
Bootstrapping an Ontology-based Information
Extraction System

Alexander Maedche�, Günter Neumann�, Steffen Staab�

�DFKI German Research Center for Artificial Intelligence,
Saarbruecken, Germany
neumann@dfki.de, http://www.dfki.de
�FZI Research Center at the University of Karlsruhe,
Karlsruhe, D-76131 Karlsruhe, Germany
maedche@fzi.de, http://www.fzi.de/wim
�AIFB, Univ. Karlsruhe, D-76128 Karlsruhe, Germany
staab@aifb.uni-karlsruhe.de,
http://www.aifb.uni-karlsruhe.de/WBS

Abstract. Automatic intelligent web exploration will benefit from shallow information
extraction techniques if the latter can be brought to work within many different do-
mains. The major bottleneck for this, however, lies in the so far difficult and expensive
modeling of lexical knowledge, extraction rules, and an ontology that together define
the information extraction system. In this paper we present a bootstrapping approach
that allows for the fast creation of an ontology-based information extracting system
relying on several basic components, viz. a core information extraction system, an on-
tology engineering environment and an inference engine. We make extensive use of
machine learning techniques to support the semi-automatic, incremental bootstrapping
of the domain-specific target information extraction system.

Keywords. Ontologies, information extraction, machine learning

1 Introduction

In order to overcome the problem of finding or extracting relevant information out of
the enormous amount of text data electronically available, various technologies for in-
formation management systems have been explored within the Natural Language Pro-
cessing (NLP) and AI community. One line of such research is the investigation and
development of intelligent information extraction systems.

Information extraction (IE) is the task of identifying, collecting and normalizing
relevant information from NL text and skipping irrelevant text passages. IE systems do
not attempt an exhaustive deep NL analysis of all aspects of a text. Rather, they are built
in order to analyse or “understand” only those text passages that contain information
relevant for the task at hand. Thus, the IE system may be sufficiently fast and robust
when dealing with free texts, such as appear on the Web.

The definition of relevancy is given implicitly by the IE model that specifies domain-
specific lexical knowledge, extraction rules, and an ontology. The IE model allows to
perform the required mappings from NL utterances to corresponding domain knowl-
edge. In order to render possible an exhaustive and highly accurate extraction task, the
model must be very detailed and comprehensive. Typically, the resulting mappings turn
free text into target knowledge structures about crucial information — answering ques-
tions about who, what,whom, when, where or why.

The target knowledge structures are not arbitrary, but rather they are predefined by
a given ontology. The ontology is a formal specification of a shared understanding of
the domain of interest. For instance, in the field of market research, the ontology may
describe concepts like revenue or joint venture, relations between concepts (e.g., com-
pany has joint venture), and axioms (e.g., the owns relationship between companies is
transitive). Our current system is about tourism. Correspondingly, its ontology includes
specifications of concepts like locations, accomodation, etc.
The overall functionality of the IE system may therefore be summarized by:

– Input:
� IE model (Specification of lexical knowledge, extraction rules, and ontology)
� A set of NL texts (e.g., press releases, online-documents, technical reports, or

even email)
– Output: Target knowledge structure, i.e. a set of instantiated and related concepts

and attributes. For instance, the IE system may assign to a web page about a hotel
the structure (in pseudo code):
h47 inst-of HOTEL, h47 HASNAME ‘Schwarzer Adler’,
c28 inst-of CITY, c28 HASNAME ‘Rostock’, h47 LOCATEDIN c28.

This principal structure of IE systems offers itself to a wide range of important
applications: intelligent information retrieval, text mining, e-mail routing, fine-grained
text classification, automatic metadata generation, etc.

The major bottleneck of current IE technology lies in the adequate definition of
lexical knowledge, extraction rules, and ontology such that a good coverage and pre-
cision is achieved by the extraction mechanism. The currently preferred approach is
based on careful observations of relevant text corpora. In earlier systems (like the Fas-
tus system, e.g., [2]), text corpora were analysed and the IE model has been defined
by hand. The manual definition, however, turned out to be a very time consuming task.
Thus, a number of machine learning approaches have been developed recently. They
acquire parts of the IE model automatically from (various types of) text corpora (e.g.,
specifically annotated corpora or unannotated ones; cf. e.g., [12, 19, 22, 4], [8]). How-
ever, what is missing so far is an integrated approach for acquiring the IE model using
machine learning techniques.

