdfs:seeAlso. rdf:type

associates an instance with its class, enabling a categorization of resources

contained in SR. rdf:label, on the other hand, provides a human-readable name.

Lastly, rdfs:seeAlso links a given resource to other resources, allowing further

exploration. For a complete list of relevant predefined RDF properties, please

see table 1 (p. 102) in the appendix. Note, all other properties, defined during

ontology schema definition, are referred to as non-predefined.
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(iii) Attribute-based & Relation-based Facets

Recall, our label set LR comprises LRA, i.e. edges pointing to a data value, as

well as LRR, i.e. edges mapping to other resources. Therefore, I distinguish

facets according to whether they are based on ea ∈ LRA or er ∈ LRR. In the first

case, I refer to facets as attribute-based, in the latter, as relation-based.

Facet Value Characteristics As outlined above, facets may be characterized

with regard to different aspects. In the very same way, one may distinguish facet

values. Hereafter, I define flat and non-flat values respectively.

(i) Flat Value

Recall, according to definition 2.12 (p.31), facet values are given by the power

set of O∗(⋅), formally FV∗(⋅) ⊆ P (O∗(⋅)). Furthermore, depending on whether

this facet is attribute-based or relation-based, O∗(⋅) is either a subset of V R
E or

V R
V . Thus, a facet value fv is referred to as flat value iff fv ⊆ V R

V .

(ii) Non-Flat Value

On the other hand, a facet value fv is a so called non-flat value iff fv ⊆ V R
E ,

i.e. fv comprises entities16.

16 Further note that entities correspond to resources in RDF terminology.



Section 3

Facet Value Construction

3.1 Introduction

Motivation A major goal of faceted search is enabling an exploration of an un-

derlying resource space SR. In order to do so, users are provided with facets, each

having one or more values. However, depending on the facet, it does not make sense

to group every value by its own. Please recall our previously introduced assumption

2.3 (p. 21). Following this thought, users can not be excepted to be able to choose

very specific values, as they do not possess the necessary knowledge. I therefore ar-

gue that Ô∗ does not provide a useful basis for a facet value definition. In order to be

helpful, a system has to provide meaningful17 subsets of Ô∗, i.e. FV∗(⋅) ⊆ P (O∗(⋅)).
I think these subsets enable users to express their fuzzy knowledge and are thus es-

sential, with regard to our scenario. In contrast, given a vast facet value space,

state of the art systems simple present only top-ranked values and omit all others.18

Clustering, on the other hand, enables a system to visualize the entire value space

and thereby allows users to gain an overview, leading to a far better exploration

and understanding of a resource space. Also, I argue that by applying hierarchical

techniques, specification of fuzzy needs is further supported. More precisely, a hi-

erarchical structure enables users to iteratively articulate vague knowledge via drill

down operations. Thus, besides traditional clustering goals, namely intra- and inter-

cluster similarity, in the following, I will also target browsing support, i.e. what I

coined browse-ability.

Please recall, facet values may be flat, i.e. have no outgoing edges associated, or be

non-flat, i.e. have own relations or attributes (see section 2.3.3.3, p. 35). Hereafter,

17 Note, with meaningful, I refer to sets, sharing a certain pattern proximity.

18 In most cases, systems apply a count-based ranking heuristic.
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I distinguish between approaches for constructing non-flat values, on the one hand,

and for flat facet values, on the other. More specifically, I present approaches to

partition Ô∗, comprising either literals or resources, resulting in FV∗(⋅) ⊆ P (O∗(⋅)).

Problem Definition Before discussing related work, present in the literature, let

me first introduce the clustering terminology applied hereafter as well as a formal

problem definition. Based on [JMF99], I make use of the following concepts:

+ Definition 3.1. Pattern

“A pattern (or feature vector, observation, or datum) x is a single data item used

by the clustering algorithm. It typically consists of a vector of d measurements:

x = {x1, . . . , xd}”, cf. [JMF99].

+ Definition 3.2. Features

“The individual scalar components xi of a pattern x are called features (or at-

tributes)”, cf. [JMF99].

+ Definition 3.3. Class

“A class, in the abstract, refers to a state of nature that governs the pattern gener-

ation process in some cases. More specifically, a class can be viewed as a source of

patterns whose distribution in feature space is governed by a probability density spe-

cific to the class. Clustering techniques attempt to group patterns so that the classes

thereby obtained reflect the different pattern generation processes represented in the

pattern set.”, cf. [JMF99].

+ Definition 3.4. (Hard) Clustering

“Hard clustering techniques assign a class label li to each patterns xi, identifying its

class [. . . ]”, cf. [JMF99].

+ Definition 3.5. Distance Measure

“A distance measure (a specialization of a proximity measure) is a metric (or quasi-

metric) on the feature space used to quantify the similarity of patterns”, cf. [JMF99].

Note, since class is already used in our Semantic Web terminology, I will here-

after refer to this concept simply as cluster. Lastly, below please consider a formal

definition of the problem, I will address throughout this section.

1 Problem 3.1. Facet Value Clustering Problem

Given a facet f for a variable v, its values FVv(f) and a dissimilarity function
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d, this problem consists of finding a partitioning of FVv(f), so that d, the browsing

paradigm as well as the current result set are taken into consideration and associated

goals are met.

Components of a Clustering Task In accordance with [JD88], a typical clus-

tering process consists of parts, as briefly outline below:

(i) Pattern Representation

During this first step, the number of clusters and patterns, as well as the type,

number and scale of features, which may be used by an algorithm later on, is

specified. Optionally, a subset containing only the most effective features may

be selected, during the so called feature selection. Furthermore, features might

be transformed, via the feature selection, in order to produce novel and more

efficient features (cf. [JD88, JMF99]).

(ii) Pattern Proximity

The proximity of a given pair of patterns is often defined by means of a distance

function. E.g. given a vector space, such a distance may be estimated in

compliance with the well-known Euclidean distance. However, notice, there are

several ways introduced in the literature, addressing this problem (cf. [JD88,

JMF99]).

(iii) Clustering

Depending on the actual algorithm, a grouping, i.e. a mapping of a pattern to a

cluster, may vary significantly. A set patterns might be divided into partitions,

i.e. each pattern is associated with exactly one cluster, resulting in a so called

hard clustering. On the other hand, in case of a fuzzy clustering, an algorithm

may assign one pattern to several different clusters (cf. [JD88, JMF99]). For

further clustering variances, please see [JMF99].

(iv) Data Abstraction�

During the data abstraction phase, a dataset is represented in an easy and

compact manner. Note, easy in this context is used either with respect to

machine or human readability (cf. [JD88, JMF99]).

(v) Assessment of Output�

Assessment of output refers to a cluster validity analysis. It is intended to
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determine whether or not a given clustering algorithm produces a meaning-

ful output. However, in many cases a very specific and subjective notion of

optimality is used (cf. [JD88, JMF99]).

Note � to mark optional steps. Please see also figure 15 (p. 39), summarizing the

above outlined steps.

Figure 15: Components of a Clustering Task (based on [JMF99])

Clustering Intentions w.r.t. our Faceted Search Context Data clustering

is a quite popular research area, where a lot of work has been done. However, our

context is in some sense different, from those of other applications. Thus, before

looking at related work, I would like to first describe our goals, I wish to accomplish,

explicit.

- Strong intra-cluster similarity�

Clearly, I wish entities contained in one cluster to have a strong sense of

similarity, with respect to some predefined measure (see also [JD88]).

- Strong inter-cluster dissimilarity�

Also, I want the resulting clusters to have, in compliance with the same mea-

sure, a weak similarity in-between each other (see also [JD88]).

- Support of fuzzy knowledge�

With regard to user knowledge and an information needs, I intend an algorithm

to construct few clusters, in the best case, being approximately of equal size.

By doing so, I minimize the amount of information necessary, in order to make

a decision, given a set of facet values.
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- Support of partial knowledge�

Lastly, I also wish an algorithm to address users on an individual basis, thereby

supporting their, likely to be partial, knowledge. More precisely, users should

be involved in early stages of the process and resulting clusters should reflect

user knowledge the best way possible.

Please notice the former two aspects, marked by �, to represent common clustering

goals. Both intend for a clustering algorithm to produce, with respect to a given

similarity measure, meaningful groupings. However, the latter two, labeled with

�, directly follow the previous assumption 2.3 (p. 21). Recall, I assume users to

only issue information needs contained in QF
Need, i.e. fuzzy and unspecific needs, via

browsing.

Furthermore note, the concept of similarity here is used in a very abstract manner.

In particular, I do not assume a specific similarity function at this point in time. The

notion of similarity may be substantiated, using intuitions by [Lin98], as outlined

below:

- “The similarity between A and B is related to their commonality. The more

commonality they share, the more similar they are.”, cf. [Lin98].

- “The similarity between A and B is related to the differences between them.

The more differences they have, the less similar they are.”, cf. [Lin98].

- “The maximum similarity between A and B is reached when A and B are

identical, no matter how much commonality they share.”, cf. [Lin98].

Notice A and B to represent abstract entities to be compared.

3.2 Related Work

3.2.1 Overview

Please recall, I initially defined facet values, i.e. FV∗(⋅), as a subset of P (O∗(⋅)).
Therefore, with respect to clustering strategies, I wish to distinguish between facet

values being a set comprising resources or comprising literals. I argue that this dif-

ferentiation is necessary, since I intend to group similar items together. However,

resources and literals differ heavily, with regard to their structure. Recall, while
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literals are essentially flat values, typed according to XML schema, resources repre-

sent entities, having properties to other entities, or attributes, providing a further

characterization.

In the following, let me first present related work for the clustering of resources.

Afterwards, I will introduce other works, which may be used for grouping literals.

However, as I will show, those techniques suffer from significant shortcomings, given

our specific faceted search scenario. Please note, sometimes in the literature pattern

proximity is described by means of a similarity function, while other approaches

represent proximity via a distance measure. In the former case, similar patterns are

assigned higher values, while dissimilar ones are associated with lower numbers. In

the latter case, on the other hand, it is simply the other way around.

3.2.2 Clustering Approaches for Resources

Before looking at approaches, providing a distance measurement for RDF instances,

I wish to point out an issue addressed by [GEP08]. In their work, they argue that

defining a RDF instance in this context is a non-trivial problem. In other words,

given a resource space, the question arises, what constitutes a RDF instance, i.e.:

Where does one instance end and another begins? [GEP08] refer to this problem

as instance extraction. According to their work, there are several ways on how to

define an instance in a clustering context:

(i) Immediate Properties

[GEP08] argue that one solution would be, to only consider immediate prop-

erties to be relevant for a given resource, say r. However, they further outline

that, while being a straight-forward solution, it is also the most discriminative

one. Applying this approach, much important information concerning r could

be lost (cf. [GEP08]).

(ii) Concise Bounded Description

A more sophisticated approach, on the other hand, may wish to also consider

the graph structure as well as the node types (cf. [GEP08]). Concise Bounded

Description (CBD) e.g., uses a recursive algorithm for instance extraction.

Given an instance, say r, CBD takes r itself, its immediate properties and

recursively all properties, if the associated object is a blank node (cf. [Sti05]).

Another variant of this approach, would be, to also consider incoming edges
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to be relevant for r (cf. [GEP08]). However, again, [GEP08] also outline

shortcomings associated with this approach. More precisely, they argue that

CBD, since it is strongly depending on blank nodes, is not truly independent

from an underlying domain (cf. [GEP08]).

(iii) Depth-Limited Crawling

In compliance with [GEP08], another approach would be, to limit the subgraph

associated with a resource in question, by restricting the edge distance to a

given threshold value. In contrast to CBD, so [GEP08] argue, this approach

has the advantage, to be completely domain independent, since it does not rely

on specific node types (cf. [GEP08]).

To my knowledge, approaches for clustering RDF instance data may be categorized

with respect to three different angles. On a side note, the reader should notice that

there is currently much attention in the Semantic Web community, especially in the

area of ontology alignment, on measuring entity similarity at schema level. However,

hereafter, let me briefly introduce grouped approaches, targeting instance data.

(i) Vector Space Based Similarity

On the one hand, instances, represented as a RDF graph, could be projected

into a vector space model. Therefore, all distance measures applicable in this

traditional representation, may also be employed here. Obviously, the ques-

tions arises, how to transform resources into a high-dimensional projection.

One solution for this problem is proposed in [GEP08]. Here, the authors argue

that a simply mapping of RDF properties, to dimensions in a vector space is

not sufficient. Thus, they present a rather different method. First, given a

root node X and a graph G, [GEP08] introduce a notion of reachability as:

reachable(X,G) = {n ∣ (x, p, n) ∈ G} ∪ {n′ ∣n′ ∈ RG(n)}. Furthermore, with

shortestPath(R,X,G) denoting the shortest path from a given node R to a

node X in G, they define a feature vector for an instance, say n, as:

FV (n) = {shortestPath(Rn, x,Gn) ∣x ∈ reachable(Rn,G)} (3.1)

Now, they introduce the feature vector for a set of instances as union over all

individual vector sets.
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(ii) General Graph Based Similarity

Another perspective would be, to see RDF instance data simply as a graph,

without having additional semantic information. Given this assumption, many

existing distances measures, intended for node comparison in graphs, would be

applicable. Consider e.g. work done in [MGL00], where the authors com-

pare so called conceptual graphs. Note conceptual graphs to be quite sim-

ilar to RDF data, thus providing a good example for potentially suitable

metrics. Conceptual graphs comprise nodes standing for attributes, events

or entities as well as nodes being relations, associating two given nodes (cf.

[Sow84, Sow00]). In accordance with [Sow84, Sow00], a distance measure be-

tween two graphs, say G1 and G2, may be defined, with respect to a so called

overlap graph GC = G1 ∩ G2. To be more precise, GC contains overlap-

ping concept nodes as well as overlapping relation nodes. In a second step,

so [Sow84, Sow00] continue, a similarity value may be derived from GC , by

computing a combination of two different measures, namely the conceptual

similarity and the relational similarity. While the former estimates the degree

of similarity between concepts and actions in both graphs, the latter value

measures the similarity of concept interrelations, i.e. information about con-

cepts (cf. [Sow84, Sow00]). Please note these metrics to have been adopted to

RDF data, see [GEP04, GEP08]. Further note, there is much interesting work

present in the literature, for a survey on graph clustering see [Sch07].

