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Abstract. As the amount of available ontologies and their size
grow, ontology reuse gains in importance. However, the conceptual
and syntactic heterogeneity of online available formalized knowl-
edge requires a revision of the imported knowledge which can lead
to a high manual effort. In this paper, we propose a set of methods to
support the revision of OWL ontologies. We show that our methods
significantly reduce the manual effort measured in number of deci-
sions that have to be made by an ontology engineer.

1 INTRODUCTION
Constructing ontologies for real-world knowledge-intensive applica-
tions is a highly time-consuming task. The revision of ontologies is a
typical part of it, since most semi-automatic methods, but also an ex-
tensive modification of ontologies by a human expert are error-prone
tasks. One of the most practical usage scenarios for ontology revision
however is ontology reuse which has become an attractive means of
reducing the ontology development effort since the introduction of
OWL.

There are several reasons for the required manual inspection of the
semantic data potentially relevant for the reuse in a new application
context:

1. Ontologies often contain fragments irrelevant to the particular ap-
plication scenario. Therefore, the relevant fragment has to be iden-
tified and extracted if necessary.

2. The available relevant knowledge bases tend to overlap. For in-
stance, 25% of the available ontologies within the biomedical and
chemical domain have an ontology mapping for more than the half
of their concepts [4].

3. The conceptual compatibility of the selected relevant fragment
and the target ontology has to be verified, since ontologies often
model the same domain from different points of view and lexically
similar entities can have different logical characteristics.

The first part of the problem, namely a more efficient reduction of un-
necessary information imported from foreign ontlogies has already
been addressed by a range of ontology partitioning and modular-
ization techniques such as Grau et al. [5] and Lutz et al. [7]. Both
of these approaches aim at a safe reduction of the amount of exter-
nally modelled data used in the target ontology without modifying
the original meaning of the reused elements based on the notion of
conservative extensions. However, these approaches do not address
the second and the third parts of the described problem.

The second part of the problem is partially addressed in some ap-
proaches to handle the restricted validity of formalized knowledge
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in other application context by restricting the interpretation of the
statements contained in other ontologies. For instance, the modular
ontology language SHOIQP[3] supports context-specific reuse of
knowledge from multiple ontologies by the means of contextualized
negation and bottom-concept. However, these approaches do not ...

As we show in our experiments, a systematic reasoning-based ap-
proach can reduce the effort spent on the revision of semantic re-
sources, in the special case of ontology reuse by up to 83%.

The remainder of this paper is organized as follows: In the next
section, we describe some basics that are relevant within this paper.
In Section 3, we describe our approach for the support of the ontol-
ogy revision including different ranking techniques and their evalu-
ation. Section 4 describes the ontology reuse process based on the
proposed revision method as well es its evaluation. Finally, Section
5 summarizes the contribution of this paper.

2 PRELIMENARIES

The formalisms of this work are based on the description logic
SHOIQ. Please note that our implementation works with the on-
tology language OWL DL which is based on the description logic
SHOIN (D)[6], but for the ease of presentation, we do not con-
sider datatypes in this paper. However, the result of this paper can
easily be extended to SHOIN (D).

The syntax of SHOIQ is given by a signature S and a set of
constructors. S is the disjoint union of a set C of atomic concepts
(A,B, . . .) representing sets of elements, a set R of atomic roles
(r, s . . .) representing binary relations between elements, and a set I
of individuals (a, b, . . .) representing elements.2 In the following, we
will use the term ontology entities or simply entities to refer to the
elements of the set C ∪R of concepts and roles of an ontology.

Constructors provide the means for defining the set Con(S)
of general concepts (C,D, . . .), the set Rol(S) of general roles
(R,S, . . .), and the set Ax(S) of axioms (α, β, . . .). Rol(S) is built
using the inverse roles (R−) construct. General concepts can be con-
structed using the following grammar:

C ← A|¬C|C1 u C2|∃R.C| ≥ nS.C

In the latter expression, we use an atomic concept A, an atomic
role S, a concept C, a role R, and a positive integer n. We introduce
some additional shortcuts: the bottom concept ⊥ stands for A u ¬A
and the top concept > is a shortcut for ¬ ⊥, the disjunction of con-
cepts C1 t C2 stands for ¬(¬C1 u ¬C2), and the value restriction

2 In the literature, also the term ’class’ is used instead of ’concept’ and the
terms ’property’ and ’relation’ are used instead of ’role’.



