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Abstract—A completely evolvable genotype-phenotype map-
ping (ceGPM) is studied with respect to its capability of
improving the flexibility of artificial evolution. By letting
mutation affect not only controller genotypes, but also the
mapping from genotype to phenotype, the future effects of
mutation can change over time. In this way, the need for prior
parameter adaptation can be reduced. Experiments indicate
that the ceGPM is capable of robustly adapting to a benchmark
behavior. A comparison to a related approach shows significant
improvements in evolvability.

I. Introduction

The evolutionary setup highly affects the success of an
evolutionary run. In this paper, an approach is studied
to generalize evolutionary setups in order to make them
applicable to a greater variety of target behaviors. Any static
mutation operator is usually applicable to a small set of tar-
get behaviors only. Here, the genotype-phenotype mapping
(GPM) is made “completely evolvable”, i. e., the mapping
from the space of genotypes (encodings of controllers based
on sequences of integers) to the space of phenotypes (robot
behaviors encoded as finite state machines) can be evolved.
In this way, the effects that mutation has on the phenotypes
may change during a run when the interpretation of the
genotypes changes. Furthermore, in a recursive process, the
effects of mutation of the GPM can change over time, thus,
potentially improving the evolution of GPMs as well as the
evolution of controllers.

A measure for evolvability of a ceGPM is defined and
applied to the ceGPM presented in [4] (ceGPM-old) as
well as to a newly proposed ceGPM (ceGPM-new). It
is shown that the ceGPM-old does not gain evolvability
to a statistically significant extent. In contrast, the newly
presented ceGPM-new is capable of gaining evolvability.

For related work on evolvability, cf. [1], [2], [5].

II. Scenario

Robot platform. The experiments are performed on a
simulated swarm of mobile Jasmine IIIp robots. Each robot
is sized 26 × 26 × 26 mm3 and has two wheels as actuators
and seven infra-red sensors for distance measurement placed

around the top. For more information on the robot platform
visit http://www.swarmrobot.org.

Behavioral automaton MARB. The behavioral part of the
robot controllers is represented by a model called Moore
Automaton for Robot Behavior (MARB), cf. [3] and Fig. 1.
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Figure 1. Simple example of a MARB. Implicit transitions to the initial
state are indicated as dashed lines.

Translator automaton MAPT and the ceGPM-old. Both
versions of the ceGPM (ceGPM-old and ceGPM-new) are
based on a translator model called Moore Automaton for
Protected Translation (MAPT).

The MAPT model has the same structural properties as
the MARB model. It is a translator automaton that uses a
genotype, i. e., a sequence of numbers as input and produces
a sequence of script instructions as output that can be inter-
preted to produce another automaton. A central idea of the
model is that a MAPT produces MARBs, but also MAPTs
making it possible to retranslate itself after mutations. Being
structurally the same, there are two semantic differences
between MARBs and MAPTs: (1) The sensor variables in
the MARB model depend on environmental observations of
the robot while the sensor variables of a MAPT are fed by
virtual sensor values which point to a genotypic sequence.
(2) The output of a MARB state is a motoric command while
a MAPT’s output consists of script instructions.

The ceGPM-new. The new ceGPM proposed here extends
the described translator model by adding a new instruction
to the script language. It is supposed to solve a structural
problem of the MARB and MAPT models shown in Fig. 1.
Both MARB and MAPT redirect to the initial state if a state
has no active outgoing transitions. However, it is essential
for both models to be capable of generating interconnected
subparts. This is hindered by visiting the initial state too
frequently. The new script instruction is CPL(X,Y). It inserts
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Figure 2. Schematic view of the translation process. Mutation operates on
genotypes (turned off for the behavioral genotype here) while evaluation
and selection consider the performance of the behavioral automaton only.

a “completing” transition from state X to state Y associating
to it a new condition ccpl. Let the outgoing conditions of
X be c1, . . . , cn; then the new condition associated to the
inserted transition is ccpl =

∧n
i=1 ¬ci.

Universal translator. A universal translator U is a MAPT
such that for all MARBs B and MAPTs T there exist geno-
typic sequences b and t which are translated by U to B or T ,
respectively. The universal translator used here can be down-
loaded at http://www.aifb.kit.edu/images/6/6b/Utrans.pdf.

Course of evolution. The evolution process is depicted in
Fig. 2. In the beginning, an initial MAPT T 0, an initial
translator genotype t0, and an initial behavioral genotype
b0 are given. T 0 is a manually constructed universal trans-
lator as described above; t0 encodes T 0 in the mapping
defined by T 0; b0 is a randomly generated sequence. T 0

translates b0 into a script which is interpreted to generate a
behavioral automaton B0. This defines the initial behavior.
During the run, random mutations can occur and turn the
current translator genotype ti into some genotype ti+1. This
replaces the current translator T i with a new translator T i+1

which is generated by translating the mutated translator
genotype ti+1 with the old translator T i. Afterwards, the
unchanged behavioral genotype b0 is translated by T i+1 to
Bi+1, thus changing the robot’s behavior without changing
the behavioral genotype.

Evolvability measure. Evolvability is defined as an adapta-
tion of the GPM to the behavior being evolved. Therefore,
behavioral mutations are turned off meaning that translator
mutations are the only mutations that can occur. The adap-
tation of the translator to the desired behavior is measured.

III. Experiments and Results

Method of experimentation. An initial set of experiments
was set up to cover a broad range of 324 different parameter
combinations. Each of these combinations has been tested
in two separate runs for both the ceGPM-old (a) and the
ceGPM-new (b). Setups from the first group that indicated
evolvability according to the proposed measure in at least
one of the two identical runs were called potentially suc-
cessful setups (PSSs) and studied further in a second set of
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Figure 3. Results of the second set of experiments with the ceGPM-
new and its own PSSs, i. e., category (3). The X-axis denotes the PSSs by
the setting of their variable parameters. The black bars denote the number
of successful runs according to the left Y-axis. The gray bars denote the
sum of all successful runs grouped by num parents or env, respectively,
according to the right Y-axis.

experiments. The first setup yielded 12 PSSs for ceGPM-old
and 45 PSSs for ceGPM-new. Fig. 3 shows the performance
of the latter in the second set of experiments.

In the second set, both ceGPMs were tested with all PSSs
from the initial runs (a) and (b). The second set has been
divided into four categories: (1) the ceGPM-old with its own
PSSs, (2) the ceGPM-old with the foreign PSSs, (3) the
ceGPM-new with its own PSSs, and (4) the ceGPM-new with
the foreign PSSs. Every run in the second set of experiments
has been performed ten times.
Results and discussion. The performance of ceGPM-old in
the second set of experiments was very low in both its own
and the foreign PSSs. Of the 120 runs performed overall
in (1) with own PSSs for ceGPM-old, only 4 (3.3%) were
successful; similarly, of the 450 runs in set (2) with foreign
PSSs of ceGPM-old, 8 (1.8%) were successful. The runs
with foreign PSSs of ceGPM-new (4) also did not perform
well; of the 120 runs, 5 (4.2%) were successful. None of
these setups yielded more than two successful runs out of
ten for a specific PSS. In contrast set (3) with own PSSs of
ceGPM-new yielded 90 (20%) successful runs, cf. Fig. 3.
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