(iii) Ontology Based Similarity

There has been a lot of work done on similarity measures in the context of ontol-

ogy alignment. Generally, these metrics rely strongly on rich semantic schema

data and, while obviously also working on graph structures, may therefore be

distinguished from the above mentioned graph clustering algorithms. Summa-

rizing these works goes clearly beyond the limits of this paper. For surveys

providing such an overview, please see e.g. [SE05, CSH06, KS03]. In order to

make it clearer to the reader, what kind of algorithms I subsume under this

category, allow me to briefly outline one approach by [MZ02], focusing solely

on instance data.

According to [MZ02], a similarity measure for resources may be defined with

regard to three aspects, namely:
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(a) Taxonomy Similarity (TS)

The taxonomy similarity value refers to the closeness of two instances, with

respect to their associated concepts and their positioning in the taxonomy.

More specifically, two concepts are compared by the number of common

super-classes. The bigger this overlap is, the more similar two concepts,

thus also their instances, are assumed to be (cf. [MZ02]).

(b) Relational Similarity (RS)

On the other hand, resources may be associated with further entities and

literals via incoming and outgoing edges respectively. Using a second mea-

sure, [MZ02] compare two given resources, say r1 and r2, with regard to

their associated entities. The authors assume r1 and r2 to be similar, if

they share relations to the same or similar resources. Note, this similarity

notion is recursively defined, thus, for avoiding cycles, a maximum depth

threshold is applied (cf. [MZ02]).

(c) Attribute Similarity (AS)

Lastly, following the above outlined thought, [MZ02] define an attribute

similarity, as the similarity of literals connected to the resources in ques-

tion. Obviously, since essentially being data values, such an estimation

may easily be computed, using traditional similarity measures, depending

on the literal type (cf. [MZ02]).

Finally, using the introduced similarity notions as well as given weights, say t,

r and s respectively, [MZ02] define the similarity of r1 and r2 as:

sim(r1, r2) = t ⋅ TS(r1, r2) + r ⋅ RS(r1, r2) + a ⋅ AS(r1, r2)
t + r + a (3.2)

Applying our instance definition as well as the described similarity measures, a

specific clustering algorithm may be employed. Note, in recent years, there has

been great interest in clustering, thus, a rich selection of techniques is available. One

commonly used approach, however, I will introduce as an example, is hierarchical

clustering. Given a set of n patterns, an agglomerative variant of a hierarchical

strategy, may be briefly described as (cf. [JMF99]):

- Compute Proximity Matrix

In a first step, each pattern is regarded as its own cluster. For these clusters, a
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so called proximity (n×n) - matrix, containing similarity values between every

cluster combination possible, is initially computed.

- Merge Clusters

During a second step, the two most similar clusters, with respect to a given

similarity function, are chosen and merged.

- Update Proximity Matrix

Now, for the reduced set of clusters, the proximity matrix is updated. Step

two and three are repeated, until only one single cluster remains.

Note, hierarchical clustering techniques are often based on single-link (see [SS73])

or complete-link (see [Kin67]) intuitions. However, a comparison of techniques cur-

rently present, is not within scope of this paper. For further details, please see

[JMF99, XW05].

3.2.3 Clustering Approaches for Literals

After the above provided overview of existing approaches for comparing resources,

in the following, I give the reader a survey of clustering techniques and similarity

measures concerning literals. Due to the fact that clustering is a topic of interest

for a vast community, there have been many approaches presented in the literature

for handling literals, i.e. data values (cf. [JMF99, XW05]).

Please recall, given a RDF data-source, one may have to deal with different types

of literals, subsumed under different feature categories. In compliance with [GD92],

features may be distinguished as follows:

(i) Quantitative features

- Continuous values, e.g. weight.

- Discrete values, e.g. number of inhabitants.

- Interval values, e.g. duration time.

(ii) Qualitative features

- Nominal (unordered), e.g. name.

- Ordinal (ordered), e.g. grade.

- Combinational, e.g. student to grade relation (name, grade).
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Now, depending on the associated feature category of data values in question, there

might be different similarity measures suitable (cf. [JMF99, XW05]). In the fol-

lowing, I will present exemplary measures for quantitative as well as qualitative

features:

(i) Quantitative features

Since continuous features are quite common in real-world data, allow me to

use these values as representatives for quantitative features in general. How-

ever, even with this restriction, there are still a number of popular measures

applicable. Below please find two well-known distance metrics, namely the

Minkowski as well as the Mahalanobis metric.

- Minkowski Metric

The Minkowski metric may be defined for two given pattern, say xi and

xj, as:

dp(xi, xj) = (
d

∑
k =1

∣xi,k − xj,k∣p)
1/p = ∥xi − xj∥p (3.3)

Note the well-known Euclidean distance metric for p = 2, to be variant

of equation 3.3 (p. 46) (cf. [JMF99]). For an application of this norm,

see e.g. [HBH00].

- Mahalanobis Metric

Furthermore, two continuous features may be correlated, thereby influenc-

ing the similarity measure between a given set of patterns. This problem

is addressed by the Mahalanobis metric. With xi and xj being patterns,

a similarity estimation is calculated as:

dM(xi, xj) = (xi − xj) ⋅
−1

∑xi − xjT (3.4)

where ∑ refers to the sample covariance matrix. Note dM(⋅, ⋅) to use

weights, based on variances and pairwise linear correlations of the associ-

ated features (cf. [JMF99]). For an exemplary implementation, consider

e.g. [MJ96].

(ii) Qualitative features

With respect to qualitative features, there is again a rich selection of mea-
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sures available in the literature. Thus, I will use strings as a common value

representing this category. Note strings to be considered as a nominal feature.

- Edit-distance-based measures

A well-known approach for computing the distance between two given strings,

is the so called edit distance. Approaches using this technique, a dissimilarity

score is based on edit operations necessary, in oder to transform one of the

given strings, say t1, into the other, say t2. A simple algorithm employing

this strategy is the Levenshtein distance. It is defined as the minimal amount

of insertion, deletion or substitution operations, needed to rewrite t1 as t2

(cf. [Lev65]). Other common approaches include the Hamming distance (see

[SK83]) or the Episode distance (see [DFG+97]).

- Token-based measures

Besides using edit operations as a basis for a similarity measure, one could

also argue that strings may be regarded as two multisets of letters, so called

tokens. Probably the most simple representative in this context is the Jaccard

similarity, first defined in [Jac12], as:

dJ(xi, xj) = 1 − ∣xi ∩ xj ∣
∣xi ∪ xj ∣

(3.5)

Note, another well-known approach falling under this category is e.g. the

cosine similarity (cf. [CRF03]).

Furthermore note the presented similarity intuitions to be only a very short sum-

mary, which is clearly not intended to be complete. For a more detailed overview,

please consider surveys present in the literature, see e.g. [JMF99, XW05]. For fur-

ther string metrics, on the other hand, consider [CRF03, Nav01].

With respect to the actual clustering algorithm, the above mentioned techniques

may also be applied, given data values. Again, a detailed discussion is not within

the scope of this paper, please see [JMF99, XW05] for further information.

3.2.4 Contribution

As mentioned earlier, facet values may either be based on literals or based on re-

sources. Thus, with regard to a faceted search application, one is in need of two al-
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gorithms, the former for clustering literals, while the latter is applicable for resource-

based values.

Concerning the first problem, i.e. literal clustering, I will present traditional simi-

larity measures, depending on the type of a particular range. More precisely, as a

clustering technique, I apply a well-known hierarchical, divisive clustering approach.

Thereby, I enable users to drill down into a set of values, depending on their indi-

vidual knowledge. In other words, I allow users to issue fuzzy knowledge and thus

fulfill the earlier stated intuitions.

However, I see the main contribution in my solution for the latter task, namely the

clustering of resources. While the above introduced works mainly target intra- and

inter-cluster similarity, I think that, with regard to our use case, further goals need

to be taken into consideration. Please recall the above presented additional intu-

itions to be (i) support of partial knowledge as well as (ii) support of fuzzy knowledge.

Remember those to follow directly from our previous assumptions, concerning the

search process and the user knowledge (see assumption 2.3, p. 21). Given these

extra goals and their background, it becomes obvious that the feature selection step

is a key aspect within this context. With respect to the algorithm itself, I argue

that resources may be regarded as abstract entities, being described by their out-

going properties, i.e. by their relations and attributes. In other words, resources to

be clustered, may simply be seen as a set of entities, which is characterized by its

facets. I therefore conclude that facets should be treated as features. Each property

and facet respectively, describes its associated instance, thus providing a suitable

basis for clustering. Second, I argue that due to the partial knowledge, the feature

selection phase is crucial and has to be controlled solely by an individual user. More

specifically, users should be enabled to choose a facet, which they have knowledge

about, resulting in a system grouping associated resources entirely with respect to

this feature. Notice, however, if the selected facet is a based on a relation, its range

will contain resources, which in turn will be described and clustered in accordance

with their facets. By applying such a strategy, as the evaluation will show, highly

complex queries may be constructed via simple faceted search interactions. In other

words, I argue that clustering, given a faceted search system, should essentially boil

down to a feature selection, i.e. a facet ranking problem. Let me emphasize that

this way, complex user information needs may be addressed, while no additional

paradigms are necessary.
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3.3 Literal Clustering

3.3.1 Overview

In a first step, I will define dissimilarity metrics and a clustering technique with

regard to literals. Recall, by doing so, I establish the necessary partitioning of Ô∗,

in order to construct FV∗(⋅) ⊆ P (O∗(⋅)).
As mentioned earlier, a clustering approach and, in particular, a similarity mea-

sure to be applied, for a given set of literals, depends on their assigned type. Also,

please recall that I assume a data-source to be represented by RDF(S). However,

given this framework, there are no built-in datatypes (cf. [MM04]). More specif-

ically, datatypes are identified by a Uniform Resource Identifier (URI), linking to

an externally described concept.19 These type concepts are then defined using the

Extensible Markup Language (XML) Schema framework (cf. [MM04]).

In compliance with [MM04], a datatype may be defined as:

+ Definition 3.6. XML-S Datatype

“In this specification, a datatype is a 3-tuple, consisting of a) a set of distinct values,

called its value space, b) a set of lexical representations, called its lexical space, and

c) a set of facets that characterize properties of the value space, individual values

or lexical items”, cf. [BM04].

With respect to our context, the former two are of particular interest. [BM04] define

these concepts as outlined below:

(i) Value Space

“A value space is the set of values for a given datatype. Each value in the value

space of a datatype is denoted by one or more literals in its lexical space”, cf.

[BM04].

(ii) Lexical Space

The so called lexical space comprises a set of strings, being used to represent

values contained in a value space. More precisely, only elements of a given

lexical space, may be used as representatives for their corresponding elements

in the value space (cf. [BM04]).

19 Note, rdf:XMLLiteral to be an exception of this rule. RDF(S) makes use of this built-in

datatype in order to express XML content as a literal value (cf. [MM04]).
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(iii) Lexical-to-value Mapping

Clearly, after defining a lexical as well as a value space, a relation between

these two sets is necessary. To be more precise, such a mapping specifies, which

element in the values space, a given string contained in the lexical space, is

associated with (cf. [BM04]).

For further information concerning the RDF datatype concept or related issues,

please see [MM04]. However, with this background knowledge, let us take a closer

look at the actual datatypes being defined using XML Schema. According to [BM04],

one may distinguish predefined, so called primitive, from non-predefined, i.e. derived,

datatypes.

+ Definition 3.7. Primitive Datatypes

Datatypes, which are not defined on basis of other existing types, may be referred

to as being primitive (cf. [BM04]).

+ Definition 3.8. Derived Datatypes

On the other hand, if a datatype is defined by means of other types, it is coined

derived (cf. [BM04]).

Clearly, covering all possible datatypes by a similarity measures is not possible.

Thus, I will focus solely on common primitive types. However, please note this defi-

nitions to be based on well-known metrics and easily expandable to cover additional

types, if necessary. More precisely, hereafter, I introduce measures for decimal, float

and double, string, time as well as date. For a complete hierarchy of primitive

datatypes present in XML Schema, please see figure 23 (p.103). By means of these

metrics, I then apply a traditional, however slightly adapted, divisive hierarchical

clustering technique.

3.3.2 Definition of a suitable Similarity Measure

In a similar manner, as in the previous section, I first will define type-specific simi-

larity measures. Then, during a second step, I will introduce a clustering technique,

making use of these metrics.
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3.3.2.1 Similarity Notion for a single Value

Please remember that facet values are defined as FV∗(⋅) ⊆ P (O∗(⋅)) (see definition

2.12, p. 31). In other words, values I intend to compare are generally sets, each

containing one or more literals. Thus, first of all, let me define a similarity notion

with respect to literals, i.e. single values. Afterwards, I will extend this notion to

also cover sets of literals, i.e. values contained in FV∗(⋅).

XML-Schema Type String In accordance with [BM04], a string in this context

may be seen as:

+ Definition 3.9. String

“The string datatype represents character strings in XML. The value space of string

is the set of finite-length sequences of characters [. . . ]. A character is an atomic unit

of communication; it is not further specified except to note that every character

has a corresponding Universal Character Set code point, which is an integer.”, cf.

[BM04].

Please note that literals being typed as strings are flat, i.e. they only have one feature

associated. Recall, one objective for clustering to be the support of fuzzy knowledge.

In order for users, however, to issue their unspecific knowledge and information needs

respectively, clusters need to be as intuitive and as self-explanatory as possible. On

the other hand, a very well-known way of sorting strings, is given by their lexical

order. With respect to our string distance, I therefore argue that an edit-based

approach may suffice, however, editing costs should be based on the lexicographic

distance between the associated letters. Using such an approach, given two literals,

say s1 and s2, a similarity value would be correlated with their lexical positioning in

a given alphabet, say Σ. Following this thought, a distance between s1 and s2 may

be written as:

disa(s1, s2) =
h

∑
i=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if s1(i) = s2(i)

σ−i(ρ(s2(i)) + ρ(s1(i))) otherwise

+
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑∣s2∣j = ∣s1∣ σ
−jρ(s2(j)) if ∣s1∣ ≤ ∣s2∣

∑∣s1∣k = ∣s2∣ σ
−kρ(s1(k)) otherwise

(3.6)
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with h = min{∣s1∣, ∣s2∣}, σ = ∣Σ∣ standing for the size of the alphabet used, s∗(j)
referring to the jth character in string s∗ and ρ being a relation, mapping characters

to their lexical position in Σ.

Note that by employing this metric in combination with an hierarchical strategy, the

cluster representation problem may easily be addressed. More precisely, one might

simply use an interval-like naming scheme, i.e. visualize a given cluster by its left

and right border value.