∀R.C stands for ¬(∃R.¬C). Another shortcut is ≤ nS.C which
stands for ¬(≥ n+ 1S.C).

The set of terminological axioms (TBox) for a particular signature
S consists of concept inclusion (A v B) and equivalence (A ≡ B)
axioms as well as role inclusion (R v S), role equivalence (R ≡ S),
and transitivity (R+ v R) axioms.

The logical entailment |= is defined using the set-theoretic seman-
tics for description logics. Given a signature S, an interpretation I
is a pair I = (∆I , ·I), where ∆I is a non-empty set, called the do-
main of the interpretation, and ·I is the interpretation function that
assigns to every A ∈ C a subset AI ⊆ ∆I , to every R ∈ R a
binary relation rI ⊆ ∆I × ∆I , and to every a ∈ I an element
aI ∈ ∆I . The extension of the interpretation function to complex
roles and concepts as well as the satisfaction relation between an in-
terpretation I and an axiom α can be found in [1]. An interpretation
I is a model of an ontology O, if it satisfies all axioms in O. An
ontology O implies an axiom α, if every model I of O satisfies α.
An ontology O implies a set of axioms T , denoted as O |= T , if it
implies each axiom α ∈ T .

3 REVISION OF KNOWLEDGE BASES
When considering the reuse of knowledge from foreign ontologies, a
decision needs to be taken for each of its axioms whether it complies
with the requirements underlying T such as requirements concerning
the logical expressiveness within the ontology or the exact meaning
of ontology entities.

In our method, we rely on some particular assumptions about the
process of ontology revision:

• The requirements for the resulting ontology are known to the re-
viewing ontology engineers.

• The ontology engineer reviews a set of axioms one by one and can
only approve or decline each of them.

• Evaluation decisions cannot be changed during the evaluation. If
any requirements have changed, the evaluation has to be restarted.

For the ease of further presentation, we introduce the following
evaluation state function that reflects the delineated assumptions. It
models the state of the evaluation process at a particular stage.

Definition 1 (Evaluation state function) Let O be a set of axioms
which has to be reviewed to verify the compatibility with a target
ontology T , and let V be the set {approved, declined, unevaluated}.
The evaluation state function

fT : O −→ V

retrieves for each axiom α ∈ O the value approved, if it complies
with the requirements for T , the value declined if it does not comply
with the requirements for T , and the value unevaluated, if there is no
information about it.

3.1 Reasoning-Based Support of Ontology Revision
Based on the assumptions stated above, we present a method to re-
duce the number of required expert decisions during the ontology
revision. We first clarify the ideas underlying the methods by the
means of the following example. Assume that we have to review the
following set of axioms:

(α) Person v ¬Event
(β) Employee v ¬Lecture

(γ) Ordinary ≡ Ordinary Lecture

given a target ontology with the two following concept hierarchies:

1. Ordinary v Employee v Person and
2. Ordinary Lecture v Lecture v Event

In this example, if we approve the axiom α, then, on the one hand,
the axiom γ has to be declined, since it would otherwise lead to an
inconsistent knowledge base. On the other hand, the axiom β has to
be approved, since it already is indirectly contained in the knowledge
base due to the subsumption hierarchies and α .

This example illustrates the main idea behind the proposed
reasoning-based support for ontology revision which is inspired by
the work on debugging ontology mappings by Meilicke et al. [8], in
particular the following two assumptions:

1. If an unevaluated mapping relationship contradicts with the al-
ready approved ones, the expert would decline it.

2. If an unevaluated mapping relationship is entailed by the already
approved ones, the expert would approve it.

In this way, the the revision decisions of the expert can be propa-
gateted to yet unevaluated mappings and the number of mappings to
be evaluated by a human expert is reduced. We transfer these two
assumptions to the revision of SHOIQ knowledge bases and define
the following succession operator which is based on several concrete
notions of contradiction and entailment.

