
A Configuration Crawler for Virtual Appliances in Compute Clouds

Michael Menzel, Markus Klems, Hoàng Anh Lê, Stefan Tai
Karlsruhe Institute of Technology (KIT),

Institute for Applied Informatics and Formal Description Methods (AIFB),
Karlsruhe, Germany

{menzel,klems,tai}@kit.edu
hoang.le@student.kit.edu

Abstract—Compute clouds are pools of virtual machines
that are shared in a multi-tenant environment by multiple
users. The virtual machine images are stored in one or more
repositories and are pre-configured with an operating system.
Users of the compute cloud can upload their own images or
install and configure additional software on top of existing
basic virtual machines. Today, the Amazon Elastic Compute
Cloud (EC2) counts more than 35,000 publicly available virtual
machine images. We observe, however, that the meta-data that
describes the virtual machine images is of poor quality and does
not cover vital information such as operating system configu-
rations or software package installations. The sprawl of poorly
documented virtual machine images poses a hurdle to sharing
and re-use among members of the compute cloud community.
We present a method that allows collecting software-related
meta-data in compute clouds through appliance introspection.
Moreover, we show how applications in the domains of selection
and configuration management benefit from rich meta-data and
interact with the method. The method has been implemented
as an automated tool, the crawler, that collects configuration
data of virtual machine images in public compute clouds and
evaluated our approach by crawling Amazon EC2.

Keywords-Compute Cloud; Virtual Machine Image; Software
Libraries; Configuration Management; System Management

I. INTRODUCTION

A compute cloud is a pool of virtual machines that is
shared in a multi-tenant environment by multiple users. Each
user can manage virtual machines in an isolated part of
the compute cloud via Web service calls over the Internet.
Compute cloud users can start one or more virtual machine
instances from a virtual machine image. The images are
stored in a repository and are pre-configured with an operat-
ing system. A cloud user can start a virtual machine instance,
install and configure necessary software packages, and save
the instance back to the repository as a (new) virtual machine
image. Over time, more and more images are created and
shared by users. Today, the Amazon Elastic Compute Cloud
(EC2) counts more than 30,000 virtual machine images
in different image repositories (Amazon Machine Images
(AMIs) with type “machine”) . We observe, however, that
the meta-data that describes the virtual machine images
is of poor quality and does not cover vital information,

and particularly lacks information about software package
installations.

Virtual machine (VM) images that have been configured
for a specific purpose are called virtual appliances [1], for
example Web server appliances or database server appliances
[2]. Compute cloud users face a variety of options when
settling for an adequate virtual machine to deploy their
software. Virtual machine setups range from basic virtual
machine images that only contain an operating system, to
virtual appliances containing complex, fully-fledged soft-
ware stacks. While basic VM images offer more customiz-
ability, however, imply more effort, fully fledged virtual
appliances tend to restrain modifications, but ease and speed
up deployments.

We believe that the sprawl of poorly documented VM
images poses a hurdle to sharing and re-using images.
Without proper documentation of image configurations, a
cloud user cannot judge if an image fits his requirements,
nor is it possible to compare images with one another. With
rich meta-data cloud users can base evaluations of images
on collected meta-data within a selection process. In an
adaptive approach the meta-data collection method allows
to influence and customize how and what vital information
shall be collected.

Additionally, collected meta-data on software libraries
allows to derive a configuration description of a VM image
that allows to either rebuild an image, or transfer and reuse
parts of a configuration to a new VM image. Thus, a de-
scription of the ingredients of an image becomes important
to cloud users and providers.

Our paper proposes an adaptable method with the follow-
ing features for collecting and using virtual machine image
meta-data: (i) a discovery mechanism, (ii) a crawler, (iii) and
a configuration data model. Furthermore, our paper shows
applications that benefit and interact with the crawler method
and collected meta-data.

II. VIRTUAL APPLIANCES

A virtual appliance is a virtual machine image that has
been optimally configured for a particular purpose, e.g.,
database server appliance. The concept of virtual appliances,



hence, depends on the existence of an platform that allows
uploading and sharing virtual machine images and on the
existence of individuals or organizations that provide the
service of configuring and packaging virtual appliances. The
platform for sharing virtual machine images is today fulfilled
by compute clouds, such as Amazon Elastic Compute Cloud
(EC2) or Rackspace Cloud Servers. Currently, there is
no widely accepted standard format for a virtual machine
image. For this reason, interoperability between compute
clouds is limited.