XML-Schema Basic numerical Types As mentioned earlier, most common

numerical types to accrue in real-world data, I think to be decimal, float or double.

Notice that these types are also the most basic ones, according to the hierarchy

defined in [BM04] (see figure 23, p. 103). Further note the below defined measure

to be intended to be generic. Thus, if provided with more specific types, e.g. a

positiveInteger, measures may easily be adapted. However, before discussing our

similarity notion any further, allow me to first outline how decimal, float and double,

may be defined in compliance with [BM04]:

+ Definition 3.10. Decimal

“Decimal represents a subset of the real numbers, which can be represented by

decimal numerals. The value space of decimal is the set of numbers that can be

obtained by multiplying an integer by a non-positive power of ten, i.e., expressible

as i × 10−n where i and n are integers and n ≥ 0. [. . . ] The order-relation on decimal

is the order relation on real numbers, restricted to this subset.”, cf. [BM04].

+ Definition 3.11. Float

“Float is patterned after the IEEE single-precision 32-bit floating point type [. . . ].

The basic value space of float consists of the values m × 2e, where m is an integer

whose absolute value is less than 224, and e is an integer between −149 and 104,

inclusive. [. . . ] The order-relation on float is: x ≤ y iff y − x is positive for x and y

in the value space. [. . . ]”, cf. [BM04].

+ Definition 3.12. Double

“The double datatype is patterned after the IEEE double-precision 64-bit floating

point type [. . . ]. The basic value space of double consists of the values m × 2e, where

m is an integer whose absolute value is less than 253, and e is an integer between
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−1075 and 970, inclusive. [. . . ] The order-relation on double is: x ≤ y iff y − x is

positive for x and y in the value space.[. . . ]”, cf. [BM04].

Note, with respect to those definitions, numerical-based literals only comprise one

continuous feature. Now, having a closer look at this problem, one might notice that

a solution is actually quite simple. Since being well-known and accepted, I decided

to use a traditional approach for these patterns, namely the Euclidean distance.

Thus, given two literals, say n1 and n2, a distance measure is given by:

disa(n1, n2) = (
1

∑
k =1

(n1(k) − n2(k))2)1/2 (3.7a)

= ∣n1(1) − n2(1)∣ (3.7b)

where n∗(j) refers to the jth feature of pattern n∗.

XML-Schema Type Time In compliance with [BM04], datatype time is given

by:

+ Definition 3.13. Time

“Time represents an instant of time that recurs every day. The value space of time

is the space of time of day values as defined in 5.3 of [ISO 8601]. Specifically, it is

a set of zero-duration daily time instances.”, cf. [BM04].

However, targeting at real-world data, which is generally noisy and incomplete, I

assume time-type literals to be three-dimensional. In other words, I make use of

common dimensions only, i.e. hour, minute, and second. Again, I apply a standard

distance measure, more precisely, the Euclidean distance. Thus, given two literals,

say t1 and t2, I may define our notion of dissimilarity as:

disa(t1, t2) = (
3

∑
k =1

(t1(k) − t2(k))2)1/2 (3.8)

with t∗(j) being the jth feature of t∗.

XML-Schema Type Date [BM04] define the date XML Schema type as follows:

+ Definition 3.14. Date

“Date represents a calendar date. The value space if date is the set of Gregorian

calendar dates as defined in 5.2.1 of [ISO 8601]. Specifically, it is a set of one-day
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long, non-periodic instances [. . . ], independent of how many hours this day has.”,

cf. [BM04].

Note, just like the above introduced time type, date comprises several dimensions

or features. However, I again argue that in most applications noisy and incomplete

data is being used. Therefore, I only expect the most common features, i.e. year,

month and day, to be present. Given two dates, say d1 and d2, this leads to a similar

problem as before, so I may apply the Euclidean distance notion, resulting in:

disa(d1, d2) = (
3

∑
k =1

(d1(k) − d2(k))2)1/2 (3.9)

where d∗(j) stands for the jth feature of d∗.

3.3.2.2 Similarity Notion for Value Sets

In the above section, I outlined how similarity may be defined for single literals.

However, when considering sets, containing more than one literal, one may need to

extend this notion. For clarification purposes, please consider example 3.1 (p. 54).

. Example 3.1. Please find figure 16 (p. 54) presenting nine clusters. Consider

e.g. S, being one big cluster, containing three singleton sets, namely {Si}i ∈ {1,2,3}.
Furthermore, a second large cluster, say T , is given, comprising again singleton sets,

i.e. {Tj}j ∈ {1,...,4}. Note that a similarity, or to be more accurate, a dissimilarity

value, between any of the singleton sets in S or in T may be computed as discussed

earlier. However, the question arises, how a similarity between the big clusters, i.e.

S and T , might be defined.

Figure 16: Generic Example for a Similarity Notion w.r.t. Sets
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Clearly, this problem is well-known in the literature and various solutions would

be applicable. However, hereafter, allow me to briefly describe two traditional ap-

proaches, which could be easily integrated.

(i) Single-Link

According to [SS73], a distance between two given clusters, say c1 and c2, may

be described as minimum distance value of all distances, between a pattern

contained c1, while the other element being in c2.

(ii) Complete-Link

On the contrary, [Kin67] argue that the dissimilarity of c1 and c2, may be rep-

resented as maximum value of all dissimilarities, between a pattern contained

c1 and one in c2.

Clearly, other known solutions may also be employed here (see e.g. [JMF99, XW05]).

However, as I will show in the next section, with respect to the clustering technique

applied, a single-link strategy makes the most sense.

3.3.3 Hierarchical Clustering

Quasi-Order First of all, allow me to shortly introduce a quasi-order, defined on

a set of literals, say L with L ⊆ O∗(⋅). By a quasi-order, I mean a relation, say ⪯,

on a set, say M , satisfying constraints as shown in equation 3.10a and 3.10b below:

a ⪯ a reflexivity (3.10a)

a ⪯ b ∧ b ⪯ c Ô⇒ a ⪯ c transitivity (3.10b)

This relation, in our context denoted by
L⪯, may be defined on L, depending on the

specific literal datatype. Note, I again consider only types, I assume to be common,

namely the basic numerical types, string, time as well as date. Further note, however,

definitions given below, may easily be adapted to cover additional types.

(i) XML-Schema Type String

Let L be a set of k strings, say L = {si}1≤ i≤k as well as a given underlying

alphabet, say Σ, with Σ having a quasi order defined, with regard to a relation

⪯. Then a string, say si with ∣si∣ = m, may be seen as one element of Σm =
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Σ × . . . × Σ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m

. In conclusion, for two given strings, say s1 and s2 with length m,

our relation
L⪯ may be defined as:

(s11, . . . , s1m) L≺ (s21, . . . , s2m)

⇕

∃ j ∶ s1j ≺ s2j ∧ ∀h ≤ j ∶ s1h ∼ s2h

(3.11)

Note this definition to be easily expandable, in order to compare strings of

arbitrary lengths. To be more precise, one may add a new symbol to Σ,

referring to the empty string, say ε. Further, ε might be defined as first symbol

in Σ, with respect to ⪯. Now, given strings, say s1 and s2 with ∣s1∣ = n and

∣s1∣ = m and n ≤ m, for applying equation 3.11 (p. 56), s1 is rewritten as s̃1,

with s̃1 = s1 ⊕ ε ⊕ . . . ⊕ ε
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m - n

, ∣s̃1∣ = m and ⊕ being a concatenation operation

defined on Σ.

Notice that I defined
L⪯ based on a lexicographic order for an alphabet Σ.

Obviously, given Σ being quasi ordered, L = {si}1≤ i≤k, with respect to relation
L⪯, satisfies above stated constrains.

(ii) XML-Schema Basic numerical Types

In this context, please reconsider the defined order relations for basic numerical

datatypes (cf. [BM04]) as stated above, i.e.:

- Decimal

“[. . . ] The order-relation on decimal is the order relation on real numbers,

restricted to this subset.”, cf. [BM04].

- Float

“[. . . ] The order-relation on float is: x ≤ y iff y − x is positive for x and

y in the value space.[. . . ]”, cf. [BM04].

- Double

“[. . . ] The order-relation on double is: x ≤ y iff y − x is positive for x

and y in the value space.[. . . ]”, cf. [BM04].

Note, since real numbers are totally ordered, i.e. satisfy our quasi-order cri-

teria, defining a relation
L⪯ for decimal-typed literals is trivial. On the other
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hand, given the order defined for float or double types, it is obvious, they also

fulfill equations 3.10a and 3.10b (p. 55). In conclusion, one may introduce a

relation
L⪯ for L = {ni}1≤ i≤k, with ni being a numerical-based literal, via the

underlying relations for decimal, float and double respectively.

(iii) XML-Schema Type Time

Concerning the latter two types, i.e. time and date, notice the problem of

defining a relation
L⪯, to be slightly different. In both cases, data provided has

multiple features. Considering time as a given type, I again assume to have

three features given, namely hour, minute and second. Each feature has its

value space as a subset of N. Obviously, there is an order relation present, due

to the implied semantics in time. One may formalize this relation, say ⪯, for

two given time values, say t1 and t2, as:

t1 ≺ t2 ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t1(1) < t2(1))∨

(t1(1) = t2(1) ∧ t1(2) < t2(2))∨

(t1(1) = t2(1) ∧ t1(2) = t2(2) ∧ t1(3) < t2(3))

(3.12)

where t∗(j) denotes the jth feature value of pattern t∗, while the first feature

refers to the hour dimension, the second one to minute and the last to second.

Thus, an order-relation
L⪯ for a set of time literals, say L = {ti}1≤ i≤k, can be

defined, based on the relation ⪯ given above. Clearly,
L⪯ fulfills our quasi-order

conditions.

(iv) XML-Schema Type Date

In a very similar manner, one may introduce a relation
L⪯, given set of date-

based literals, say L = {di}1≤ i≤k. Again, I define
L⪯ via its underlying semantics.

Some of the definitions and relations discussed above may seem trivial or even un-

necessary to the reader. I, on the other hand, argue that there might be types,

especially when considering complex XML Schema types, where such a relation
L⪯

is non-trivial. Thus, one should be careful, when assuming literals to have an order

implied.



3 FACET VALUE CONSTRUCTION 58

Interdependencies of Quasi-Order & Dissimilarity Measures The reader

should be aware that, in order for the presented approach to make sense, there have

to be interdependencies between an order relation and the similarity measures in-

troduced earlier. More precisely, due to the sorting process being applied before the

distance measurement, similarities between certain pairs of values are not taken into

consideration. Given n values, say {v1, . . . , vn}, instead of calculating n2 distances,

one only computes n−1 values, namely those in-between neighboring literals. Obvi-

ously, given a single-link strategy, this only results in meaningful clusterings, if the

equation below holds:

vi
L⪯ vj

L⪯ vk ⇐⇒ dis(vi, vj) ≤ dis(vi, vk) (3.13)

However, with regard to our type-specific order relations as well as the type-specific

dissimilarity measure, equation 3.13 (p. 58) clearly is satisfied. Unfortunately, a

detailed discussion is not within the scope of this paper.

Divisive Clustering Technique As very briefly mentioned before, the applied

clustering technique is based on a traditional divisive hierarchical approach. Recon-

sidering the additional clustering intuitions, i.e. the support of partial knowledge as

well as fuzzy knowledge, I adjusted it slightly, in order to better suit the resulting

needs.

Now, let us discuss the algorithm applied in more detail. Hereafter, I will first

address important phases separately, followed by a pseudocode describing their in-

teraction as well as examples, further clarifying the procedure.

- Literal Sorting

Given a set of literals, say L with L = {li}1≤ i≤k, I start by sorting L with regard

to
L⪯. Remember, depending on the literal type, our relation

L⪯ may be reduced to

an underlying order, say ⪯. This results in a tuple, say L̃ with ∀ i ∶ li
L⪯ li+1. Given

such a sorting, literals may be regarded as projected into an one-dimensional

space. Constructing intuitive clusters being the goal, I argue that in this space,

users tend to associate the distance between two sets, as the distance between

their borders. Therefore, while other approaches are still applicable, I thought

a single-link strategy to be most suitable.
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- Dissimilarity Computation

In a next step, I compute dissimilarities, say d∗, in-between all neighboring

literals in L̃. The resulting {di}1≤ i≤k−1 are stored in a queue, say Q, and sorted

with respect to their value.

- Split Clusters

The algorithm starts with all literals being contained in one big cluster. The

current maximum dissimilarity, say dmax(li, lj), is removed from Q and a cluster,

say ĉ, containing li and lj, is split. Note, by splitting ĉ, I mean that ĉ is dissolved

and instead two new clusters, say ĉ1 and ĉ2, are being added. ĉ1 is formed in

such a manner that it contains every literal lh with: lh ∈ ĉ ∧ lh
L⪯ li. Analogously,

ĉ2 may be constructed.

This step is to be repeated, until a halt criterion is met. To be more specific, the

stop criterion is satisfied, if every cluster contains only one single element or if

users have no further knowledge, i.e. perform no further drill down operations.

Note that I employ a fixed branching threshold, say k̂, thus, if a hierarchical

level is being constructed, always k̂ clusters are split.20

Please also see example 3.2 (p.59), in order to clarify the outlined steps.

. Example 3.2. Given a set T = {ti}1≤ i≤7, comprising literals, see figure 17(a)

and 17(b) (p. 60), for details on how our approach groups T . More precisely,

applying the above technique, first T is sorted in compliance with a defined order

relation, say ⪯. Afterwards, the pairwise distances between each two neighboring

literals are being calculated as well as sorted in a descending manner. Now, at each

iteration during the clustering, the maximum distance, marked in red, is fetched

and the containing cluster is being split.

After this generic example, find below a more practical one (see example 3.3, p. 59).

. Example 3.3. Mary, the computer science student, is still searching in her free

time for famous researchers. While talking to her friend Peter the other day, he

mentioned some prestigious scientists. Unfortunately, Mary can’t recall their names

precisely. She is, however, sure that one name started with letters ’al’. Thus, when

given a result containing a set of researchers, Mary chooses the facet name. With

20 Clearly, at leave level, there might be less than k̂ clusters left to split.
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(a) Divisive Clustering Algorithm

(b) Resulting Cluster Tree

Figure 17: Generic Example for Literal Clustering

regard to our clustering technique, Mary is first presented a cluster containing all

names. She drills down, specifying the first letter and therefore finding a subset

of all names starting with ’a’. She continuous her search, slowly articulating her

needs, until reaching a partitioning {Allan, Allen, Alonzo}. Given this set, Mary is

sure, Peter mentioned Allen the other day, so she continuous exploring the work of

Frances E. Allen.