Definition 2 (Succession operator) Let Ω denote the set of all possi-
ble axiom sets satisfying the SHOIQ syntax restrictions. For a set
of axioms O which has to be reviewed an evaluation state function
fT the succession operator

Φ : VO −→ VO

retrieves the function Φ(fT ) with

Φ(fT )(α) =



approved if f−1
T (approved) |= α

declined if α |= β, β ∈ f−1
T (declined)

or f−1
T (approved) ∪ {α} |=⊥

or f−1
T (approved) ∪ {α} 6∈ Ω

unevaluated otherwise

In the above definition, we state three particular indications of the
logical contradiction within the assumption 1:

• Entailment of any of the already declined axioms by the consid-
ered unevaluated axiom α;

• Unsatisfyability of the knowledge base consisting of the already
approved axioms and the considered unevaluated axiom α;

• Violation of the SHOIQ syntax restrictions by the knowledge
base consisting of the already approved axioms and the considered
unevaluated axiom α.

Notice that due to the monotonicity of reasoning in SHOIQ,
Φ preserves the values {approved,declined} assigned by fT to the
axioms and only influences the evaluation values of axioms with
fT (α) = unevaluated.

3.2 Ranking
The impact of reasoning-based support depends on the order in
which axioms are evaluated. For instance, if the ontology engineer
has to evaluate the axioms concerning the entity Decision



1. Decision v Distinct-Entity
2. Decision v Mental-Entity
3. Decision v Mental-Object

and the evaluated ontology T already contains the subclass axioms

a. Mental-Entity v Distinct-Entity
b. Mental-Object v Mental-Entity

then, declining axiom 1 or approving axiom 3 would result in an au-
tomatic evaluation of axioms 1-3. Approving the axioms in the pre-
sented order or declining in the inverse order would however require
two additional expert decisions. Obviously, ranking and ordering the
axioms can increase the effect of the reasoning-based support. The
results of our latter experiments support the intuitive assumption that
the calculation of an optimal order by comparing the results of all
possible axiom arrangements would not be feasible for an interactive
application. In the following, we consider one available ranking tech-
nique and develop two new ranking techniques which aim at finding
an advantageous order of the axioms.

3.2.1 MEILICKERANK

Meilicke et al. [8] propose a ranking function for mapping relation-
ships of types {subconcept, superconcept, disjoint concepts} result-
ing from ontology mapping. This ranking is based on combinatorics
and is independent from the current evaluation state. We adapt the
this technique for ranking of SHOIQ axioms in order to evaluate
how well the ranking technique is suited for ontology revision. The
ranking value for an axiom α containing concepts C ∈ C(O1) and
D ∈ C(O2) is calculated as follows:

• sub(O1, C) · (super(O2, D) + dis(O2, D)), if α = (C v D)

• super(O1, C) · (sub(O2, D) + dis(O2, D)), if α = (C w D)

• sub(O1, C) · (super(O2, D) + dis(O2, D))+
super(O1, C) · (sub(O2, D) + dis(O2, D)), if α = (C ≡ D)

where sub(O, C) returns the number of all subconcepts of concept
C in O , super (O, C) returns the number of all superconcepts of
C in O , and dis (O, C) returns the number of all concepts that are
disjoint with C . Since the ranking values have to be calculated only
once, the ranking method promises to be efficient in terms of time.