A. Communities and Markets

We observe different models of virtual machine image
provision in compute clouds: (1) centralized packaging
and management of bare operating system images (e.g.,
Rackspace), (2) centralized provision of a wide range of vir-
tual machine images, from bare operating system to complex
software stacks (e.g., GoGrid), and (3) decentralized provi-
sion (e.g., Amazaon EC2). We can further observe that in
decentralized provision models many individuals as well as
profit and non-profit organizations provide services to pack-
age virtual machine images and upload them to repositories
of compute Clouds where they can be utilized by Cloud
users. Individuals such as Eric Hammond [3], who assembles
a variety of Ubuntu Linux AMIs, and organizations like
Bitnami [4], rPath [5], and Turnkey Linux [6], specialized
on building reliable AMIs with complex software stacks,
create an abundance of instantly deployable virtual machine
images and, in particular, virtual appliances. Commercial
software vendors, including IBM and Oracle, package AMIs
and either release them for free or with commercial licenses.
Amazon’s API comprises fee or license payment services for
AMIs (charged by hour or for long-term subscriptions). The
Cloud Market [7] holds and maintains a database of 31,270
AMIs.

In a first attempt to evaluate the zoo of virtual machine im-
ages on Amazon EC2, we collect and analyze the ownership
of publicly accessible AMIs. The results are aggregated in
Table I. We focus on the AMI repository that is associated
with the EC2 us-east-1 region which is the oldest region
and counts the largest number of AMIs (see Figure 1).
For comparison, we state AMI ownership numbers of all
(currently 7) regions. However, we believe that the global
AMI ownership number is less meaningful because some
owners just copy the same AMI into different regions. Each
copied AMI counts as an individual AMI although it brings
no additional value except from being available in a different
region.

The statistics that we calculated show that Bitnami is by
far the largest AMI owner with more than 1600 AMIs which
accounts for nearly 15% of all AMIs in this region. Bitnami
is followed by rPath, a company that offers deployment
and management software, and CloVR, a company that
specializes on genome sequencing applications. Ranks four

Figure 1. Number of AMIs per Amazon EC2 Region.

Rank Owner images % images
1 Bitnami 1648 14.92%
2 rPath 868 7.86%
3 CloVR 655 5.93%
4 Canonical 584 5.29%
5 Alestic 397 3.60%
6 AWS Marketplace 292 2.64%
7 Turnkey Linux 210 1.90%
8 Zeus Technology 200 1.81%
9 RightScale 189 1.71%
10 CloudSwitch 181 1.64%
11 Scalr 161 1.46%
12 Elastic Bamboo 153 1.39%
13 Amazon-1 110 1.00%
14 Red Hat 100 0.91%
15 Openbravo 98 0.89%
16 Amazon (Windows) 97 0.88%
17 EnterpriseDB 60 0.54%
18 CohesiveFT 58 0.53%
19 Ensembl 58 0.53%
20 Jumpbox 53 0.48%

Table I
THE TOP 20 AMI OWNERS BY #IMAGES IN US-EAST-1 REGION.

and five are held by Canonical and Alestic, the major
maintainers of EC2 Ubuntu AMIs. In the us-east-1 region,
there are 1,796 different owners who own a total number of
10,265 AMIs. In all regions, there are 2,207 different owners
who own a total number of 32,944 AMIs.

Most of the EC2 AMIs are Linux-based and free of
commercial software licenses (Figure 2). In the Amazon
EC2 region us-east-1, approximately 9,600 out of 11,000
AMIs have no commercial software license. Only 5 out
of the top 20 AMI owners offer paid AMIs with commer-
cial software, namely AWS Marketplace (100% commercial
AMIs), Turnkey Linux (59%), Zeus Technology (100%),
EnterpriseDB (100%), and CohesiveFT (74%). The use of
free and open source software likely supports sharing and
re-use of virtual machine images.



(a) Operating System (b) Architecture (c) Software License

Figure 2. Attributes of AMIs in all regions (global).

Attribute AWS RS GG
ID X X X
Name X X X
Timestamp Created × X X
Timestamp Updated × X X
Status Accessibility (Public, Non-Public) X × X
Status Availablity (Active, Saving, Deleting) X X X
Status Progress (Modification Progress) × X ×
Operating System × × X
Price X × X
Geo Location X × ×
File Location X × X
Owner X × X
Architecture X × ×
Category/Type × × X
Description Text X × X
Hypervisor X × ×
Disk Volumes X × ×

Table II
META-DATA ATTRIBUTES ACCESSIBLE VIA COMPUTE CLOUD APIS.