The ultimate objective that we pursue in our research is a fully integrated system
for building an IE model and exploiting it in an IE system by applying a bootstrap-
ping mechanism. Thereby, we found that the different parts of the domain model are
reusable to different degrees. The domain-specificity increases when working from the
specification of lexical knowledge, the specification of extraction rules and towards the
definition of ontologies. Accordingly, the reusability decreases along the same line and
the need for mechanisms that facilitate the specification starting from corpora grows.

Thus, there are quite reasonable resources now for lexical coverage and — to a lesser
degree — for extraction rules, but virtually no ontologies that may be taken of the shelf.
Therefore, we have approached the problem of acquiring the IE model on the ontology
part.

We have built a comprehensive system that semi-automatically extends the ontol-
ogy by ontology learning. It semi-automatically adapts and extends some of the lexi-
cal resources. It eventually maps free text, like web pages, onto ontology-based target
knowledge structures. Its architecture was devised in order to allow for the construction
and adaptation of even more resources, such as particular types of extraction rules, in
the future.

The organization of the paper is as follows. We introduce the core components for
bootstrapping an information extraction system. We start by introducing SMES (the
Saarbücker Message Extraction System) and its core functionality and resources, i.e.
lexical knowledge and extraction rules. Subsequently, we introduce the ontology com-
ponents, namely the ontology engineering environment OntoEdit and the inference en-
gine. The interaction between syntactic and conceptual level is then explained in Sec-
tion 4. Finally, we outline the bootstrapping cycle exploiting the alternating use of the
IE system and machine learning.

2 SMES and Its Core Resources

Free texts on or off the Web exhibit a very high degree of irregularities. Therefore, ex-
periences in the field of Natural Language Processing have shown that complete under-
standing of the texts is infeasible at least in the next few years, but probably in the fore-
seeable future. Simultaneously, the sheer amount of texts makes it necessary to process
the texts efficiently. This has lead to so called “shallow” text processing approaches,
where certain generic language regularities which are known to cause complexity prob-
lems are either not handled (e.g., instead of computing all possible readings only an
underspecified structure is computed) or handled very pragmatically, e.g., by restricting
the depth of recursion on the basis of a corpus analysis or by making use of heuristic
rules, like “longest matching substrings”. This engineering view on language has lead to
a renaissance and improvement of well-known efficient techniques, most notably finite
state technology for parsing. Following this point of view, the major task of the core
shallow text processing tools of SMES is the extraction of as much linguistic structure
as possible and its mapping into — comparatively simple — conceptual structures.

In order to achieve this efficiently and robustly, SMES makes use of advanced finite
state technology on all levels of processing and of a data structure called text chart.
SMES has been fully implemented for German with high coverage on the lexical and
syntactic level and with an excellent speed. We have also implemented first versions of
SMES for English and Japanese using the same core technology. In this paper we will
however focus on processing German text documents.

System Architecture. The architecture of SMES is shown in Figure 1. It consists of
two major components, a) the Linguistic Knowledge Pool LKP and b) STP, the shallow

Fig. 1. The blueprint of the system architecture of the IE–core system SMES

text processor itself. STP processes a NL-text through a chain of modules. We distin-
guish two primarily levels of processing, the lexical level and the clause level. Both are
subdivided into several components. All lexical and grammatical components of SMES

are realized by means of cascaded weighted finite state machines. The final result for
a sentence computed by SMES is an underspecified dependency structure, where only
upper bounds for attachment and scoping of modifiers are expressed.