3.2.2 NEXTMAXRANK

As we can see from the example, the number of axioms which can
be entailed about the currently considered entity Eu depends on the
set of already approved axioms about the entity Eu. Therefore, an-
other possible way to rank the axioms would be to calculate for each
unevaluated axiom the number of unevaluated axioms that can be en-
tailed, if the considered axiom is approved. This is exactly how the
ranking function NEXTMAXRANK works. It applies reasoning at
each evaluation step and presents the axiom with the maximal num-
ber of subsequent entailments to the expert. This maximal number
of subsequent entailments represents the local maximum of the cor-
responding evaluation step. Since the ranking values depend on the
approved axioms, the result is to a certain extent dependent on the
original order of the axioms.Therefore, the overall number of entail-
ments is not neserrarily the global optimum. However, this ranking
technique takes possible axiom declines into account by calculating
the ranking values after each expert evaluation step.

3.2.3 MINSETRANK

Another possibility to rank the axioms is to determine a minimal, log-
ically nonredundant subset within the total set of unevaluated axioms
which can be used to deduce the remaining unevaluated axioms. If
no axioms are declined, un evaluation of the minimal set would suf-
fice. Therefore, the minimal set should be ranked higher than the re-
mainder in order to insure that it will be evaluated first. The ranking
technique MINSETRANK is an approximation of this idea. By the
means of reduction rules shown in Table 1, a set of axioms can be
reduced to a much smaller set with the same amount of information.
We rank an axiom with 1, if there are no reduction rules defined for it
or the defined rules are satisfied by the considered knowledge base.
Otherwise we rank it with 0.

Axiom type Reduction Rules
C1 v C2 O 6|= {C1 v C3, C3 v C2}

for any C3 ∈ C/{C|O |= {C ≡ C1}∨
O |= {C ≡ C2}}

C1 v ¬C2 O 6|= {C1 v C3, C2 v ¬C3}
for any C3 ∈ C/{C|O |= {C ≡ C1}
O 6|= {C2 v C4, C1 v ¬C4}
for any C4 ∈ C/{C|O |= {C ≡ C2}

∃R1.> v C1 O 6|= {C1 w C2,∃R1.> v C2)
for any C2 ∈ C/{C|O |= {C ≡ C1}
O 6|= {R2 ≡ R−1 , R2 = R∗,> v ∀R2.C1}
for any R2 ∈ R/{R|O |= {R ≡ R∗}

> v ∀R1.C1 O 6|= {C1 w C2,> v ∀R1.C2)
for any C2 ∈ C/{C|O |= {C ≡ C1}
O 6|= {R2 ≡ R−1 , R2 = R∗, ∃R2.> v C1}
for any R2 ∈ R/{R|O |= {R ≡ R∗}

R1 v R2 O 6|= {R1 v R3, R3 v R2}
for any R3 ∈ R/{R|O |= {R ≡ R1}∨
O |= {R ≡ R2}}

Table 1. Reduction rules used in MINSETRANK for different axiom
types.

In some cases, there are several alternative ways to express a piece
of information and there is no particular reason to prefer one or the
other alternative. For instance, a domain restriction of a role can be
also expressed by specifying the range of its inverse role. Both al-
ternatives would result in an equal number of axioms in the minimal
set. In this case, we choose one of the alternatives to be an element
of the minimal set based on the original order of the axioms. For in-
stance, one of the two roles inverse to each other is chosen as a target
for axioms ( denoted as R∗ within the reduction rules) if it was the
first one to be mentioned in an axiom. The redundant axioms of the
second role will be then ranked with 0.

3.3 Evaluation

We compare the described ranking methods on several axiom sets in
order to estimate their strengths and weaknesses. On the one hand,
we investigate, to what extent the manual effort of ontology revision
can be reduced in terms of required expert decisions. On the other
hand, we are interested in execution time required for the evaluation
of the different axiom sets. We measure the evaluation effort ε(T )
required for an evaluation of the axiom set T as the number of ax-
ioms that have to be evaluated by a human expert. The relative effort
reduction which is used for the presentation of the results is then cal-