Please also find a pseudocode implementation of the outlined algorithm, provided

in the appendix (see algorithm 6, p. 104). In particular, the reader should notice,

how tightly users are incorporated in the whole clustering process. By means of rich

user-system interactions, individual, maybe fuzzy, knowledge is articulated.

Concluding Remarks Hereafter, allow me to make a few final remarks, targeting

mainly at a cluster representation as well as the above mentioned intuitions, with



3 FACET VALUE CONSTRUCTION 61

regard to well suited clustering algorithms.

(i) Cluster Representation

One benefit of the presented approach is that cluster representation is reduced

to a trivial problem. More precisely, I argue that, given a set of clusters, an

intuitive representation would simply be provided, by a concatenation of the

left and the right border value. Recall that during the first step, literals were

sorted in accordance with an order relation
L⪯. Therefore, when being provided

with such a labeling scheme, users may intuitively conclude, clusters to contain

all values in-between these given bounds.

(ii) Genericness of our Approach

Also, let me point out the genericness of the outlined solution. Note that,

while restricting the literals to a small set of handpicked datatypes, which

are assumed to be common, others may be easily integrated. Furthermore,

no assumption with regard to a particular similarity measure, to be applied

during the clustering process, has been made. Thus, the reader should regard

the above represented metrics to be solely used for exemplary purposes. Lastly,

note our above defined notion of an order
L⪯, to be completely application-

specific. Any intuitive order, fulfilling the basic constraints of a quasi-order,

may be employed.

(iii) Satisfying above given Clustering Intuitions

Recall before stated intuitions for a good clustering approach, given our faceted

search context. Hereafter, let me outline how the provided approach may meet

these expectations.

- Traditional Clustering Goals

First, let us take a look at the traditional goals, i.e. strong intra-cluster

similarity as well as strong inter-cluster dissimilarity. I respected these

intuitions by imposing similarity measures and constructing a cluster hier-

archy by splitting the most dissimilar clusters in half. Thus, the approach

aims at minimizing the dissimilarity within one grouping of literals, while

resulting in low similarity values in-between clusters.

- Support of fuzzy knowledge

Remember, I adapted a divisive clustering strategy, i.e. first one big
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cluster is being presented, which is then step-by-step broken into sub-

clusters, as users drill down. By using such an approach, I intended to

support fuzzy and unspecific knowledge. More precisely, users are able

to fully control the granularity, i.e. specificity, of the range clustering, by

deciding to drill down into a given cluster or not.

- Support of partial knowledge

Since literals are flat values, i.e. have no further objects associated, this

intuition is not applicable here.

3.4 Resource Clustering

3.4.1 Overview

After the presented discussion concerning dissimilarity metrics and clustering tech-

niques applicable to literals, hereafter, resources will be addressed in a similar man-

ner. Again, the reader should recall that by doing so, I establish a partitioning of

Ô∗, leading to FV∗(⋅) ⊆ P (O∗(⋅)), as defined in the previous section.

Please also reconsider the presented related work, with respect to resource cluster-

ing. Specifically remember, there are two main problems to be faced, namely the

instance extraction as well as the similarity definition. In the following, I will present

an approach, by first describing a notion of resource extraction, secondly outlining

how similarity with respect to these patterns may be defined and lastly introducing

a concrete clustering technique. Note, however, I still keep the overall intuitions in

mind and intend to pursuit these goals.

3.4.2 Reduction to a Facet Ranking Problem

Instance Extraction Similar to the work presented in [GEP08], I also regard

instance extraction as the first problem to be addressed, in order to cluster a set of

resources. Note that this step may be subsumed under what [JMF99] refer to as

pattern representation.

Please recall that [GEP08] outlined three basic solutions with regard to this task, i.e.

(i) selection of immediate properties, (ii) usage of the Concise Bounded Description

approach or (iii) a depth-limited crawling strategy (see also section 3.2.2, p. 41).

However, given our previously stated assumptions concerning user knowledge, I
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think these approaches to be quite limiting. More precisely, I argue that a suitable

approach should be strongly depending on the actual user knowledge, rather than on

some generic constraints. Reconsider, I intend to use clustering in an application-

specific context, namely as a browsing strategy within a faceted search system.

Thus, one may wish an algorithm to be flexible in a sense that instances match

individual knowledge boundaries. I refer to this notion of resource extraction as

being user-specific. For clarification, please consider example 3.4 (p. 63) below.

. Example 3.4. Continuing our earlier examples, in figure 18 (p. 64), please find

a user-specific extraction illustrated. Note that the same instance, i.e. professor

P1, is provided to both users. However, depending on their knowledge, the resulting

patterns differ. With regard to Mary, who is able to identify P1 by her name, only the

name feature is relevant. Peter, on the other hand, has no knowledge concerning the

professor’s name, however, he does know that she is working at a specific university,

say university1. Thus, for Peter only her university, to be more precise, its name,

is important.

For enabling such a user-specific process, I think the faceted search paradigm might

prove suitable. Much like a result space (see definition 2.10, p. 29), a given set

of resources to be clustered, may be described by their outgoing edges. Note, this

set is hereafter referred to as RC . Following these thoughts, outgoing attributes or

relations, may provide a basis for a facet definition as introduced earlier (see section

2, p. 17). Therefore, I argue that the instance extraction process should be user-

controlled and supported via facet operations. To be more precise, instances in RC

might be described by their facets, enabling users to iteratively specify patterns, they

are interested in. Note relation-based facets to be pointing at resources. Thus, to be

consistent, these resources should again be described by their associated properties,

i.e. via their facets. In other words, by selecting a facet path, i.e. iteratively choosing

properties, users may extract patterns on an individual basis.

. Example 3.5. Please reconsider above example 3.4 (p. 63): Using the proposed

extraction strategy, Mary may simply select a facet name. In contrast, Peter, having

a different background, prefers to choose works-for, followed by name, resulting in

another facet path, i.e. (works-for, name).

However, before defining a similarity measure, allow me to point out key aspects of
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(a) User knowledge

(b) Resulting instance extraction

Figure 18: User-specific Instance Extraction

this strategy:

(i) Path-shaped Structure of Resource Patterns

It is important for the reader to observe that the resulting pattern structure

will always be path-shaped. To be more specific, an instance may be described

by multiple connected properties, chosen via facet operations. However, there

will be no node contained in this graph, having more than one outgoing edge.

On the other hand, notice, due to the iterative nature of our overall search

process, users may define arbitrary tree patterns over time.
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(ii) Attribute-based Description of Resources

Also note that RC , as well as associated sets comprising resources, are charac-

terized via their outgoing properties. Therefore, resources in RC are described

either by their own attributes or by related resources, which in turn may be

characterized by associated attributes or further instances. Seen in an abstract

way, a path specifying a given instance, may only terminate, when reaching

an attribute.21 At first glance, such an attribute-based description might seem

odd to the reader. I, on the other hand, argue that this is a quite intuitive way

of representing resources. I see an attribute generally as a mean of providing

further information directly associated with an entity. A relation, on the other

hand, I think of as a link to other entities, which in turn may be characterized

via attributes or associated with other entities using relations. Thus, eventu-

ally, attributes characterize entities, while relations solely link them to each

other.

Notice, given a set of resources RC , a n-step facet path, denoted by F n and leading

to a literal set, say Â, may be written hereafter as RC
FnÐ→ Â. Furthermore, the

reader should be aware that this extraction process is a key element in the overall

clustering approach. More precisely, the similarity measure as well as the clustering

technique presented earlier, may easily be adapted to this use case. Thus, I argue

that our clustering task, may actually be reduced to a ranking problem. In the

following, allow me to discuss these steps in more detail.

Similarity Measure Recall, by applying the faceted search paradigm, I essen-

tially enable users to describe a set of resources by means of an attribute, associated

via a n-step facet path. Recalling the initial problem, namely to measure similarity

between resources and to cluster accordingly, one may now redefine the similarity

measure. First, however, let me introduce the notion of RC
FnÐ→ Â more accurately:

ϑ(v,F n) = {v̂ ∈ V R
V ∣ ∃ (v1, . . . , vn) ∶ e1(v, v1), . . . , en(vn, v̂) ∧

∀ j ∶ ej b= fj, 1 ≤ j ≤ n ∧

∀k ∶ vk ∈ V R
E 1 ≤ k ≤ n}

(3.14)

21 Please note, for resources having no outgoing attributes, simply a new attribute pointing at

their URIs might be added.
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with v ∈ RC and fi ∈ F n being the ith facet, contained in a given facet path. Note

that data values mapped to by function ϑ, are connected to resource v ∈ RC via

n hops and are thus suitable to characterize v. Further note that, since F n being

selected by users, this description is user-, more precisely, knowledge-specific. In

conclusion, a similarity measure for two given resources may be rewritten as the

similarity between user-specific, associated attributes. Formally, it may be written

as:

disr(vi, vj) = disa(ϑ(vi, F n), ϑ(vj, F n)) (3.15)

with vi, vj ∈ V R
E and F n referring to a user-selected facet path. Since ϑ gener-

ally maps to a set of data values, note that disa(⋅, ⋅) compares two sets with each

other. However, this is a problem we already addressed, please reconsider the above

discussion in section 3.3.2.2 (p. 54).22

Hierarchical Clustering Concerning the clustering technique, I argue that a

hierarchical, divisive approach might prove suitable. Remember, using such a tech-

nique, in the beginning one big cluster is constructed, which is then iteratively

divided into sub-clusters, by means of drill down operations. With regard to the

intuition of letting users slowly specify their knowledge, one may wish an algorithm

to stop, if users have no further information. Thus, I argue such a top-down ap-

proach to provide meaningful clusterings, given this background. Furthermore, the

reader should notice that the interaction between instance extraction, on the one

hand, and similarity measuring and clustering, on the other hand, is rather fluent.

More specifically, after a user-specific instance extraction, i.e. a facet path selection,

leading to an attribute of interest, resources are instantly clustered in accordance

with this attribute.

To illustrate this process, especially with regard to the actual clustering phase, please

consider example 3.6 (p. 66).

. Example 3.6. Continuing example 3.4 (p. 63) as well as example 3.5 (p.

63): Given a set of resources, say {P1, P2, P3}, Mary chooses a facet path (name),

resulting first in a clustering {{P1},{P2, P3}} and followed by {{P1},{{P2},{P3}}},

on the next level. Note, the second tree level is only computed, if Mary drills down

22 Notice, in my implementation, I applied a single-link approach.
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into [Paul, Phil]. With respect to Peter, a completely different grouping would be

given. Recall Peter to only remember the name of the university and therefore

selecting a facet path (works for, name). Also notice, given a resources description

via this path, {P1, P2} are not distinguishable.

Figure 19: User-specific Resource Clustering

3.4.3 Concluding Remarks

In the following, allow me to briefly present final remarks, concerning resource clus-

tering.

(i) Cluster Representation

With respect to their representation, clusters containing resources may be vi-

sualized in the same manner, as groups comprising literals. However, when

dealing with resources, additionally the facet extraction process needs to be

addressed. As outlined before, this problem may be solved by means of the

faceted search paradigm, i.e. via a facet path selection.

(ii) Genericness of our Approach

Concerning the adaptability of our clustering strategy, the same benefits as for

the literal clustering apply here. Note, however, the instance extraction step to

be compatible with any facet ranking mechanism. Thus, providing additional

means for a domain-specific configuration.



3 FACET VALUE CONSTRUCTION 68

(iii) Satisfying above given Clustering Intuitions

Lastly, I would like to outline, how the presented strategy meets our overall

clustering intuitions.

- Traditional clustering Goals

Since I reduced the initial resource clustering problem to a facet ranking

and attribute clustering task, the same arguments as discussed above do

apply here.

- Support of fuzzy knowledge

Again, as a top-down clustering approach is supported, users may articu-

late their information needs in a quite fuzzy or, via drilling down, in very

specific manner.

- Support of partial knowledge

With respect to clustering resources, notice this aspect to target at a

key point. Consider that by giving users full control over the instance

extraction process, they are able to specify their knowledge precisely. By

means of a user-selected facet path, a basis for a similarity measure as

well as a clustering process may be provided, while supporting partial

user information completely.

3.5 Cluster Tree

It is very important for the reader to realize that the structure established by the

described clustering strategies is tree-shaped, thus leading to a notion of a so called

cluster tree. More precisely, flat, as well as non-flat values, are in their nature

hierarchical. Therefore, given a facet f , the partitioning of its values results in a

cluster tree, say Tree(f). Each node n in Tree(f) corresponds to a facet value,

with V (n) denoting literals or resources contained in this cluster. Furthermore, the

current result set is split into subsets, so that each node n may be mapped to a

result cluster. Let R(n) denote the set of all result items being associated with

a value contained in V (n). Note that these sets could be overlapping, as a result

item may have values contained in several different clusters V (n). Thus, in other

words, there are two relations, say V and R, mapping each node n in Tree(f) to

sets V (n) and R(n), respectively. Formally, given a facet f , V may be defined as
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V ∶ Nf ↦ P (O∗(f)), whereas R is given by R ∶ Nf ↦ P (V Res) with Nf being a

set, comprising nodes contained in Tree(f). In conclusion, V (n) may be written

as:

Vf(n) = {ṽ ∈ O∗(f) ∣ l(ṽ) = n} (3.16)

with l(⋅) standing for a function, assigning a class label to a given element. Further-

more, R(n) is defined by:

Rf(n) ={ṽ ∈ V Res ∣ ∃V ⊆ P (O∗(f)) ∶ {ṽ}
FnÐ→ V ∧

∃ v̄ ∈ V ∶ l(v̄) = n∧

F n = (∗, . . . ,∗, f)}

(3.17)

Notice, V (n) and R(n) are hereafter referred to as value and result segmentation,

respectively. Also, please find a generic example for a Tree(f), together with its

relations V and R, provided in the appendix (see figure 24, p. 105).



Section 4

Facet Ranking

4.1 Introduction

Motivation Please remember the introduced facet (see definition 2.11, p. 29) as

well as facet value (see definition 2.12, p. 31) definition. In particular, observe these

notions to be very fine-grained. Thus, given a large and well-structured data-source,

one might have to deal with an overwhelming facet and facet value set, respectively.