Tokenization. The tokenizer maps sequences of consecutive characters into larger units
called tokens and identifies their types. Currently we use more than 50 token classes
including generic classes for semantically ambiguous tokens (e.g., “10:15” could be a
time expression or volleyball result, hence we classify this token as number-dot com-
pound) and complex classes like abbreviations or complex compounds (e.g., “AT&T-
Chief”). It proved that such variety of token classes simplifies the processing of subse-
quent submodules significantly.

Morphology. Each token identified as a potential wordform is submitted to the mor-
phological analysis including on-line recognition of compounds (which is crucial since
compounding is a very productive process of the German language) and hyphen coor-
dination (e.g., in “An- und Verkauf” (purchase and sale) “An-” is resolved to “Ankauf”
(purchase)). Each token recognized as a valid word form is associated with the list of
its possible readings, characterized by stem, inflection information (e.g., information
concerning case, person, gender) and part of speech category.

hat

Siemens

Gewinn {1988,von(150DM)}

weil

steigen

Auftrag

zum(Vorjahr),
um(13%)}

{im(Vergleich),

Subj

Obj PPs

Comp

SubCl

Subj PPs

Fig. 2. The underspecified dependence structure of the sentence: “Die Siemens GmbH
hat 1988 einen Gewinn von 150 Millionen DM, weil die Aufträge im Vergleich zum
Vorjahr um 13% gestiegen sind” (The Siemens company had made a revenue of 150
million marks in 1988 since the orders increased by 13% compared to last year)

POS-filtering. Since a high amount of German word forms is ambiguous, especially
word forms with verb reading1, and due to the fact that the quality of the results of the
syntactic analysis phase relies essentially on the proper recognition of verb groups, effi-
cient disambiguation strategies are needed. Using case-sensitive rules is straightforward
and reliable since generally only nouns (and proper names) are written in standard Ger-
man with a capitalized initial letter (e.g., “das Unternehmen” - the enterprise vs. “wir
unternehmen” - we undertake). However for disambiguation of word forms appearing
at the beginning of the sentence local contextual filtering rules are applied. For instance,
the rule which forbids the verb written with a capitalized initial letter to be followed by
a finite verb would filter out the verb reading of the word “unternehmen” in the sentence
“Unternehmen sind an Gewinnmaximierung interesiert.” (Enterprises are interested in
maximizing their profits). It is important to notice that such rules are based on some reg-
ularities, but they may yield false results, like for instance the rule for filtering out the
verb reading of some word forms extremely rarely used as verbs (e.g., “recht” - right,
to rake (3rd person,sg)). Apart from manually constructed rules mentioned above, we
also use rules determined by Brill’s tagger [3].2 All rules are compiled into a single
finite-state transducer according to the approach described in [20].

1 30% of the wordforms in the test corpus “Wirtschaftswoche” (business news journal), which
have a verb reading, turned to have at least one other non-verb reading.

2 The manually constructed rules proved to be a reliable means for disambiguation, however not
sufficient enough to filter out all unplausible readings. Hence supplementary rules determined
by Brill’s tagger were used in order to achieve broader coverage.

Named entity finder. Named entities such as organizations, persons, locations and time
expressions are dynamically identified using finite-state grammars. Since some named
entities (e.g. company names) may appear in the text either with or without a designator,
we use a dynamic lexicon to store recognized named entities without their designators
(e.g., “Braun AG” vs. “Braun”) in order to identify subsequent occurrences correctly. In
other words, our named entity finder creates online a lexical database of just identified
named entities, and thus performs already one (small) part of the knowledge acquisition
cycle.

Chunk parsing. In most of the well-known shallow text processing systems cascaded
chunk parsers are used which perform clause recognition after fragment recognition fol-
lowing a bottom-up style as described in [1]. We have also developed a similar bottom-
up strategy for the processing of German texts, cf. [18]. However, the main problem
we experienced using the bottom-up strategy was insufficient robustness: because the
parser depends on the lower phrasal recognizers, its performance is heavily influenced
by their respective performance. As a consequence, the parser frequently wasn’t able to
process structurally simple sentences, because they contained, for example, highly com-
plex nominal phrases. For that reason we developed a novel mixed topdown/bottom–up
chunk parser, which consists of three major subcomponents:

1. recognition of the topological field structure of a sentence,
2. application of phrasal grammars (e.g., nominal and prepositional phrases) to the

different fields,
3. recognition of the grammatical functions (like subject, object).