Ranking Simulation Mode Test Ontology A Test Ontology B Pcs MyReview Cmt OpenConf Sofsem
Axiom set size 43 18 187 1126 694 452 424
RANDOM approve all 22/48% 12/33% 129/31% 820/27% 399/43% 352/22% 270/36%

decline every 10th 22/48% 12/33% 140/25% 873/22% 445/36% 367/19% 293/31%
decline every 2nd 31/27% 16/11% 167/10% 1025/9% 584/16% 421/7% 382/10%
best time 00:00:01 00:00:01 00:00:03 00:03:21 00:00:21 00:00:31 00:00:12

NEXTMAX approve all 9/79% 6/66% 118/36% 361/68% 192/72% 228/49% 218/48%
decline every 10th 9/79% 6/66% 127/32% 422/62% 222/68% 247/45% 242/42%
decline every 2nd 24/44% 14/22% 171/8% 842/25% 441/36% 360/20% 349/17%
best time 00:00:06 00:00:01 00:03:24 09:29:23 01:07:19 00:57:34 01:00:44

MEILICKE approve all 18/58% 11/38% 128/31% 789/30% 350/50% 336/26% 263/38%
decline every 10th 18/58% 11/38% 134/28% 839/25% 398/43% 351/22% 278/34%
decline every 2nd 26/39% 14/22% 165/11% 996/12% 527/24% 425/6% 370/13%
best time 00:00:00 00:00:01 00:00:03 00:02:10 00:00:45 00:02:37 00:00:37

MINSET approve all 9/79% 6/66% 125/33% 405/64% 231/67% 252/44% 238/44%
decline every 10th 9/79% 6/66% 136/27% 447/60% 269/61% 259/43% 254/40%
decline every 2nd 24/44% 14/22% 175/6% 822/27% 517/26% 382/15% 337/21%
best time 00:00:00 00:00:00 00:00:03 00:01:53 00:00:57 00:01:32 00:00:35

Table 2. Simulation results for different ranking techniques containing %(T ) and ε(T ) values for each axiom set T and each experimental setting.

culated as

%(T ) = 100% · #(T )− ε(T )

#(T )

We assume that the number of expert decisions in a manual evalu-
ation corresponds to the number of axioms #(T ) considered in the
revision.

In order to measure ε(T ), we run a simulation of the evaluation
where a virtual expert evaluates axioms according to a particular sim-
ulation setting. Since the discussed ranking techniques are to differ-
ent extents optimized for the approval of the reviewed data, they can
react differently on a decreasing level of data quality. Each simula-
tion setting has a particular defined proportion of declined axioms
which reflects a situation with a particular niveau of data quality. In
this evaluation, we have used three different simulation setting: ac-
cept all, decline every 10th and decline every 2nd.

We run the simulation for different axiom sets obtained from the
ontologies of the OntoFarm dataset [9]. In order to better understand
the ranking effectiveness, we additionally use a test ontology with an
explicitly known structure, which is small enough to be read at once
by a human. The test ontology A is shown in Fig. 1. The total num-
ber of logical axioms extracted from the test ontology amounts to 43
axioms. To demonstrate how the redundancy depends on the hierar-
chy depth, we also construct a test ontology B that does not contain
the concepts A6, A5 and A4. In the domain axiom,A6 is replaced by
A3. The number of extracted logical axioms decreased to 18 which is
less than a half of the previous amount. Indeed, alone the number of
possible subclass axioms grows factorially with the hierarchy depth.
We conclude that the hierarchy depth is a very important factor for
the redundancy within a knowledge base.

The results of the simulation are presented in Table 2. Before dis-
cussion the ranking methods, we point out two interesting findings
that concern all ranking methods:

1. Even though the experimental setting RANDOM does not require
the additional execution time for ranking and sorting of axioms
since they are evaluated in a random order, MINSETRANK and
MEILICKERANK outperform it with three axiom sets out of
seven. This can be explained by the significant reduction of the
number of required evaluation steps which in turns leads to an ex-
ecution time reduction that is higher than the time required for

A1 w A2 w A3 w A4 w A5 w A6

A7 w A8 w A9

A1 v ¬A7

∃R1.> v A6

Figure 1. The structure of the test ontology A

axiom ranking. In case of an evaluation by a human expert, we ex-
pect the improvement of evaluation time caused by ranking to be
much more prominent, since each expert evaluation step will take
more time than the simulated expert decision and therefore the
number of expert evaluation steps will be leveraged significantly
higher than the time required for ranking.