That being said, it is obvious for several reasons that a crucial part of a faceted

search system is facet and facet value ranking. Hereafter, allow me to further elab-

orate the need for a ranking heuristic, given our context.

First of all, users tend to have very rarely complete knowledge of their item of in-

terest. Thus, naturally only a small number of facets may be relevant for them. On

the other hand, from a technical point of view, visualizing all available facets and

facet values respectively, would exceed the capabilities of any graphical interface

and will be confusing for users. Lastly, even if users would have complete knowledge

of their item of interest, facets might differ, with respect to their usefulness for the

fulfillment of a particular task. In this context, please recall the above discussion of

varying needs in section 1.1.1 (p. 1). Notice, in the following, I am going to focus

on higher-level needs, which are often associated with little precise user knowledge.

For the outlined ranking purposes, the current cluster tree is taken into consider-

ation. More precisely, ranking is accomplished by defining metrics over the tree

and aggregating them, using an integrated ranking function. Note, I first explain

the intuitions behind the chosen metrics and afterwards describe a specific scoring

function.

Problem Definition Before going into more details on possible applications for

a ranking mechanism or on the actual ranking paradigm, I will first introduce defi-
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nitions for facet and facet value ranking functions:

+ Definition 4.1. Facet and Facet Value Ranking Function

Given a resource space SR with gR, a result space SRes with gResi , a query graph gq

and a set F containing all facets, a facet ranking function, say rf , is defined as rf ∶
FR ↦ R. In a similar manner, given a facet value fv with fv ∈ FV∗(⋅) ⊆ P (O∗(⋅)),
a ranking function, say rv, may be defined as rv ∶ FV R ↦ R.

In simple terms, a ranking function r∗ maps a facet or facet value to a score in R, rep-

resenting its importance, in compliance with application-specific settings and goals.

Given this notion of a ranking function, please find hereafter a formal definition of

the ranking problem, which I will address within this section.

1 Problem 4.1. Ranking Problem

Given a facet f ∈ F , the problem consists of defining a function, which maps a facet

to a ranking score, in compliance with the browsing paradigm as well as a current

result space.

Note, for a facet value, say fv, a problem may be defined in a similar manner.

Use-Cases for Ranking According to my knowledge, there are two common

applications of facet ranking. First, there is the simple sorting of facets or facet

values, in compliance with their ranking weight. Meaning, the higher a weight, the

higher sorted a facet or facet value is, with regard to a list presented to users. The

second common ranking application is a facet hiding strategy. Here, in order to

make the navigation easier and more intuitive for users, less important, i.e. facets

or facet values with low scores associated, are omitted. Users may be provided an

option like show other or show all, for having access to all available facets.

4.2 A short Survey of present Ranking Approaches

4.2.1 Overview

In the following, I would like to provide a short overview of present facet ranking

approaches and their associated paradigms. As mentioned earlier, faceted search

became popular during recent years, thus, also ranking heuristics were discussed ex-

tensively within the research community. However, before looking at more complex



4 FACET RANKING 72

techniques, let us start with a quite easy and straight-forward approach, namely the

so called count-based or frequency-based ranking.

4.2.2 Ranking Approach: Frequency-based Ranking

Frequency-based23 or often also called count-based ranking, is probably the most

commonly used metric. The overall idea is as follows: the more items, contained in

a result space, are associated with a particular facet value pair, the more important

and representative this pair has to be. In compliance with [DIW05], this technique

has the benefit of presenting those facets first that contain the most information.

Thereby, such approaches guarantee lower ranked properties, to comprise only a

small fraction of the result to represent (cf. [DIW05]). For details, please see

[DIW05, KZL08, ODM+06].

4.2.3 Ranking Approach: Set-cover Ranking

Furthermore, according to [DIW05], there is also the so called set-cover -based rank-

ing. “The objective of set-cover ranking is to maximize the number of distinct

objects that are accessible from the top-k ranked categories.”, cf. [DIW05].24 Thus,

their objective is to maximize a function, say Cover, defined as:

Cover(C) = o(C1) ∪ . . . ∪ o(Ck) (4.1)

with C standing for the set of all categories, {C1, . . . ,Ck} being the top-k ranked

categories and o(Cj) referring a function, returning all objects subsumed under a

given category Cj (cf. [DIW05]). [DIW05] apply a greedy strategy for finding a

subset, say C̃, of C maximizing equation 4.1 (p. 72). The algorithm may be briefly

outlined as follows:

4.2.4 Ranking Approach: Merit-based Ranking

[DIW05] also introduced a ranking technique, targeting at costs associated with

discovering an item of interest. According to their work, user costs may be repre-

sented by the time necessary for the fulfillment of a given information need. More

specifically, given a category C, costs, say T (C), comprise components as follows:

23 Terminology is used in compliance with [DIW05].

24 Note, what [DIW05] refer to as category, I introduced as facet.
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Algorithm 1 Greedy set-cover Algorithm

Require: set state of all objects as uncovered

1: repeat

2: Cmax ← C’ having max. number of uncovered objects

3: for all c ∈ Cmax do

4: mark c as covered

5: end for

6: until all objects o ∈ C are covered or ranked k categories

(i) Reading the category headings

In compliance with [DIW05], time spent for reading category headings is said

to be linear in b(Ci) with b(⋅) referring to a function, mapping a given category

to its number of children.

(ii) Correcting mistakes

Given a category Ci and a likelihood, say Pe, for selecting a wrong subcategory,

an additional effort, i.e. Pe(Ci) ⋅ T (Ci), is needed on average, to correct a

browsing mistake (cf. [DIW05])

(iii) Browsing the correct subtree

Lastly, given a category Ci and assuming users to choose a correct subtree,

(1 − Pe(Ci)) ⋅ T (Ci+1) time is necessary, for reaching an item of interest (cf.

[DIW05]).

Therefore, the total time, say T (Ci), is given by:

T (Ci) = κb(Ci)
1 − Pe(Ci)

+ T (Ci+1) (4.2)

with κ as a constant. Based on these thoughts, a metric, say merit(C), may be

defined as:

merit(C) =
2 ⋅ 1

T (C) ⋅ o(C)
1

T (C) + o(C) = 2 ⋅ o(C)
1 + T (C) ⋅ o(C) (4.3)

with o(C) as number of objects, having values associated with C (cf. [DIW05]).

4.2.5 Ranking Approach: Interestingness-based Ranking

[DRM+08] introduced a ranking notion centering around the concept of interest-

ingness. More specifically, this well-known concept, originating from the OLAP
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community, is redefined as “[. . . ] how surprising an actual aggregated value is,

given a certain expectation”, cf. [DRM+08]. Before having a closer look at this

approach, however, allow me to first give a brief outline over the terminology and

definitions used hereafter:

- A repository, in our terminology the resource space, is denoted by D.

- Dq stands for the set of documents in D, matching a given query q.

- A facet is written as F , while a facet value is given by f .

Now, given {f1, . . . , fn} as facet values, associated with {F1, . . . , Fn}. Furthermore,

assume CD(f1, . . . , fm) to denote the count of documents with respect to D. Sim-

ilarly, Cq(f1, . . . , fm) stands for the count of documents with regard to Dq. Given

E(⋅) as the expected value, in compliance with [DRM+08], the above mentioned

expectations may be computed as described hereafter:

(i) Natural Way

Assume documents, contained in D, are distributed over each facet according

to a natural distribution, e.g. an equal distribution. Also, say all facets are

pairwise independent. Then, according to [DRM+08], for a facet value pair

(F:f), E(Cq(f)) may be given by:

E(Cq(f)) = ∣Dq ∣
number of unique values in F inDq

(4.4)

Given (F1,. . . ,Fm:f1,. . . ,fm), on the other hand, we have:

E(Cq(f1, . . . , fm)) = ∣Dq ∣
m

∏
i=1

Cq(fi)
∣Dq ∣

(4.5)

(ii) Navigational

With regard to the so called navigational method, an expectation value is

estimated in accordance with the user navigation. Assume a user issues a

query q1, then counts are set proportionally based on the data distribution in

the repository. In conclusion, E(⋅) is defined as:

E(Cq1(f1, . . . , fm)) = ∣Dq1∣
CD(f1, . . . , fm)

∣D∣ (4.6)
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Given, the same user enters a second query, say q2, the expectation is recom-

puted as:

E(Cq2(f1, . . . , fm)) = ∣Dq2∣
Cq1(f1, . . . , fm)

∣Dq1∣
(4.7)

See also [DRM+08].

(iii) Ad hoc

If both methods don’t prove to be suitable, users may set counts for each facet

value proportionally, based on the distribution of a result space, with respect

to an arbitrary query, say q (cf. [DRM+08]).

Making use of the above defined expectation values, [DRM+08] compute their actual

scores as follows. First, they define interestingness for a facet instance. During a

second step, [DRM+08] apply this intermediate result, in order to measure the weight

of an entire facet, say F .

(i) Single facet instance

With regard to a single facet instance, an interestingness score is based on

the actual and expected count. More precisely, say f occurs in r out of R

documents as well as in q out of Q documents, contained in the result set for a

given query. Furthermore, let equation r
R > q

Q hold. Given both assumptions,

an interestingness value may be defined as the probability, say p̂, that a random

set with size Q, contains at least q documents having a facet value f associated.

In accordance with [DRM+08], p̂ is computed as:

q

∑
k =0

(r
k
)(R−r
Q−k)

(R
Q
)

(4.8)

Note, if given r
R < q

Q , an interestingness score may be calculated analogously

(cf. [DRM+08]).

(ii) Entire Facet F

In compliance with [DRM+08], one may either use all facet values or just k top-

ranked instances, in order to estimate the interestingness value with regard to

F . Notice, hereafter, I will use the latter option. Thus, given a facet F , one

may consider {f1,...,fk} with p1 < ... < pk. Furthermore, a function Si with
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Si = − log(pi) is being computed for each i = 1, . . . , k. Note that S1 ≥ ⋅ ⋅ ⋅ ≥ Sk
holds. Finally, the degree of interestingness for F is ∑ki=1Wi ⋅ Si with Wi as a

weight (cf. [DRM+08]).

4.2.6 Ranking Approach: Indistinguishability-based Ranking

[BRWD+08] rank facets with regard to their suspected associated navigational costs.

More specifically, they aim at minimizing the necessary users costs, in order to fulfill

an information need. [BRWD+08] argue that facet ranking is very similar to building

a decision tree. “Essentially, the task is to build a decision tree which distinguishes

each tuple by testing attribute values (asking questions). Each node of the tree

represents an attribute, and each edge leading out of the node is labeled with a

value from the attribute’s domain.”, cf. [BRWD+08]. Having such a perspective on

ranking, costs may simply be defined as the expected number of necessary queries,

before reaching an item of interest. Meaning, given a tree, say T , cost(T ) may be

represented by the average tree height, i.e. ∑i h(ti)n with function h mapping leaf ti

to its height (cf. [BRWD+08]). [BRWD+08] use a greedy algorithm for solving this

problem. Hereafter, let me briefly describe it as:

- Use as a root an attribute, say Al, that distinguishes a maximum number of

tuple pairs. Please note, by choosing Al, one divides the data-source, say D,

into subsets Dx1,Dx2, . . . ,Dx∣Doml∣ (cf. [BRWD+08]).

- [BRWD+08] employ the above step, until no further splitting of Dxq is possible.

Formally, [BRWD+08] thereby intend to minimize a so called Indg function, defined

as:

Indg(Al,D) = ∑
1≤q≤∣Doml∣

∣Dxq ∣
∣Dxq ∣ − 1

2
(4.9)

4.2.7 Ranking Approach: Probability-based Ranking

In [KZL08], another ranking technique is presented. In their work, the authors

argue that facet value pairs and thus facets, may be sorted with respect to their

likelihood of being associated with a relevant document.25 Furthermore, [KZL08]

25 Note, in our Semantic Web environment, documents may be seen as resources.
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outline two ways for estimating such relevance scores, leading to a personalized

relevance probability as well as a collaborative relevance probability:

(i) Personalized Probability

In the former case, only relevance judgments issued by a particular user are

considered. To be more precise, [KZL08] introduce a framework, which I would

like to outline shortly in the following. Say P (rel ∣u) denotes the likelihood

of a document, contained in the repository, being relevant for a user, say u.

Furthermore, let P (xk ∣ rel, u) and P (xk ∣non−rel, u) respectively be the distri-

bution of facet value pairs xk, given a user u and a relevant and non-relevant

document respectively. Following these thoughts, [KZL08] describe u in a

triple-based manner:

Θu = {P (rel∣u), P (xk ∣ rel, u), P (xk ∣non, u)} (4.10)

(ii) Collaborative Probability

Given the latter case, [KZL08] not only compute relevance scores on the basis

of a single, but of several users. However, gathering that much data from

different sources may easily get expensive. On the other hand, one may assume

that several users share common criteria, interaction patterns or preferences.

Therefore, in accordance with [KZL08], information may be exchanged in-

between users. More precisely, [KZL08] motivate in their work the use of a

Bayesian modeling approach.

4.2.8 Ranking Approach: Mutual Information-based Ranking

In compliance with [KZL08], the well-known mutual information quantity may also

be used for ranking purposes. However, before going into more detail, allow me first,

to shortly remind the reader, how mutual information may be defined (cf. [Sha48]).

Given two discrete random variables, say X and Y , the mutual information between

X and Y , is given by a function I with:

I(X, Y ) = ∑
x, y

PXY (x, y) log
PXY (x, y)

PX(x) ⋅ PY (y)
(4.11)

Please see [Sha48, CT91] for further information. With regard to our ranking con-

text, [KZL08] apply this measure for two random variables, say X1 and X2. Let the
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first variable describe the likelihood of a facet value pair being associated with a

document, while the latter one represents the probability of a document being rele-

vant, given a user query. According to [KZL08], those facet value pairs, resulting in

a maximal mutual information score, should be sorted the highest.

4.2.9 Ranking Approach: Descriptors and Navigators

Last, [ODD06] argue that there are two main aspects to be considered, when judging

facets or, to be more precise, their underlying properties: First, facets ranked high,

should describe a dataset and result set respectively. Secondly, facets should enable

users to navigate a data-source (cf. [ODD06]). Hereafter, allow me to outline metrics

the authors developed, aiming at maximizing both criteria.

Descriptors [ODD06] base their argumentation on [Ran62], when reciting that

intuitive facets and properties respectively should be either temporal, spatial, per-

sonal or energetic. Continuing this thought, the authors point out that facets could

be assigned weights, with respect to whether or not they are based on properties

belonging to one of these categories. The necessary meta-data could be provided

by additional ontologies. However, [ODD06] argue that in many use cases such

extensive knowledge is not available, which in turn makes this criterion hard to

employ.