B. Virtual Machine Image Meta-Data

Compute cloud providers usually offer mechanisms to an-
notate virtual machine images with meta-data and make this
information accessible as a service. However, information
on operating system configurations and software package
installations of virtual machine images is not provided by
any of the large compute cloud providers. In decentralized
provision models, virtual machine image repositories of
compute cloud providers are filled by a multitude of users
who form a community. The contributors do not properly de-
scribe their images with meta-data – neither in the compute
cloud repository nor on their own websites.

We examine the meta-data attributes exposed through
service APIs of different compute cloud providers, namely
Amazon Web Services (AWS), Rackspace (RS) and GoGrid
(GG). Table II shows the different meta-data attributes used
by each of the three providers.

C. Virtual Appliance Introspection

In analogy to Virtual Machine Introspection (VMI) [8], we
define Virtual Appliance Introspection (VAI) as a capability
to obtain knowledge of operating system configurations and
software package installations of a virtual machine image
that serves as an appliance. In the following section, we
show a method in support of basic introspection capabili-
ties. Our method is used to collect meta-data information

of virtual appliances and store the collected information
in a central database for data analytics and configuration
management.

III. THE CONFIGURATION CRAWLER METHOD

In the following sections, we describe the components
of our automated, adaptable configuration crawler method
for VM images and, in particular, appliances with complex
configurations. The method guides through the components
subsequently and applies the steps described in each com-
ponent. The method is divided into three major compo-
nents that work in concert and support different tasks. The
discoverer component prepares task queue of VM images
introspection jobs for later parallel data collection. The
crawler distributes the tasks to multiple crawler instances
that collect the requested meta-data from inside a launched
virtal machine and upload their results to the data man-
agement component. In the data management component
crawling results are structured in a model and persisted in
a database management system which provides interfaces to
make use of the results in applications (see IV).

A. The Discoverer

The Discoverer takes a list of repositories and filters as
inputs. A repository is a uniquely identified location where
virtual machine meta-data of a compute cloud provider can
be accessed. For example, Amazon EC2 offers an API that
allows fetching a list of all AMIs from EC2 repositories in
different regions. The Discoverer outputs a discovery list for
each repository, i.e. a list of ids of virtual machines that have
been found in the repository and match the filter criteria.

Filters are provider-specific or even repository-specific
since different compute clouds likely provide differently
named and detailed meta-data. There are two types of
negative filters: (1) user-defined K.O. criteria, and (2) user-
defined block-lists. K.O. criteria remove unwanted VM im-
ages from the discovery list, such as images with commercial
software licenses. Then the ids in the block-list are matched
with the discover list. Each match is removed from the
discovery list, for example, ids of images that have already
been introspected. Users can also define a positive filter, i.e.
requirements that need to be fulfilled, for example, a specific
operating system.



DATA MANAGEMENT

IV.B IV.A

III.B CRAWLER

III.A DISCOVERER
Repository 

list

Filters

Fetch virtual 
appliance meta-data

Match with filter Discovery 
list

Temporary 
discovery 

list

Split 
function Split the list

List 
partition
List 

partition
Partition of 

the list

Launch virtual 
appliance instance

Start Crawler 
instance

Start Crawler 
instance

Start Crawler 
instance

Install configuration 
management agent

Collect and download 
meta-data

Virtual 
appliance 
meta-data

III.C 
Configuration 

model DB

Configuration Model 
Transformer Analyzer

Configuration 
manifest

Configuration 
Manager

Statistics
Virtual 

Appliance 
Selection

Agent 
parameters

Figure 3. The Configuration Crawler Method.

B. The Crawler

The Crawler collects meta-data from a subset of the
virtual appliances represented by VM image ids in the
discovery list. Since the discovery list can be long, the
user might want to narrow down the list. We suggest two
approaches to reduce the size of the discovery list. The user
either selects the desired images by their id or description,
or the user inputs the desired coverage, either as an absolute
number of VM images or as a fraction of the discovery
list between 0 and 100%. In the latter case, simple random
sampling is used to select the images.

Additionally, a stated cost budget restrains the total
number of introspections to a maximum amount of costs.
The cost calculation needs to align with the actual costs

generated at the Cloud provider with cost models differing
in means of preciseness or billing subjects causing different
costs per introspection, e.g., Amazon bills by the hour. While
the cost budget would not be exceeded by an additional
virtual machine instantiation the crawler proceeds with pro-
cessing the discovery list.

The discovery list can be processed in parallel by multiple
Crawler instances. If the user provides a split function to the
Crawler, the discovery list is segmented into multiple discov-
ery list partitions. Each discovery list partition is processed
by a separate Crawler instance. A Crawler instance can be a
separate thread or process on the same server, or a separate
(virtual) server.