2. While the results in the simulation mode accept all show more or
less stable performance differences between the different ranking
methods, the other two modes, and especially decline every 2nd,
yield less stable experiment results. This can be explaned by the
fact that the decline of different axioms also has differently strong
consequences for the effort reduction and since the ranking meth-
ods do not explicitly take the potential of a decline into account, a
higher number of declines leads to more random results.

As we can see, NEXTMAXRANK achieves the best average per-
formance. However, the time results of NEXTMAXRANK are un-
acceptable with the execution time of 9.5 hours on the axiom set
MyReview. The time results of MEILICKERANK are significantly
better with 2.18 hours for the same axiom set, but its effectiveness
is on average 20% lower than that of NEXTMAXRANK. MINSE-
TRANK achieves almost as high effectiveness as NEXTMAXRANK
with on average only 3% lower performance and at the same time
very good results in terms of execution time. In fact, the execution
time of MINSETRANK is only slightly higher than that of the RAN-
DOM experimental setting, but for the reason discussed above, in a
real revision setting MINSETRANK is very likely to yield the best



time results. Because of its good performance and execution time,
we use MINSETRANK in the latter experiments within the context
of ontology reuse.

4 REVISION-BASED ONTOLOGY REUSE
In principle, ontology revision is an important task within most on-
tology enginnering processes such as manual ontology construction
or ontology learning. In this section, we demonstrate how the pro-
posed ontology revision support can be embeded in an ontology reuse
scenario, where the knowledge from several potentially overlapping
sources needs to be reused in a particular application context that is
partially specified by a target ontology T .

The reuse process allows an ontology engineer to select and reuse
any part of the externally specified knowledge and is depicted in
Algorithm1. This process consists of an automatic information in-
tegration phase and an interactive revision phase. The first phase in-
cludes an Ontology Matching task in order to establish the relation-
ships between the entities ET of the target ontology and the enti-
ties EFi of the external knowledge bases Fi. Note that when the
externaly formalized knowledge comes from different sources, sev-
eral correspondence relationships for the same entity as well as cor-
respondence relationships between the foreign ontologies are pos-
sible. In this section, we denote the set of logical equivalence ax-
ioms ET ≡ EFi derived from these correspondence relationships as
CFiT .

Algorithm 1 Ontology reuse supported by reasoning-based revision
Require: target ontology T , sets of axioms Fi

CFiT =MATCH(T ,Fi) {CFiT : equivalence axioms derived from
Ontology Matching}
U ← TRANSLATET (Fi, CFiT ) {U : set of unevaluated axioms}
f ← INIT(T , U ) {f : function reflecting the state of the revision}
f ← Φ(f)
U ← f−1(unevaluated)
U ←MINSETRANKSORT(U, f)
while U 6= ∅ do
α← GETFIRST(U)
f ← EXPERTEVALUATE(α)
U ← U/{α}
f ← Φ(f)
U ← f−1(unevaluated)

end while
return f

Using CFiT , the axioms of the knowledge bases are “translated”
into the vocabulary of the target ontology in order to obtain a less
complicated input for the revision and allow the ontology engineer
a safe partial reuse and modification of the reused knowledge. This
processing step will be discussed in more detail in the next subsec-
tion.

Since T is assumed to already comply with the application re-
quirements, its axioms can be seen as approved and are assigned the
corresponding value when the evaluation state function is initialized.
The initialized function is used to propagate the evaluation values
based on the definition of Φ before the axioms are ranked and sorted
using MINSETRANK. Already at this stage and before the expert
evaluates any axioms, many of the unevaluated axioms entailed by
and contradicting T can be evaluated automatically.

During the second phase, the expert reviews the sorted axioms in
U one by one while after each evaluation decision some axioms are

evaluated automatically by Φ and disappear from the revision list.