Navigators As described above, [ODD06] regard efficient navigation as a second

key quality criterion. Please note, like [BRWD+08], the authors reduce the ranking

problem to a construction of a decision tree. Thus, hereafter, when referred to a tree,

also a decision tree is meant, which in turn implies a facet sorting. For measuring

how well a given facet supports navigation, [ODD06] propose a metric, comprising

three parts, namely predicate balance, object cardinality and predicate frequency.

(i) Predicate Balance

[ODD06] think of a tree being well-balanced as an important factor for efficient

navigation. The balance of a predicate p, in compliance with [ODD06], is calcu-

lated as:

balance(p) = 1 − ∑ni=1 ns(oi) − µ
(n − 1)µ + (Ns − µ)

(4.12)



4 FACET RANKING 79

where ns(oi) represents a distribution of subjects over objects, µ being the mean

vector, Ns the total number of subjects and n standing for the number of possible

objects associated with p.

(i) Object cardinality

A predicate, having a large amount of objects associated, might be confusing

for users and may be difficult to visualize properly, [ODD06] continue. Thus,

the authors argue that an ideal predicate should only have a limited number of

objects. A metric, denoted by card, is estimated as:

card(p) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 ifno(p) ≤ 1

exp−
(no(p)−µ)

2

2⋅σ2 otherwise
(4.13)

(i) Predicate frequency

Lastly, frequency of a given predicate is considered as being important for ef-

fective navigation (cf. [ODD06]). In their work, [ODD06] state that a useful

predicate, say p, should occur frequently within a given data-source, thereby

properly dividing the underlying space. In accordance with [ODD06], the fre-

quency of p, may be defined by means of a function freq as:

freq(q) = ns(p)
ns

(4.14)

where function ns(p) returns the number of subjects contained in a data-space

SR, having p as relation associated, and ns referring to the number of distinct

subjects in SR.

4.2.10 Contribution

Please recall our basic assumptions introduced earlier. In particular, remember

assumption 2.3 (p. 21). To be more specific, given users having an information need,

I assume needs contained in QS
Need to be issued via query searching, while unspecific

and fuzzy information, i.e. QF
Need, may be articulated using browsing strategies.

Following these thoughts, one may conclude that facet operations, since representing

basic browsing techniques, will mainly be used for articulation of unspecific and fuzzy

knowledge.

However, reconsidering the above presented approaches, I argue that none addresses
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these assumptions properly and enables users to act accordingly. Throughout the

literature, users are expected to be following a specific need as well as having precise

knowledge about their item of interest and the underlying domain. Note, hereafter,

such heuristics are referred to as search-ability-based ranking. In contrast, I aim

at a ranking maxim, preferring those facets and properties respectively that allow

users to issue fuzzy informations needs via browsing techniques. By doing so, I

wish to enable a more exploratory search and thereby the fulfillment of higher-level

information needs (see also section 1, p. 1). Below, I address these shortcomings by

introducing a novel ranking paradigm, namely what I coined browse-ability-based

ranking.

4.3 Facet Ranking with respect to Browse-Ability

4.3.1 Introduction to browse-ability-based Ranking

Basic Assumptions Given above outlined thoughts, in order for a ranking maxim

to result in a meaningful sorting of facets, an approach should rather target brows-

ing, than searching. More precisely, given a setting, as outlined in assumption 2.3

(p. 21), I wish to prefer such facets, which enable users to issue fuzzy information

needs and slowly explore an unknown domain of interest. In other words, facets

should support browsing strategies, given needs solely contained in QF
Need.

Recall, in section 2 (p. 17) I introduced the faceted search paradigm, given a Se-

mantic Web context. With a facet, say f , being based on a property contained

in a resource space SR, there are essentially two interesting sets associated with f ,

i.e. R(n) and V (n). In this context, it is important for the reader to remember

the so called cluster tree, I defined in section 3.5 (p. 68). Given such a facet value

hierarchy as well as relations R and V , projecting nodes to their associated result

item and object sets respectively, one may define metrics, addressing our notion of

browse-ability.

Intuition behind our browse-ability Maxim Hereafter, for clarification pur-

poses, allow me to present intuitions, I believe to be important, with regard to a

browse-ability--based ranking heuristic. More precisely, given a fuzzy information

need, I argue that there are three relevant issues, namely uniform steps to an item

of interest, many steps leading to a single item and a comprehensible result parti-
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tioning. Please find these points further discussed below:

(i) Uniform Steps to an Item of Interest

Since I assume needs to be contained in QF
Need, I except users to articulate

rather fuzzy knowledge via means of browsing. For enabling exploration of a

given resource space, I believe that users should be guided in uniform steps

to their item of interest. In particular, with regard to users facing unknown

datasets and having only vaguely information concerning their needs, I argue

that all result items are a priori of equal importance. Thus, it is not possible

to prefer one set of results over another. With respect to a cluster tree, which

users explore, notice that one may not favor a particular path over the others.

(ii) Many Steps leading to a single Item

Related to my first intuition, I further argue that users should be guided in

small steps. More specifically, each exploration step should lead to uniform

and small changes of a given result space. Note, with small steps, I refer to

minor restrictions of a current result set, generated by browsing decisions. I

thereby allow users to slowly dive into an unfamiliar space, rather than rapidly

restrict it to only few specific items. In other words, I wish to avoid rapid drill

downs, which, given our context, are likely to result in browsing mistakes.

The reader should observe this intuition to differ significantly from above im-

plied ones. Reconsider approaches presented in section 4.2.4 (p. 72) or 4.2.6 (p.

76) as examples. Both works intend to minimize user effort needed, for fulfill-

ing a given information task. However, by doing so, the authors rank the most

discriminative facets the highest and thus prefer rapid result set restrictions,

over slow and small ones.

(iii) Comprehensible Result Partitioning

Continuing the above argumentation, I wish to support users in making in-

tuitive decisions at each step, while requiring the least amount of knowledge

possible. Thus, given a cluster tree, users should be able to choose a value,

i.e. a path, without much effort, especially without issuing additional queries.

Note, I refer to a decision as being intuitive, if leading to clear and comprehen-

sible modifications of a result set. More precisely, each decision should lead to

a true restriction, with regard to the current space. Also, given a facet, differ-
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ent paths in its associated cluster tree, should lead to different modifications,

i.e. varying sets of result tuples.

4.3.2 Browse-ability-based Ranking: A novel Facet Ranking Approach

4.3.2.1 Indicators for a browse-able Facet

Hereafter, please find specific indicators for the presented intuitions. The reader

should be aware that I first discuss effects on the value segmentation, i.e. V (n), and

afterwards examine the browse-ability notion, with regard to the result space, i.e.

R(n).

Indicators for a browse-able Value Segmentation

(i) Uniform Steps to Item of Interest

Recall, according to the first presented intuition, facets should guide users in

very small, equal-sized steps to their item of interest. Therefore, I believe the

following two indicators might prove useful:

- Height Balance

Since I wish every path, originating from the root and leading to an

arbitrary leaf, to be approximately equal-sized, the tree height might be

of interest. To be more specific, the cluster tree should be height-balanced.

- Equal-sized Value Clusters

Value clusters V (n), with regard to a given hierarchical level in a cluster

tree, should be approximately equal-sized. Meaning, at each hierarchical

level, cluster sizes, i.e. ∣V (n)∣, should only differ by a factor smaller than

a given threshold, say t̂.

(ii) Many Steps leading to a single Item

Secondly, I argue that users should be guided in small steps to their item of

interest, thereby avoiding rapid space modifications. Below find two indicators

for this intuition.

- Maximal Height

Please remember, I assume users to have no specific knowledge. Therefore,

a rather long path, requiring not much information and leading users to

their item of interest, is desirable.
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- Limited Branching Factor

On the other hand, I argue that each hierarchical level should have a

limited number of outgoing branches. Thereby, situations may be avoided,

where users have to choose from a large number of value partitions, i.e.

paths in a cluster tree, which in turn would require specific knowledge.

Indicators for a browse-able Result Segmentation Before looking at more

indicators for measuring the degree of browse-ability, let me motivate how it is

possible that a result clustering is not suitable for browsing, while a browse-able

value space segmentation is given.

. Example 4.1. Hereafter, please see figure 20 (p. 84), as a generic example for

a browse-able value segmentation, leading to a result clustering not being suitable

for browsing. More specifically, while the value clustering clearly fulfills the above

stated indicators, its associated result segmentation leads to rapid drill downs and

thus seems not desirable for slow exploration of an underlying space. Note the

current result set to be circled in green and types, by which resources are grouped,

colored in gray.

In the following, let me introduce influencing factors, I believe to be meaningful

indicators for a result segmentation being regarded as browse-able.

(i) Uniform Steps to Item of Interest

Reconsidering the above mentioned first intuition, i.e. facets should guide users

in uniform steps to their item of interest, I believe the result segmentation size

to be an interesting value. Thus, result clusters, i.e. R(n), associated with

nodes in a cluster tree should be of equal size, so that exploration steps are

uniform, in terms of their effects on a result set. To be more precise, given

a tree level, I compute the maximum cluster size as well as the minimum.

The difference between both values, I then wish to be smaller than a given

threshold.

(ii) Comprehensible Result Partitioning

Remember, I intend a heuristic to support users in making intuitive decisions.

Thus, comprehensible result space interactions are necessary. Below, please

see two indicators, I find meaningful:
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(a) Resource Space

(b) V (n) and R(n) for a facet name.

Figure 20: Browse-able V (n) and non-browse-able R(n) Segmentation

- Minimum Result Partition Overlap

Given paths in a cluster tree, I argue that a suitable facet should lead

to a minimal overlap between its associated result segmentations R(n),
thereby resulting in different modifications, depending on a user-specific

selection.

- Result Tuple distinguishability

Also, targeting at this intuition, I believe leaves of Tree(⋅) to be an inter-

esting pointer. More precisely, distinguishability is defined with regard to

R(n) segments at leaf level, i.e. one may simply compare the cardinality

of these sets, with a desired threshold value.
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4.3.2.2 A Metric for Browse-ability

In the following, I will propose a metric applying the presented indicators and

thereby realizing our browse-ability intuitions. Note, I distinguish between facets

that are based on attributes and those based on relations.

Attribute-based Facets Hereafter, I define metrics for attribute-based facets,

measuring their individual indicators and aggregating them, resulting in a final

score. Furthermore, I will distinguish between metrics measuring effects on the

value space, i.e. V (n), and other metrics applying to the result set segmentation,

i.e. R(n). Given an attribute-based facet f , its cluster tree Tree(f), N as a set,

containing its nodes as well as r referring to its root, measures are as follows:

(i) Measures for a browse-able Value Segmentation

(a) Maximal Height26

A height function h, i.e. h ∶ N ↦ N0, with regard to a given node, say n,

may be defined as the maximal distance from n to a leaf. Furthermore, in

a top-down manner, a height score is calculated as: Given an inner node

n, with nk = ∑i ∣subtreei(n)∣ as its associated size, its deviation from the

maximal possible height is: ρVh = h(n)
nk

∈ [0,1]. However, the higher a node

is located, with respect to a given root, the more important fluctuations

are. Thus, I suggest a weight function, depending on h(n), to be applied.

Notice, this weight is only required to be a strictly monotonically decreas-

ing function, e.g. ω(n) = c
log(∣n∣+ε) ∈ [0,1] with k ≥ 1 and c as constant. In

conclusion, a height score may be given by:

scoreVρh(n) = ω(n)ρVh (n) ∈ [0,1] (4.15)

(b) Cluster Tree should be height-balanced

Furthermore, I compute in a top-down manner a height balance score as

follows: Given an inner node n with k subtrees {sj}j, each having a height

hj, the maximum height difference is: δVh (n) = 1 − maxt{ht}−mint{ht}
h(n) ∈ [0,1].

A height balance score for node n, thus, may be written as:

26 Note the node height to be approximated in my implementation.
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scoreVδh(n) = ω(n)δVh (n) ∈ [0,1] (4.16)

(c) Value Clusters V (n) should be equal-sized

Concerning the size balance, a score is computed in the following manner:

Given an inner node n having k subtrees {sj}j associated, size differences

may be estimated by: δVs (n) = 1 − maxj{V (sj)}−minj{V (sj)}
V (n) ∈ [0,1]. Again, I

argue that the higher n is located in a tree, the more important fluctuations

are. Therefore, a final score for n is given by:

scoreVδs(n) = ω(n)δVs (n) ∈ [0,1] (4.17)

(d) Limited Branching Factor of Tree(f)
Lastly, given an inner node n as well as a function e, mapping n to its

outgoing edges, a deviation from a branching threshold, say κ, is: ρVe (n) =
∣κ− e(n)∣
e(n) ∈ [0,1]. Following the above thoughts, an edge deviation score is

computed as:

scoreVρe(n) = ω(n)ρVe (n) ∈ [0,1] (4.18)

(ii) Measures for a browse-able Result Set Segmentation

(a) Value Clusters R(n) should be equal-sized

A score, with regard to result cluster size deviations, may be computed

similarly to the above defined scoreVδs , as:

scoreRδs(n) = ω(n)δRs (n) ∈ [0,1] (4.19)

where δRs denotes the size deviation.

(b) Result Tuple distinguishability27

Concerning the distinguishability of tuples contained in a result space, a

score may be calculated as: Given a node n, consider only its leaves, say

{l1, . . . , lm}. Also, let L, i.e. L ∶ N ↦ L and L ⊆ P (N), be a function

mapping each node in N , to a set containing its reachable leaves. Fur-

thermore, λR(n) = ∑l ∈L(n) ∣R(l)∣ −1

∑l ∈L(n) ∣R(l)∣
∈ [0,1] may be used to estimate the

27 Note, due to performance reasons this score is approximated in my implementation.
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distinguishability with regard to n. Again, I will use ω as defined above.