Each Crawler instance runs the following sequential pro-
cess for each VM image in the partition of the discovery
list:

1) Launch an instance of the VM image (if possible)
2) Upload and install a configuration management agent

on the running instance
3) Execute the agent with parameters, collect the re-

quested meta-data and download the meta-data to a
central database

Step 1 requires an API to a compute service in order
to launch an instance of a VM image. The second step
requires a channel to upload the agent software onto the run-
ning virtual machine instance. For Linux operating system
instances, the agent software bundle is uploaded with ssh.
Next, an installer script checks the operating system (Linux
distribution) and decides which agent software to install.
Of course, existing agents of configuration management
software packages could be used in this procedure, e.g.,
Puppet’s facter1. In the third step, the agent is executed
and collects meta-data. All collected data is retrieved from
the agent by the crawler which, again, uploads and stores
it in a central database. For the third step a user can
provide agent parameters that determine (1) what meta-data
to collect or (2) how to collect meta-data. By giving a list
of attributes a user can define what data to collect from the
instantiated virtual machines. A user can, furthermore, inject
a custom script to be executed by the agent that collects
(additional) meta-data. Virtual machine instances contain
different operating systems and execution environments,
and, thus, custom scripts must be provided in multiple
versions or made platform-independent.

The crawler is kept as simple as possible to reduce
failures that could emerge due to incompatibility of the agent
software running on different operating systems. Therefore,
the data that is uploaded into the central database has the
native data format (e.g., JSON or XML) and structure used
by the agent. However, in a subsequent step, data needs to
be transformed and uploaded to a data management system
that allows complex queries and analytics. Since every agent

1http://projects.puppetlabs.com/projects/facter



produces different output formats we refer to data integration
approaches for transformation of the data into the proposed
data model.

C. The Configuration Data Model

As a basis for future applications the following data model
shall provide a structured, queriable source of information
about introspected virtual appliance configurations. In our
model, depicted in Figure 4, we consider the superset of at-
tributes and information available through both, the compute
cloud APIs and our crawler (see Table II). While Virtual
Machine Image objects hold meta-data directly connected
with a virtual machine, Software and ProgrammingLanguage
objects hold information on an appliance’s configuration
retrieved with the crawler. Both, Software and Program-
mingLanguage, contain an AttributeMap attribute that allows
to store arbitrary additional information as key-value pairs.
Also, all data is typed as String to support all sorts of data
formats as the attribute “Version”, for instance, might be a
number “3.0” or a non-numeric text “3.0-milestone”.

ImageId: String
Name: String
Description: Srtring
Repository: String
Architecture: String
OperatingSystem: String
GeoLocation: String
FilePath: String
Category: String
Hypervisor: String
TimestampCreated: Date
TimestampUpdated: Date

Virtual Machine Image

Name: String
Version: String
AttributeMap: Map<String,String>

Software

Name: String
Version: String
AttributeMap: Map<String,String>

ProgrammingLanguage

*1

*

1

OwnerId: String
Name: String
Role: String

Owner

*

1

Figure 4. The Configuration Data Model.

IV. APPLICATIONS

The configuration models that have been collected by
the Crawler and are stored in a central configuration model
database are valuable input for a broad spectrum of software
development and system administration applications. On the
other side, applications can interact and apply the config-
uration crawler method. We address multiple application
scenarios and show how the data that has been collected with
our method and the crawler as an instrument adds value to
the public compute cloud communities.

A. Configuration Analytics

The data collected by the Crawler can be used for
configuration analytics and search. We describe how vir-
tual machine candidates can be identified when filtering
by requirements based on analytics. Furthermore, we give
insights into Amazon’s virtual machine database fed by the
community. Therefore, we conducted an analysis on attribute
clusters in publicly available AMIs based on recent crawling
results.

Table III
CLOUDGENIUS AND ADDITIONAL REQUIREMENT TYPES

Value Type Req. Type Boolean Expression
Numerical Max χ(α) < vr
Numerical Min χ(α) > vr

Non-numerical Equals χ(β) = s
Non-numerical OneOf χ(β) ∈ S
Non-numerical Includes {χ(β)1, ..., χ(β)n} 3 s

1) Virtual Appliance Selection.: With specific details, a
list of appliance candidates can be identified that are the
best fit for given requirements. In particular, the problem
space of virtual appliance selection [9] can be addressed
and improved with very detailed requirement definitions.
This potentially results in more accurate filtering and higher
qualified virtual appliance candidates. We discuss how con-
figuration models that have been collected with the Crawler
can be used in the CloudGenius framework [9]. Also, how
the CloudGenius framework can profit from employing the
crawler method.