4.1 Knowledge Base Translation

As already mentioned in the introduction, externally specified knowl-
edge bases often contain statements that are not compatible with the
requirements unterlying the new application context or do not contain
some statements that are required within this context. If, for instance,
the role partOf is specified as irreflexive, but it has to be reflexive in
the new appication scenario due to a slightly different meaning, there
is a need for a safe way to adapt the specification of this role. Since
the IRIs of ontology entities are supposed to be globally unique, it
would be safe to create a new entity with a new IRI or to use the IRI
of an entity declared within the target ontology. The latter of the two
alternatives would also allow us to reduce the sets of equivalent enti-
ties declared in CFiT to a single entity per set with a single IRI that
is probably already familiar to the ontology engineer responsible for
the revision.

To transfer the original specification into the target entity, we par-
tially “translate” the language of a foreign ontology into the language
of T by the means of the following translation operator:

Definition 3 (Translation operator) A translation of an axiom α ∈
F into the language of the ontology T w.r.t. the set of equivalence
relationships CFT is defined as

T T (α, CFT ) = α{EF 7→ ET |(EF ≡ ET ) ∈ CFT }

A translation of a set of axioms F is defined as

T T (F , CFT ) = {T T (α, CFT )|α ∈ F}

Consequently, a translation of F is a set of axioms resulting from
the replacement of the foreign ontology symbol EF within F by
the symbol ET of the target ontology, if CFT contains EF ≡ ET .
Note that axioms obtained from a translation may reference entities
from both, the foreign and the target ontologies, since entities EF
not connected by any equivalence axioms to the entities of T were
not replaced.

We claim that the following statements expressing three different
requirements hold for the translation operator:

Theorem 1 (Requirements fulfillment by the translation operator)
Let Ω denote the set of all possible axiom sets satisfying the SHOIQ
syntax restrictions. Let T , Y and F be sets of SHOIQ axioms.

1. (T ∪ T T (F , CFT ) ⊂ Ω, if (T ∪ F ∪ CFT ) ⊂ Ω
(Preservation of SHOIQ syntax restrictions)

2. (T ∪ F ∪ CFT ) |= Y , iff T ∪ T T (F , CFT ) |= T T (Y, CFT )
(Entailment)

3. T ∪ F ∪ CFT is consistent, iff T ∪ T T (F , CFT ) is consistent
(Consistency)

The stated requirements on the one hand prevent the generation
of facts which were not a part of the original knowledge base, and,
on the other hand, preserve all facts of the original knowledge base.
They also preserve the consistency and prevent a violation of the
SHOIQ syntax restrictions within the knowledge base. Since the
translation operator only merges equivalent entities, the proof for
these statements is trivial.



Results Cmt MyReview OpenConf Pcs Sofsem
Considered ontologies 3303 355 1596 3251 2674
Considered axioms 3426 3168 2376 3538 2791
RANDOM Total manual decisions 1622 1658 873 1653 1399

Total automated decisions 1804 1510 1503 1885 1392
Implications 1205 1115 926 1376 1162
Declines 599 395 577 509 230
Reduction of effort 53% 48% 63% 53% 50%

MINSETRANK Total manual decisions 711 773 612 704 467
Total automated decisions 2715 2395 1764 2834 2324
Implications 2116 2000 1187 2325 2094
Declines 599 395 577 509 230
Reduction of effort 79% 76% 74% 80% 83%

Table 3. Experimental results for supporting the revision of search results into an ontology. The first two rows list the amount of retrieved data.

4.2 Ontology Reuse Evaluation
We evaluate the proposed methodology in the scenario where search
engine results are considered for reuse in a particular context rep-
resented by the target ontologies. As target ontologies, we consider
the ontologies from the OntoFarm dataset [9], shown in the column
headers of Table 3. We perform the search and revision for each of
them separately. We use the ontology search engine Watson [2] to
obtain potential axioms for the reuse. Watson matches entity names
with keywords provided as input based on simple string-similarity
and retrieves axioms referencing these entities. We use the name of
each entity referenced in the target ontologies as a keyword. On av-
erage, we obtained 3.060 axioms for a target ontology.