In conclusion, a distinguishability-based score for node n is given by:

scoreRλ (n) = ω(n)λR(n) ∈ [0,1] (4.20)

(c) Minimum Result Segment Overlap

Lastly, I compute a score, measuring the overlap between a given pair of

result segmentations as: Given a node n, let C, i.e. C ∶ N ↦ C and

C ⊆ P (N), denote a function mapping each node in N to its directly

associated children. Therefore, the overlap may be represented as ϕR(n) =
1 − ∣ ⋂ci∈C(n)R(ci)∣

∣R(n)∣ ∈ [0,1]. Furthermore, a score is given by:

scoreRϕ(n) = ω(n)ϕR(n) ∈ [0,1] (4.21)

(iii) Final Score

Let F ′ ∶ R ↦ [0,1] denote a strictly monotonic increasing function. Then,

aggregating the before measured indicators, a final score for an attribute-based

facet is defined as:

scorea(f) = F ′(scoreVδh(r), . . . , score
R
ϕ(r)) ∈ [0,1] (4.22)

Relation-based Facets In the paragraph above, I introduced a ranking metric

for attribute-based facets. Hereafter, I intend to expand this definition, to also

include facets based on relations. The ranking score of a relation-based facet, say

f , with facet values FV (f) associated, consists of two parts:

(i) Score, with respect to attributes connected to FV (f). Each attribute score

incorporates elements as follows:

- Browse-ability of V (n).

- Browse-ability of associated result set segmentation R(n).

(ii) Score, with respect to nearby browse-able entities, comprised by a set, say

FV ′(f). In this latter case, one has as influencing factors:

- Distance from FV (f) to FV ′(f).

- Browse-ability of V ′(n).

- Browse-ability of associated result set segmentation R′(n).
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Obviously, in order to avoid cycles and guarantee an algorithm to terminate, a

distance threshold is necessary. First of all, however, find below both presented

factors, outlined in more detail.

(i) Score with respect to Attributes

Given a set of m attributes, say A = {fa1 , . . . , fam}, associated with resources

contained in FV (f), one may compute a score as described earlier for each

facet contained in A. This results in SA = {scorea(fa1 ), . . . , scorea(fam)}, i.e.

a set of scores, which may be aggregated via F ′′, resulting in:

scorear(f) = F ′′(scorea(fa1 ), . . . , scorea(fam)) ∈ [0,1] (4.23)

with F ′′ being a strictly monotonic increasing function. Please note, hereafter,

I will refer to this score as attribute-based score.

(ii) Score with respect to nearby browse-able Entities

Recall, resources in FV (f) may be connected via relations to further indi-

viduals, which in turn may or may not be suitable for browsing. Thus, I

argue that one also needs to rank FV (f), with respect to the browse-ability

of its nearby entities. In conclusion, given a set of n relation-based facets, say

R = {f r1 , . . . , f rn}, associated with FV (f), a score may be recursively defined

in a similar manner as introduced earlier.

(iii) Final Score

Lastly, with respect to its relations as well as its attributes, f may be assigned

a total score given by:

scorer(f, k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

δ(k) scorear(f) if k = kmax

∑f ′∈R F ′′′(scorer(f ′, k + 1), δ(k + 1) scorear(f ′)) otherwise

(4.24)

with k as current hop-distance, kmax as maximum hop threshold, δ being a

monotonic decreasing weight function and F ′′′ as a strictly monotonic increas-

ing function.

For clarification purposes, please see a toy example provided below.
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. Example 4.2. After exploring the profile of Frances E. Allen, Mary continues

her search for famous scientists. Unfortunately, she can’t recall any further names,

Peter mentioned the other day. Therefore, in her case, a discriminatory facet such as

name, having e.g. values {Jane,Rachel, Peter}, should not be ranked high. More

specifically, given such a value set, name is a unique identifier, thus leading to rapid

result set modifications. In particular, name forces Mary to instantly decide what

entity to choose, which in turn requires very specific knowledge. Plus, it does not

provide the necessary freedom to properly explore the given result set. On the other

hand, a facet such as type or works at, might prove more suitable. E.g. via works

at, a cluster tree of greater height may be constructed. Thereby allowing Mary to

iteratively chose a path along this tree, while exploring the space. On the other

hand, type would result in smaller modifications of the current result, as several

scientists may share a common value, e.g. PhD-Student. Thus, by means of type,

Mary is able to slowly and iteratively familiarize herself with this unknown domain.

Concluding Remarks Below, please find concluding remarks, targeting at fur-

ther aspects of our browse-ability-based ranking approach.

(i) Choosing a proper Aggregation Function

Note, the above defined aggregation functions, i.e. F ∗, are only required to be

strictly monotonic increasing. Obviously, there are several meaningful ways to

implement F ∗, consider e.g. F ∗ (⋅) = max{⋅}, F ∗ = min{⋅} or F ∗(⋅) = avg{⋅}.

Furthermore, as different functions have varying impacts on a browse-ability

score, it might be wise to use an application-specific realization. However, in

order to keep the metric as generic as possible, I left F ∗ defined in a fuzzy man-

ner. Note, I currently implemented these aggregation functions as weighted

summations.

(ii) Choosing a proper Weight & Discount Function

For the same reason, namely to define our browse-ability metric in a generic

manner, I also left ω as well as the discount function δ open, to be implemented

later on. Note, due to performance reasons, I realized the weight function

simply as ω(n) = ∣R(n)∣
∣Rtotal∣ with Rtotal = ∣V Res∣. Furthermore, since I used a strict

distance threshold kmax = 1, there was no need for a discount mechanism δ.
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(iii) Integration of Property Hierarchies

Recall, a subproperty-of link between two given properties, say p1 and p2,

indicates a subset relation, with respect to their domain as well as their range.

Thus, given p1 and p2, their associated ranking scores are obviously correlated.

However, as a simple workaround for this dilemma, I group properties and

facets respectively, so that there is no subproperty-of connection between any

facet pair, presented to users at the same level. Note, by grouping I mean a

clustering strategy, making use of property hierarchies.

(iv) Facet Value Ranking

Lastly, the facet ranking strategy, as discussed above, is based on ranking

nodes in a cluster tree. Thus, transferring the introduced indicators and mea-

surements, to also cover facet values contained in FV∗(⋅), is fairly easy. Given

an attribute-based facet, say f , and a facet value, say v, e.g. scorea might be

rewritten as:

scorea(v) = F ′(scoreVδh(nv), . . . , score
R
ϕ(nv)) ∈ [0,1] (4.25)

with nv being the node in N , associated with v.



Section 5

Evaluation

5.1 Evaluation Setting

Since the overall intuition behind our faceted search application is, to enable a more

effective way of browsing in an unknown resource space, I felt that a user-oriented

evaluation with focus on fuzzily defined tasks would be best. Thus, for assessment

of the novel ranking scheme, as well as the discussed facet value clustering approach,

I chose a task-based user study.

User Tasks I divided the evaluation process in two steps: The first part covers

the ranking strategy, while the latter one addresses our value clustering. Each part

contained 12 tasks. Correspondingly, I formed two groups of participants. Each is

associated with a set of 12 tasks, resulting in a total of 24 tasks.

With regard to the ranking mechanism, I presented six tasks to each user. In

four of these tasks, a very fuzzy and unspecific information need was given to the

subject, e.g.: Starting with a keyword search for Karlsruhe. Find an entity having

something to do with traveling. For the remaining two tasks, I gave users a very broad

exploration task, i.e. to find outlier, interesting or strange values. Consider as an

example: Start with keyword search Karlsruhe. Explore the given result set. Note,

for a complete list of tasks, please see table 2 (p. 108), provided in the appendix.

Hereafter, the first type is referred to as ranking type (a), while the latter group

of tasks may be denoted by type (b). Evaluation subjects were only allowed to

use the five top-ranked facets during their assignments. Also, for tasks of type (a),

one group was only presented a search-ability-based sorting, while the other one

was given a ranking, based on our browse-ability approach. For assignments (b), on

the other hand, subject groups were given two different sortings, i.e. one for each

ranking scheme.
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As for the second group of tasks, being concerned with facet value clustering, again

a situation was simulated, where users faced imprecise and fuzzy information needs.

There were two sets comprising six tasks each, therefore assigning twelve tasks in

total. More precisely, in each set, two tasks were targeting literal clustering, while

four other tasks correspond to our resource clustering strategy. To give the reader

an idea of these tasks, please consider the following to two examples: (i) For the first

group, i.e. the literal clustering tasks, one assignment was: Start with keyword search

for London. Find all artists (an artist is a person) born some time in November

1972. Notice, in the following, this set is denoted by type (a). (ii) Concerning the

clustering of resources, please consider as exemplary task: Start with keyword search

for Paris. Find all Things, having as genre a music genre, which has as instrument

an electric guitar. Hereafter, this set of tasks is referred to as type (b). Again, a

complete list of tasks is provided in table 2 (p. 108). Further notice, for solving their

assignments, evaluation subjects first used our system, having a clustering approach

implemented, and afterwards, a baseline system, providing no clustering.

Evaluation Subjects In total, there were 24 subjects taking part in the evalua-

tion. However, the reader should notice, our participants to have very heterogeneous

backgrounds. In particular, six users had no experience with computer science tech-

nologies at all. Furthermore, of the remaining 18 subjects, 10 had no or only very

little experience with Semantic Web technologies. On the other hand, all partici-

pants were familiar with search technologies common in the WWW.

Time-based Interaction Costs With regard to user effort, I argue that refine-

ment, expansion and browsing interactions are crucial for the time needed to fulfill

an information task. In the following, these operations are defined as intervals. To

be more specific, browsing comprises operations, which users perform, in order to

select a facet, navigate along a facet path or drill down into a given cluster tree.

Accordingly, a browsing interaction is defined as a time interval, staring with the

completion of a last browsing operation and terminating, as users move to the next

node in the hierarchy or decide to abort browsing this particular facet. On average,

I measured users to need 4.4 sec for a single interaction. On the other hand, I col-

lected the time users required, to modify a given space. Note, this means adding a

terminal node in a cluster tree, i.e. a facet value node, which restricts results to only
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those, fulfilling the additional constraint, or removing one respectively. Accordingly,

the time interval spans from the completion of a browsing operation, until users add

such a node (refinement) or remove one (expansion). Here, I measured 8 sec in the

former and 18 sec in latter case, on average.

System With respect to the system employed, I made use of the Information

Workbench, providing means for a collaborate management of data and publicly

accessible at http://iwb.fluidops.com/. The faceted search layer has been realized

using Java Berkeley DB and Lucene, based on design patterns and index structures

introduced in [BYGH+08, DRM+08]. More precisely, while the back-end, including

the keyword and faceted search modules, was implemented in Java 6, the front-end

uses Ajax technologies, running on a Jetty server. Experiments were carried out

in a supervised manner, on a PC with a T7300 Intel CPU, 4 GB memory and a

Microsoft Vista OS. The search process for each user and task was recorded via a

screencast.

Data Concerning the data-source, I used DBpedia, which is covering a large amount

of broad-ranging knowledge [BLK+09]. This enabled me to design evaluation tasks,

not targeted at a specific field, but being rather domain-independent.

5.2 Browse-ability-based Ranking

5.2.1 Baseline for Ranking Evaluation

Search-ability-based Ranking As introduced in section 4.2 (p. 71), much of

the recent work is devoted to search-ability-based ranking. Thus, I decided to com-

pare our approach against this type of schema. However, I did not implement a

particular strategy, but rather intended to use the abstract search-ability paradigm

as a baseline. I developed a heuristic, reflecting this intuition on a higher-level,

written as a monotonic aggregation function M with M(h,λR, ϕR).28 Correspond-

ingly, M targets at reducing users costs, in particular, the amount of interactions

necessary to fulfill an information need. More precisely, the tree height, say h, is

minimized and thereby user decisions required are being reduced. Furthermore,

facets should be discriminative. Thus, I prefer those facets, leading to results with

28 Note that currently M is simply realized as a weighted summation.

http://iwb.fluidops.com/
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high distinguishability score as well as few result segment overlaps, given by λR and

ϕR respectively.

5.2.2 Ranking Effectiveness

Regarding effectiveness of search-ability versus browse-ability ranking, I compared

the average success rate of tasks of type (a), as well as the average browsing expe-

rience, for tasks of type (b). Results are provided in figure 21(c) (p. 95) as well as

21(c) (p. 95) to the reader. Here, I observed, given search-ability-based ranking, par-

ticipants succeeded in tasks, where small result sets, i.e. less than 50 items, had to

be explored. To be more specific, on the one hand, users selected facets for browsing

and refinement in a brute-force manner (cf. tasks 1.1, 1.4, 1.5, 1.11). On the other

hand, some participants had specific background knowledge (cf. task 1.2), enabling

them to solve their tasks. However, if a keyword search resulted in larger sets, i.e.

more than 150 hits, I noticed participants not being able to accomplish their tasks

(see tasks 1.7, 1.8, 1.10). Browse-ability ranking outperforms the baseline, with re-

gard to all assignments, particularly, given large sets for exploration. Furthermore,

I noticed participants to prefer non-discriminating or unspecific facets, e.g. type or

genre, over specific ones, e.g. population or name. In many cases, I noted subjects

using type for an initial restriction, followed by further exploration via other facets.

Concerning the second type of assignments, i.e. a exploration a given space, browse-

ability-based ranking also performs very well. Please consider figure 21(c) (p. 95).

Overall, exploration using our novel scheme was rated by participants between 4 and

4.5, given a scale [1–5]. Facets sorted with regard to search-ability ranking, on the

other hand, were regarded as not suitable for exploration purposes. This setting was

rated between 2 and 2.7. I explain this result with users not being able to explore

or understanding a result set, by means of specific and discriminative facets.

5.2.3 Ranking Efficiency

Please see figure 21(a) (p. 95) for the average users costs, measured with regard to

a time effort, users needed to fulfill their tasks. Similar to the effectiveness study, I

observed the number of results to be a crucial factor, with respect to the problem

solving strategies applied: On the one hand, given a small result set (less than 50

hits) to browse as well as a search-ability-based heuristic, participants tend to fulfill
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their assignments with equal or less effort on average, as compared to our approach

(cf. tasks 1.1, 1.2, 1.4, 1.5). More specifically, users were able to efficiently choose

paths in a provided cluster tree and refine a space, using a goal-oriented manner,

leading to less associated costs. When having larger result sets (more than 150 hits)

provided, on the other hand, more time and effort was necessary or participants were

not able to solve their assignments at all (see tasks 1.11, 1.7, 1.8 or 1.10). Note that

task 1.11 was not completed by all users, however, if fulfilled, subjects made use of

a brute-force-like approach, in order to cover all paths. Therefore, I conclude that

while not necessarily leading the cheapest way to an item of interest, our approach

seems to perform well, given large spaces combined with fuzzy needs.