During the first step of the parser a cascade of finite-state grammars are applied to
the stream of lexical tokens and named entities in order to determine the topological
structure of the sentence according to the linguistic field theory. Based on the fact that
in German a verb group (like “hätte überredet werden müssen” — *have convinced
been should meaning should have been convinced) can be split into a left and a right
verb part (“hätte” and “überredet werden müssen‘”) these parts (abbreviated as LVP and
RVP) are used for the segmentation of a main sentence into several parts: the front field
(VF), the left verb part, middle field (MF), right verb part, and rest field (RF). Subclauses
can also be expressed in that way such that the left verb part is either empty or occupied
by a relative pronoun or a subjunction element, and the complete verb group is placed
in the right verb part. Note that each separated field can be arbitrarily complex with
very few restrictions on the ordering of the phrases inside a field.

Grammatical function recognition. After the fragment recognizer has expanded the cor-
responding phrasal strings, a further analysis step is done by the grammatical function
recognizer (GFR) which identifies possible arguments on the basis of the lexical sub-
categorization information available for the local head. The final output of the clause
level for a sentence is thus an underspecified dependence structure UDS. An UDS is a
flat dependence-based structure of a sentence, where only upper bounds for attachment
and scoping of modifiers are expressed (see Figure 2). In this example the PPs of each
main or sub-clause are collected into one set. This means that although the exact at-
tachment point of each individual PP is not known it is guaranteed that a PP can only

be attached to phrases which are dominated by the main verb of the sentence (which
is the root node of the clause’s tree). However, the exact point of attachment is a mat-
ter of domain-specific knowledge and hence should be defined as part of the domain
knowledge of an application.

Most of the linguistic information actually used in grammatical function recogni-
tion comes from a large subcategorization lexicon (currently counting more than 15.000
entries for German verbs). In particular, the information conveyed by the verb subcate-
gorization lexicon we use, includes subcategorization patterns, like arity, case assigned
to nominal arguments, preposition/subconjunction form for other classes of comple-
ments.

3 Ontologies

Following Tom Gruber, we understand ontologies as a formal specification of a shared
conceptualization of a domain of interest to a group of users (cf. [9]). In this section we
introduce ontologies by giving a mathematical definition of the elements we consider an
ontology is consisting of. Thereby, an important aspect is that we use a lexicon which is
mapped onto the concepts and relations of the ontology, mediating between SMES and
the knowledge structures. Within our framework we use two tools: (1) OntoEdit that is a
comprehensive ontology management system supporting the engineering of ontologies
and (2) OntoBroker, a deductive, object-oriented inference engine that allows querying
and reasoning on the defined knowledge structures.

3.1 Ontologies – A Definition

We distinguish between ontologies “in a wider sense” and “in a narrow sense”. Similar
to the term “information system in a wider sense”, the former notion of ontologies
contains many aspects, which either cannot be formalized at all or which cannot be
formalized for practical reasons. For instance, it might be too cumbersome to model
the interests of all the persons involved. Concerning the formal part of ontologies (or
“ontology in the narrow sense”), we employ a two-part structure. The first part (cf.
Definition 1) describes the structural properties that virtually all ontology languages
exhibit. Note that we do not define any syntax here, but simply refer to these structures
as a least common denominator for many logical languages, such as OIL [7] or F-Logic
[14]:

Definition 1. Let� be a logical language having a formal semantics in which inference
rules can be expressed. An abstract ontology is a structure� �� ����� � �� ����� ���
consisting of

– two disjoint sets � and � whose elements are called concepts and relations, resp.,
– a partial order �� on �, called concept hierarchy or taxonomy,
– a function ���� � � � called signature,
– a partial order�� on � where �� �� �� implies ����� ���� ����� , for ��� �� �
�, called relation hierarchy.

– and a set �� of inference rules expressed in the logical language �.