The obtained axiom sets were processed as described in Algorithm
1 using the simulation setting approve all introduced in Section 3.3.
We also explicitly measure the effect of ranking within this scenario
and therefore repeat the same procedure but without ranking and sort-
ing.

Table 3 shows the results of each target ontology. We were able
to reduce the effort of the evaluation by up to 83%. As we see, the
ranking of axioms results in an additional average improvement of
25%. We also see that the number of automatically declined axioms
is surprisingly high (15%). We investigated the source of this high
level of incompatibility and found out that the majority of the con-
flicts were caused by a difference in the type of entities with similar
names. For instance, if in the one axiom, title is modeled as a con-
cept, and in another axiom, it is modeled as a role, combining these
two axioms would cause problems. Since the number of entity type
conflicts usually increases with the number of different sources, the
experienced high number of incompatible axioms seems plausible.

5 SUMMARY
In this paper, we presented a method to support the revision of for-
malized knowledge in order to minimize the manual effort of ontol-
ogy reuse. In particular, the following support is provided:

1. Integration of the semantic information in a way that allows a safe
customization of the reused data

2. Propagation of expert decisions in order to automatically elimi-
nate redundant as well as logically or syntactically incompatible
axioms

3. Optimization of the order, in which axioms are evaluated in order
to further minimize the number of required expert decisions

Our experiments demonstrate the potential of our method. We
were able to reduce the effort of the revision by up to 83%. The
ranking of axioms using the MINSETRANK helped to achieve an
additional average improvement of 25%.

ACKNOWLEDGEMENTS
This work is supported by the EU FP6 NeOn project
http://www.neon-project.org.

REFERENCES
[1] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi,

and Peter Patel-Schneider, The Description Logic Handbook: Theory,
Implementation and Applications, Cambridge University Press, 2003.

[2] Claudio Baldassarre, Laurian Gridinoc, Sofia Angeletou, Marta Sabou,
and Enrico Motta, ‘Watson: A gateway for next generation semantic web
applications’, (2008).

[3] Jie Bao, Giora Slutzki, and Vasant Honavar, ‘A semantic importing ap-
proach to knowledge reuse from multiple ontologies’, in AAAI’07: Pro-
ceedings of the 22nd national conference on Artificial intelligence, pp.
1304–1309. AAAI Press, (2007).

[4] Amir Ghazvinian, Natasha Noy, Clement Jonquet, Nigam Shah, and
Mark Musen, ‘What four million mappings can tell you about two
hundred ontologies’, in 8th International Semantic Web Conference
(ISWC2009), (October 2009).

[5] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike
Sattler, ‘A logical framework for modularity of ontologies’, in In Proc.
IJCAI-2007, pp. 298–304. AAAI, (2007).

[6] I. Horrocks, P.F. Patel-Schneider, and F. van Harmelen, ‘From shiq and
rdf to owl: The making of a web ontology language’, Journal of Web
Semantics, 1(1), 7–26, (2003).

[7] Carsten Lutz, Dirk Walther, and Frank Wolter, ‘Conservative extensions
in expressive description logics’, in IJCAI’07: Proceedings of the 20th
international joint conference on Artifical intelligence, pp. 453–458, San
Francisco, CA, USA, (2007). Morgan Kaufmann Publishers Inc.

[8] Christian Meilicke, Heiner Stuckenschmidt, and Andrei Tamilin, ‘Sup-
porting manual mapping revision using logical reasoning’, in AAAI, pp.
1213–1218, (2008).

[9] O. Svab, V. Svatek, P. Berka, D. Rak, and P. Tomasek, ‘Ontofarm: To-
wards an experimental collection of parallel ontologies’, in Proceed-
ings of the 5th International Semantic Web Conference ISWC-05, (2005).
Poster Track.