(a) Average effort (type a) (b) Average exploration (type b)

(c) Average success rate (type a)

Figure 21: Efficiency & Effectiveness Results w.r.t. Ranking Schema
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5.2.4 Ranking Usability

Lastly, I intended to estimate the general usability of our ranking technique. In

this context, please recall the evaluation subjects to have a fairly heterogeneous

background. After completing their assignments and having worked with both ap-

proaches, each subject was asked how useful the browse-ability-based strategy has

proven itself as well as how intuitive a sorting has been. See also the complete ques-

tionnaire, provided to the reader in table 3 (p. 110). Given a scale [1–5], ratings

were quite good, namely for the former question a 4.31 and for the latter one a 4.17,

on average.

5.3 Facet Value Construction

5.3.1 Baseline for Clustering Evaluation

With respect to the evaluation of the clustering technique, producing a hierarchical

facet value structure, finding a fitting baseline was non-trivial. Note, I’m not aware

of any faceted search system, be it in the commercial or in the academic field, using

clustering as means to partition a facet range. Thus, I decided to use a traditional

approach, i.e. a system employing no clustering for either literals or resources.

However, notice the chosen system to work on a similar data-source, i.e. DBepdia.

Also, it is publicly available at http://dbpedia.neofonie.de.

5.3.2 Clustering Effectiveness

Concerning literal clustering, I observed that, given a specific information need, there

is not much of a difference between our system and the baseline (cf. task 2.7, figure

22(b), p. 98). However, the more fuzzy information needs are, the more I noticed

users to depend on clustering being provided, in order to solve their assignments

(see tasks 2.1, 2.4, 2.10). Please consider task 2.10, where a fuzzy need is given.

Without clustering enabled, I observed some users to be not willing to fulfill this

assignment, because of the extra effort needed, while other subjects seemed not to be

aware of ways to complete it. If clustering was given, on the other hand, participants

achieved overall a high success rate (cf. figure 22(b), p. 98). I explain these results

with our clustering techniques enabling participants to articulate fuzzy needs in a

fairly easy manner. Subjects seemed to handle drill down operations as a mean for

http://dbpedia.neofonie.de/
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slowly specifying knowledge well.

With respect to resource partitioning, users did not manage to complete their tasks

using the baseline system (cf. figure 22(c), p. 98). Again, a number of participants

did notice and outline possibilities of solving their assignments, but also realized the

substantial time required and balked the effort. On the other hand, having means

of value partitioning provided, a success rate of over 67 percent was achieved (cf.

figure 22(c), p. 98). These results are very promising, as all tasks involve high-level

information needs that can only be satisfied by means of complex, more-hop queries.

To be more specific, participants solved assignments via iterative construction of

facet paths. I explain these accomplishments with faceted search being a well-

known and well-accepted paradigm. Many users seemed to very intuitively choose

the correct path.

5.3.3 Clustering Efficiency

Given this context, I again distinguish between clustering of literals and clustering

of resources. In the former case, I observed that, if participants managed to fulfill

their assignments, they made use of a brute-force-like strategy, in order to explore

the entire result space. Obviously, such a strategy is very expensive in terms of user

effort, as it requires more system interaction (cf. tasks 2.1, 2.4, figure 22(b), p. 98).

On the other hand, given tasks involving a specific information need, I noted many

participants to use query searching as a strategy to fulfill their assignment. This

resulted in both strategies having an equal performance, with regard to user effort.

As a matter of fact, our approach tends to be slightly more expensive, as sometimes

more browsing interactions were necessary (cf. task 2.7).

Concerning the latter case, i.e. the clustering of resources, I already outlined above

that during the evaluation no participant succeeded using the baseline system (cf.

figure 22(c), p. 98). However, it is important for the reader to notice that trivial

tasks, requiring only a simple, one-hop restriction of values in FV (e.g. constraining

entities via name), may have been easily completed in both systems. Actually, I

expect that browsing strategies would have led to higher users costs, when compared

with query searching.
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(a) Average user costs (type a

& b)

(b) Average success rate (type a)

(c) Average success rate (type b)

Figure 22: Efficiency & Effectiveness w.r.t. Clustering

5.3.4 Cluster Usability

Especially in combination with high-level information needs, usability is an impor-

tant issue. Thus, after completing their assignments, users were given a set of

questions, targeting at usability aspects of the clustering technique. For details,

please see table 3 (p. 110). In particular, users were asked to rate how useful and

how intuitive the clustering has been. Note, results achieved were quite good. More

precisely, concerning the former question, users judged the clustering strategy to be

a 4.5 and, with respect to the latter one, a 3.8 (given a scale [1–5]). Asking the same

for resource clustering, users again seemed quite satisfied, rating the usefulness a 4.6

and the intuitiveness a 4.2.



Section 6

Conclusion

Concluding Remarks The web of data nowadays offers a vast amount of in-

formation, allowing complex and high-level user needs. However, in order to issue

such needs, one is required to employ a specific query language as well as to possess

precise knowledge about the underlying domain and an item of interest. Faceted

search, on the other hand, as a newly emerging paradigm, offers ways for users to it-

eratively issue their queries, without having to use a given language. Thus, enabling

users to browse an unfamiliar space, without having prior knowledge of its schema

or syntax. State of the art faceted search approaches, however, focus rather on sup-

porting query searching than browsing strategies. As a result, current systems do

not enable exploration and thus seem not suitable for high-level information needs,

given a certain fuzziness, with regard to user knowledge.

Addressing this weakness, I presented in section 3 (p.36) techniques for clustering

of resources and literals, resulting in more browse-able facet values, which explic-

itly support fuzzy user information needs. Continuing in section 4 (p. 70), a novel

ranking scheme, targeting at support of exploration of an unknown resource space,

was introduced. This browse-ability-based ranking is designed to prefer such facets,

which guide users in small and non-discriminatory steps to their item of interest,

while resulting in observable and comprehensible result set modifications. Lastly,

in section 5 (p. 91), by means of a task-based user study, involving 24 participant

as well as 24 tasks, I evaluated these approaches. The results seem very promising,

as they clearly indicate that these techniques outperform state of the art systems,

given users with vague information needs. On the other hand, I noticed that par-

ticipants having specific knowledge, were able to fulfill their assignments with less

effort using traditional systems, i.e. approaches addressing search-ability. Therefore,

I conclude that while not necessarily leading the cheapest way to an item of interest,
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browse-ability-based strategies enable users to explore and search more effectively.

Future Work Concerning our future work, I wish to target a tightly integrated

approach using both paradigms, i.e. search-ability as well as browse-ability. Clearly,

depending on user background knowledge and specificity of an information need, the

former or latter strategy, may be more or less suitable. Furthermore, the runtime

performance was currently not addressed properly, leading to high I/O during a

search phase. Thus, a more efficient index structure, supporting common operations,

like facet browsing, refinement or expansion is needed. The reader should be aware

that state of the art structures29, are not applicable in our context, as they do

not scale well, with regard to our fine-grained facet and facet value definition (see

section 2, p. 17). A novel index design, adressing both, i.e. space complexity and

time complexity, is necessary.

29 Consider e.g. http://lucene.apache.org/solr/, a Lucene-based faceted search system, revised

Dec. 2009.

See http://lucene.apache.org/solr/
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Appendix

RDF Properties

Name Domain Range

rdf:type rdfs:Resource rdfs:Class

rdfs:isDefinedBy rdfs:Resource rdfs:Resource

rdf:value rdfs:Resource rdfs:Resource

rdfs:label rdfs:Resource rdfs:Literal

rdfs:comment rdfs:Resource rdfs:Literal

rdfs:member rdfs:Resource rdfs:Resource

rdfs:seeAlso rdfs:Resource rdfs:Resource

Table 1: Relevant predefined Properties in RDF(S) language
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XML Schema built-in Datatypes

Figure 23: XML Schema built-in Datatypes (based on [BM04])
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Pseudocode for Literal Clustering

Algorithm 2 Pseudocode for Literal Clustering

Require: k̂ ←branching factor

Require: L ← {li}1≤ i≤k //L is assigned all literals within this range

1: Q ← ∅ //Initialize sets.

2: C ← ∅

3: L ← ∅

4: L ← sort(L) //L is sorted with respect to
L
⪯

5: for all li, li+1 ∈ L̃ do

6: dcurrent ← dissimilarity(li, li+1)

7: Q ← Q ∪ {dcurrent}

8: end for

9: Q ← sort(Q) //Q is sorted

10: C ← C ∪ {L} //Begin clustering. Top-level cluster is added first.

11: repeat

12: i ← 1

13: while i ≤ k̂ do

14: dmax ← pop(Q) //Obtain and remove maximum distance from Q.

15: ccurrent ← cluster(dmax) //Get cluster with maximum distance.

16: C ← C / ccurrent

17: (c1, c2) ← split(ccurrent, dmax) //Split ccurrent at position dmax.

18: C ← C ∪ c1 ∪ c2

19: i ← i + 1

20: end while

21: until (Q = ∅) ∨ (no drill-down is performed)
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Generic Cluster Tree Example

Figure 24: Generic Cluster Tree Example
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Evaluation

Evaluation Tasks

Evaluation of . . . Task No. Task Description

Ranking (A)

1.1 Start with keyword search Karlsruhe.

Find something (prefer top ranked facets),

where people live and doesn’t fit in.

1.2 Start with keyword search Karlsruhe. Ex-

plore (prefer top ranked facets) the given

result set: Find an item that got some-

thing to do with traveling.

1.3 Start with keyword search Karlsruhe. Ex-

plore (using only the top five facets) the

given result set.

1.4 Start with keyword search Heidelberg.

Find something (prefer top ranked facets),

having to do with sports and that doesn’t

fit in.

1.5 Start with keyword search Heidelberg. Ex-

plore (prefer top ranked facets) the given

result set: Find an item that’s got some-

thing to do with music.

1.6 Start with keyword search Heidelberg. Ex-

plore (using only the top five facets) the

given result set.

Clustering (A)

2.1 Start with keyword search for Paris. Find

all places, having names starting with

’Paris, I . . . ’, ’Paris, J . . . ’ or ’Paris,

K . . . ’. Of those places, which one is the

smallest (population wise]?

Table continued on next page . . .
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Table 2 - Continued

Evaluation of . . . Task No. Task Description

2.2 Start with keyword search for Paris. Find

all things, having as genre a music genre,

which has as instrument an electric guitar.

2.3 Start with keyword search for Paris. Find

all works, having an actor as writer.

2.4 Start with keyword search for London.

Find all artists (an artist is a person),

born some time in November 1972. Also,

find out in which area(s) those people were

born.

2.5 Start with keyword search for London.

Find all works, having as subsequent work

a television show (episode).

2.6 Start with keyword search for London.

Find all works, having an artist born 1926.

Ranking (B)

1.1 Start with keyword search Barcelona.

Find an educational institution (prefer top

ranked facets) not quite fitting in.

1.2 Start with keyword search Barcelona.

Find an international jazz-band drummer

(prefer top ranked facets), who played to-

gether with Louis Armstrong.

1.3 Start with keyword search Barcelona. Ex-

plore (using only the top five facets) the

given result set.

1.4 Start with keyword search Seattle. Find

a hospital for minors (prefer top ranked

facets).

Table continued on next page . . .
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Table 2 - Continued

Evaluation of . . . Task No. Task Description

1.5 Start with keyword search Seattle. Find an

international Airport (prefer top ranked

facets).

1.6 Start with keyword search Seattle. Explore

(using only the top five facets) the given

result set.

Clustering (B)

2.1 Start with keyword search for Berlin. Find

the orchestra ’Berliner Philharmoniker’.

2.2 Start with keyword search for Berlin. Find

a work, having as producer someone who

is also a musical artist.

2.3 Start with keyword search for Berlin. Find

a work, having as artist a band (a band is

an organization), which has their home-

town located in Japan.

2.4 Start with keyword search for Hamburg.

Find all places, having a name starting

with ’K’, ’L’, ’M’, ’N’ or ’U’. Which of the

above places is not located in Germany?

2.5 Start with keyword search for Hamburg.

Find all works, having as artist a solo-

artist. Select the latest of the above works.

2.6 Start with keyword search for Hamburg.

Find some building, owned by an organi-

zation, founded in the early 20th century.

Table 2: User Tasks for Evaluation
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Evaluation Questionnaire

No. Question

1
Reconsider task 1.1/1.2/1.4/1.5. How helpful was the facet ranking

for completing this task?

p Very Helpful. p Pretty Helpful. p Sometimes Helpful.

p In most cases not helpful. p Not helpful at all.

—

2
Reconsider task 1.1/1.2/1.4/1.5. Did you have any previous knowl-

edge about the item of interest?

I had no previous knowledge. Tasks: I had some knowledge.

Tasks: I had full knowledge. Tasks:

—

3
Reconsider task 1.3/1.6 . In your opinion, how well did you explore

the given result set (scale [1–5])?

a.) Using the browse-ability ranking: b.) Using the search-

ability ranking:

—

4
With respect to exploration as our goal, how intuitive was the

browse-ability-based facet ranking?

p Very intuitive. p Understandable. p Fairly intuitive.

p Sometimes unclear. p Not intuitive at all.

—

5
Reconsider task 2.1/2.4. How intuitive was the literal clustering?

p Very intuitive. p Understandable. p Fairly intuitive.

p Sometimes unclear. p Not intuitive at all.

—

6
Reconsider task 2.1/2.4. How helpful was the literal clustering for

completing the tasks?

p Very intuitive. p Understandable. p Fairly intuitive.

p Sometimes unclear. p Not intuitive at all.

Table continued on next page . . .
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Table 3 - Continued

No. Question

7
Reconsider task 2.2/2.3/2.5/2.6. How intuitive was the resource

clustering?

p Very intuitive. p Understandable. p Fairly intuitive.

p Sometimes unclear. p Not intuitive at all.

—

8
Reconsider task 2.2/2.3/2.5/2.6. How helpful was the resource clus-

tering for completing the tasks?

p Very intuitive. p Understandable. p Fairly intuitive.

p Sometimes unclear. p Not intuitive at all.

—

9
How would you describe the search experience in comparison with

classical information search systems (like Google or Wikipedia)?

p I liked the new features a lot. p The new features were

interesting. p The new features were interesting, but a little

confusing. p The new features made searching harder.

—

10
Would you use the system again?

p Yes, definitely. p Maybe. p Not very likely. p No,

definitely not.

—

11
Did you have any other problems while using the system? What did

you like? What did you not like?

Comments:

Table 3: Questionnaire for Evaluation
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