The function ����� � � with ������ �� �������� gives the domain of �, and the
function �	
����� � with �	
����� �� �������� gives its range.

To connect the abstract ontology structure to natural language we use an explicit
representation of the lexical level.3 Therefore, we define a lexicon for our abstract on-
tology� as follows:

Definition 2. A lexicon for an abstract ontology � �� ����� � �� ����� ��� is a
structure ��� �� ��� � ������ � ���� �� consisting of

– two sets �� and �� whose elements are called signs (lexical entries) for concepts
and relations, resp.,

– and two relations ��� � � �� � � and ��� � � �� � � called lexical reference
assignments for concepts/relations, resp.

Based on ��� � , we define, for � � �� ,

���
�
��� �� 		 � �
 ��� 	� � ���

�
�

and, for 	 � �,
��� ��

�
�	� �� 	� � �
 ��� 	� � ��� ��

��� � and ��� ��
�

are defined analogously.

The abstract ontology is made concrete through naming. Thus:

Definition 3. A (concrete) ontology (in the narrow sense) is a pair ������ � where �
is an abstract ontology and ��� is a lexicon for �.

3.2 OntoEdit - Ontology Engineering Environment

OntoEdit is an ontology engineering environment supporting the ontology development
and maintenance process (cf. [24]). Figure 3 depicts a screenshot of OntoEdit and a
tourism ontology developed within the GETESS project [23]. On the left side the con-
cept hierarchy of the tourism ontology is depicted. In the middle the non-taxonomic
relations of the selected concept MUSEUM are depicted. On the right lower side the
view of OntoEdit for adding lexical entries to concepts and relations is depicted. The
definition of these mappings is an important aspect, allowing to connect the ontology
structures to the natural language processing system SMES. In this concrete example
morphologically reduced lexical entries are mapped onto concepts. In addition, the lan-
guage of the specific lexical entry and its part of speech are defined.

OntoEdit also allows the definition of axioms about concepts and relations, like the
symmetry of the “marriedWith” relation between two persons (cf. [25] for an elaborated
overview). OntoEdit accesses an external inference engine that is described in the next
subsection.

3 Our distinction of lexical entry and concept is similar to the distinction of word form and
synset used in WordNet [6]. WordNet has been conceived as a mixed linguistic / psychological
model about how people associate words with their meaning.

Fig. 3. OntoEdit Ontology Engineering Environment

3.3 Inference Engine

We use the Ontobroker system [5] as a component of our information extraction system.
Ontobroker is a deductive, object-oriented database system. It is based on F-Logic [14]
allowing to describe and instantiate an ontology.

Let us consider a short example of how to use OntoBroker with its underlying rep-
resentation language F-Logic. Concept definitions in F-Logic for ACCOMODATION

having a relation LOCATEDIN with range AREA and HOTEL being a subconcept of
ACCOMODATION is given in (1), while a fact that ‘Schwarzer Adler’ is a HOTEL which
is LOCATEDIN Rostock appears like in (2).

(1) ACCOMODATION[LOCATEDIN�� AREA].
HOTEL::ACCOMODATION.

(2) ‘Schwarzer Adler’:HOTEL[LOCATEDIN�� ‘Rostock’].

Hence, an inference rule describing that the relation LOCATEDIN is transitive is given
by (3).

(3) FORALL ���� � LOCATEDIN �� � � LOCATEDIN �� � �
AND � LOCATEDIN �� �

Ontobroker allows querying as well on the schema as on the instance level, e.g.,
the following query retrieves all domain / range pairs of all non-taxonomic relations
defined in the ontology:

(4) FORALL ��� �� � EXISTS � � ��� � �

4 Bridging

In human understanding of free text, syntax, semantics, context, and/or knowledge may
trigger the search for conceptual bridges between syntactic objects (cf. [21]). For in-
stance,

– Syntax: the syntactic dependencies in the phrase “the house of Usher” signal a con-
ceptual dependency between the conceptual denotations corresponding to “house”
and “Usher”.

– Semantics: In the phrase “The baby have cried.” the semantic restrictions allow to
infer the conceptual relationship between the denotates of “baby” and the “cry”ing
— even though the sentence is syntactically illegitimate.

– Context: In “They are geniuses. Michael, Dieter, Markus.” the resolution of “Michael
being a genius, etc.” may occur because of contextual cues (and ellipsis resolution)
(cf. e.g., [17]).

– Knowledge: In “CPU A is faster than B.”, knowledge is responsible to associate
the denotates of cpu A and B with a comparison of their frequency figures rather
than their physical speed (because they could be traveling in a vehicle).

SMES constitutes the IE system component for signaling syntactic cues. In IE one
typically only considers syntax to trigger the search for a conceptual bridge. Thereby,
one uses the background knowledge given in the ontology to check for the possibility
of conceptual bridges. In the easiest case the ontology is directly used for validating a
conceptual bridge, e.g., ‘Mecklenburg-Vorpommern in Eastern Germany’ corresponds
to the ontology structure REGION CONTAINS REGION. Therefore, the conceptual bridge
between ’Mecklenburg-Vorpommern’ and ‘Eastern Germany’ may be positively vali-
dated.

However, there exists a wide range of possibilities according to which a bridge
may be built given a particular ontology. The principal variance comes from effects
such as granularity, metonomy, or figurative language. For instance, one may model in
the ontology that a country contains states and states contain counties. Because of the
transitivity of the contains relationship, the ontology also allows the direct connection
of country with county.

In our concrete implementation we use OntoBroker to check for valid conceptual
bridges. Thereby, we focus on syntactically motivated ones. We ignore metonymic and
figurative language, because they currently constitute research topics of their very own.

We want to mention that extraction rules may be considered as implementations of
ideosyncratic syntactic cues for particular ontological structures. For example, we have
particular extraction rules for addresses, company names, etc.

5 Bootstrapping

A general problem of information extraction is that it requires large conceptual and lin-
guistic resources. Therefore, we apply a bootstrapping mechanism to semi-automatically

acquire the required resources. In the following we first describe our mechanism for the
extraction of knowledge structures from natural language texts. Subsequently, we ex-
tend this approach for the extension and adaptation of linguistic resources. Finally, we
analyze their interaction in the bootstrapping cycle.

5.1 Ontology Learning

Ontology Learning is a mechanism that semi-automatically supports the process of ex-
tracting and maintaining an ontology from a given set of data 4. Thus, it applies machine
learning techniques on given data for the automatic extraction of knowledge structures
that are proposed to and refined by the ontology engineer.

Fig. 4. Architecture for Ontology Learning

We here only give a rough outline of the Ontology Learning approach by introduc-
ing our generic architecture for extracting and maintaining ontologies from given data,
in particular natural language texts. We have identified four main core architectural
components. There are,

4 A comprehensive overview and introduction into Ontology Learning is given in [16].

– A generic management component dealing with delegation of tasks and constitut-
ing the infrastructure backbone,

– A data import and processing component working on input data from the Web
including, in particular, the natural language processing core component SMES,

– An algorithm library5 working on the output of the data import & processing
component as well as the ontology structures sketched above and returning result
sets also mentioned above and,

– The ontology management and engineering environment OntoEdit.

The interaction between these components is depicted graphically in Figure 4. An
important aspect is that the data import and processing component as well as the algo-
rithm library component access the available knowledge structures in each step.

5.2 Interaction

Ontology Learning is one important step in the overall bootstrapping approach we pur-
sue. The overall system uses an incremental bootstrapping approach in the following
sense:

1. We start with a shallow easily reusable IE model that is given as a baseline with the
core natural language system SMES (see Section 2)

2. Then, a domain specific corpus is selected.
3. The corpus is processed with the core IE system (exploiting the given IE model);
4. Based on this data one uses a set of different learning approaches (from very simple

statistical approaches, like n–grams up to complex ones like ILP) embedded into
the Ontology Learning framework.

5. The IE model is extended. In particular, we support the extension of the lexical
knowledge, extraction rules, and the ontology. Here comes the human into the loop
in order to review learning decisions.

6. We continue with step 3. until the human modeler decides to stop.

6 Related Work

We distinguish our approach along two dimensions. First, as a response to problems
that knowledge representation suffered from until the early 90’s, people in informa-
tion extraction built IE models with simplified knowledge structures, namely templates,
which came with little inferencing capabilities6. In general, templates provide a flat
knowledge structure that is to be instantiated with attribute values. The prototypical
architecture for a template-based information extraction system has been introduced
in [2]. Because, there are now efficient inferencing systems, the ontology-based de-
scription of the domain should be favored over the comparatively rigid template-based
specifications.

5 The interested reader is referred to [15, 13]
6 Some proposals make use of type-based feature structures and unification, but they do not

provide an easily understandable conceptual model of the domain.

Second, work on the explicit combination of information extraction and machine
learning has mostly been focused on only few parts of the IE model, e.g. described by
[12, 19, 22, 4, 8]. The underlying idea is rather than spending weeks or months manually
adapting an information extraction system to a new domain, one would like a system
that can be trained on some sample documents and that is expected to do a reasonable
job of extracting information from new ones. In [8] a multi-strategy learning archi-
tecture for the generation of extraction patterns is introduced. Along the same lines,
[26] present an automatic discovery procedure called ExDisco which identifies a set of
event patterns from un-annotated text, starting from a small set of seed patterns. Their
approach shows a significant performance improvement on actual extraction tasks in
contrast to manually constructed systems.

There are some systems that target a knowledge-oriented text extraction and under-
standing strategy with a tight integration between ontology, lexicon and extraction rules
and an incremental refinement of the IE model. In [10] the Syndicate system that targets
the transformation of documents into a knowledge base is introduced. In contrast to our
approach the ontology learning part of Syndicate restricts its attention to the techniques
for ontology refinement.

7 Discussion

In this paper we have presented a comprehensive approach for bootstrapping an ontology-
based information extraction system with the help of machine learning. The proposed
architecture has been instantiated within the GETESS (German Text Exploitation and
Search System) project (see [23]), where domain-oriented search services for tourism
and finance information have been developed. The further application of our approach
will appear in the Semantic Web, e.g. in the area of semantic annotation and metadata
generation (see [11]).

Acknowledgements. The research presented in this paper has been partially funded by
BMBF under grant number 01IN802 (project “GETESS”) and by US Air Force in the
DARPA DAML project “OntoAgents” (01IN901C0).

References

1. S. Abney. Partial parsing via finite-state cascades. Proceedings of the ESSLLI 96 Robust
Parsing Workshop, 1996.

2. D. Appelt, J. Hobbs, J. Bear, D. Israel, and M. Tyson. Fastus: A finite state processor for
information extraction from real world text. In Proceedings of the 13th International Joint
Conference on Artificial Intelligence, Chambery, France, August 1993.

3. E. Brill. Automatic grammar induction and parsing free text: A transformation-based ap-
proach. In 31th Annual Meeting of the Association for Computational Linguistics, Ohio,
1993.

4. M. Califf and R. Mooney. Relational learning of pattern-match rules for information ex-
traction. In Proceedings of the AAAI Spring Symposium on Applying Machine Learning to
Discourse Processing, 1998.

5. S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology Based Access
to Distributed and Semi-Structured Information. In R. Meersman et al., editors, Database
Semantics: Semantic Issues in Multimedia Systems, pages 351–369. Kluwer Academic Pub-
lisher, 1999.

6. Christiane Fellbaum. WordNet – An electronic lexical database. MIT Press, Cambridge,
Massachusetts and London, England, 1998.

7. D. Fensel, F. van Harmelen, I. Horrocks, D. L. McGuinness, and P. F. Patel-Schneider. OIL:
An ontology infrastructure for the semantic web. IEEE Intelligent Systems, 16(2):38–44,
March/April 2001.

8. D. Freitag. Machine Learning for Information Extraction in Informal Domains. PhD thesis,
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA,USA, 1998.

9. T. Gruber. A translation approach to portable ontology specifications. Knowledge Acquisi-
tion, 5:199–220, 1993.

10. U. Hahn and M. Romacker. Content management in the SYNDIKATE system - How tech-
nical documents are automatically transformed to text knowledge bases. Data & Knowledge
Engineering, 35(2):137–159, 2000.

11. S. Handschuh, S. Staab, and A. Maedche. CREAM — Creating relational metadata with a
component-based, ontology driven framework. In Proceedings of the First ACM Conference
on Knowledge Capture – K-CAP’01, 2001.

12. S. Huffman. Learning information extraction patterns from examples. In Wermter, Riloff,
and Scheler, editors, Connectionist, Statistical, And Symbol Approaches to Learning for Nat-
ural Language Processing, volume 1040 of Lecture Notes in Artificial Intelligence, pages
246–260, Berlin, Springer, 1996.

13. J.-U. Kietz, R. Volz, and A. Maedche. A method for semi-automatic ontology acquisition
from a corporate intranet. In EKAW-2000 Workshop “Ontologies and Text”, Juan-Les-Pins,
France, October 2000., 2000.

14. M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and Frame-Based
Languages. Journal of the ACM, 42(4):741–843, 1995.

15. A. Maedche and S. Staab. Discovering conceptual relations from text. In ECAI-2000 - Eu-
ropean Conference on Artificial Intelligence. Proceedings of the 13th European Conference
on Artificial Intelligence. IOS Press, Amsterdam, 2000.

16. A. Maedche and S. Staab. Ontology learning for the semantic web. IEEE Intelligent Systems,
16(2), 2001.

17. K. Markert and U. Hahn. On the interaction of metonymies and anaphora. In Proc. of
IJCAI-97, pages 1010–1015, 1997.

18. G. Neumann, R. Backofen, J. Baur, M. Becker, and C. Braun. An information extraction core
system for real world german text processing. In 5th International Conference of Applied
Natural Language, pages 208–215, Washington, USA, March 1997.

19. E. Riloff. Using learned extraction patterns for text classification. In Wermter, Riloff, and
Scheler, editors, Connectionist, Statistical, And Symbol Approaches to Learning for Natural
Language Processing, volume 1040 of Lecture Notes in Artificial Intelligence, pages 275–
289, Berlin, Springer, 1996.

20. E. Roche and Y. Schabes. Deterministic part-of-speech tagging with finite state transducers.
Computational Linguistics, 21(2):227–253, 1995.

21. M. Romacker, K. Markert, and U. Hahn. Lean semantic interpretation. In Proc. of IJCAI-99,
pages 868–875, 1999.

22. S. Soderland. Learning Text Analysis Rules for Domain Specific Natural Language Process-
ing. PhD thesis, University of Massachusetts Amherst, 1997.

23. S. Staab, C. Braun, A. Düsterhöft, A. Heuer, M. Klettke, S. Melzig, G. Neumann, B. Prager,
J. Pretzel, H.-P. Schnurr, R. Studer, H. Uszkoreit, and B. Wrenger. GETESS — searching the

web exploiting german texts. In CIA’99 — Proceedings of the 3rd Workshop on Cooperative
Information Agents. Upsala, Sweden, July 31-August 2, 1999, LNCS 1652, pages 113–124,
Berlin, 1999. Springer.

24. S. Staab and A. Maedche. Ontology engineering beyond the modeling of concepts and
relations. In V.R. Benjamins, A. Gomez-Perez, and N. Guarino, editors, Proceedings of the
ECAI-2000 Workshop on Ontologies and Problem-Solving Methods. Berlin, August 21-22,
2000, 2000.

25. Steffen Staab, M. Erdmann, and A. Maedche. From manual to semi-automatic semantic
annotation: About ontology-based text annotation tools. ETAI – Semantic Web Journal,
Linkoeping Electronic Articles, 16(1), 2001.

26. R. Yangarber, R. Grishman, P. Tapanainen, and S. Huttunen. Automatic Acquisition of Do-
main Knowledge for Information Extraction. In Proceedings of COLING’2000, Saarbrcken,
Germany, 2000.