In the CloudGenius framework, an essential step is the
selection of virtual appliances and images that suit an
engineer’s preferences in combination with a compute ser-
vice. To filter out ineligible appliances according to their
configuration, we propose to include configuration meta-data
in the framework’s requirement definition phase (see require-
ment types in Table III). When integrating the collected
configuration meta-data into the CloudGenius framework,
additional information on the images can be accessed to set
constraints, e.g., Java version ≥ 5, Region = “US”.

With the configuration models, an additional requirement
type needs to be introduced to the CloudGenius framework.
When requiring a certain software package or programming
language to be pre-setup in the appliance, requirement
constraints must be defined with an “3” operator. In detail,
the operator is for non-numerical value types. The operator
queries the existence of a value in a set of values related to
the appliance: {χ(β)1, ..., χ(β)n} 3 s.

For complex requirement definitions, analysis capabilities
should rather be based on a declarative approach. The
requirement definitions are imported into a database system
and can be queried, for example with SQL.

The CloudGenius framework can also actively employ the
crawler method for collecting certain information benefitial
in a virtual machine image selection. Therefore, within a
migration process an engineer must provide the input for
the Crawler, the mandatory repository list and split function
to consider and optionally budget, filter functions and agent
parameters. A default filter function might be provided by
the framework. With agent parameters the engineer can
actively determine which meta-data to collect that is vital
for her virtual machine decision.

2) Basic AMI Analysis.: We use the Crawler to collect
configurations from 869 out of 981 Ubuntu AMIs provided



Ubuntu package name Installation count
perl 863
python 710
python2.6 247
python2.7 263
ruby1.8 399
openjdk-6-jdk 0
build-essential 153
openssh-server 869
vim-tiny 843
vim 502
subversion 23
git-core 8

Table IV
EXAMPLE: SOFTWARE PACKAGE COUNT (CANONICAL AND

ALESTIC.COM).

AMI Owner AMI count
Topic 0 Canonical 202 (38.5%)
Topic 1 Canonical 322 (61.5%)
Topic 0 Bitnami 159 (89.7%)
Topic 1 Bitnami 38 (19.3%)

Table V
LATENT DIRICHLET ALLOCATION (LDA) REPORT FOR 2 TOPICS AND

100 MINTOKEN.

by Alestic.com and Canonical. The remaining 112 AMI
could not be accessed by the Crawler due to ssh connections
failures (using either the root or the ubuntu user). Table IV
shows examples of software package count queries.

3) Document Cluster Analysis.: We use the Latent
Dirichlet Allocation (LDA) [10], a document clustering
technique, as a means to discover topics of similar virtual
machine images. For instance, a Web server virtual appliance
would belong into a different topic as a database machine
image, which again, would belong into a different topic as a
bare Ubuntu machine image. Using LDA, an Ubuntu-based
Web server appliance would be modeled as a mixture of
different topics, involving Ubuntu packages and Web server
packages.

The LDA is implemented with the LingPipe Java library2.
We parse a collection of configuration models that the
Crawler collected from the AMI owners Canonical and
Bitnami. The number of topics must be specified, as well
as the minimum token count (mintoken), and other input
parameters. We experiment with both parameters, starting
with 2 categories and 100 mintoken. The LDA outputs a
report summarized in Table V. The Canonical AMIs are
nearly evenly distributed across both categories whereas
the Bitnami AMIs are much stronger associated with Topic
0, which therefore could be labeled “Bitnami Topic”. The
results indicate that the Canonical Ubuntu images are less
specialized than the Bitnami images and appliances (as
expected).

2http://alias-i.com/lingpipe

B. Configuration Management

The configuration models that have been collected by the
Crawler can be transformed into input files for a declara-
tive configuration management tool, such as Puppet [11].
Listing 1 shows an excerpt from a configuration model
that the crawler has collected. The configuration model is
transformed into a Puppet manifest as shown in Listing 2.

Listing 1. Crawled configuration model of an Ubuntu 11.04 Natty instance
...
"python2.7": {
"version": "2.7.1-5ubuntu2",
"description": "An interactive high-level

object-oriented language (version 2.7) "
},
"python2.7-minimal": {
"version": "2.7.1-5ubuntu2",
"description": "A minimal subset of the

Python language (version 2.7) "
},
"readline-common": {
"version": "6.2-0ubuntu1",
"description": "GNU readline and history

libraries, common files "
},
"rsync": {
"version": "3.0.7-2ubuntu3",
"description": "fast remote file copy program

(like rcp) "
},
...

Listing 2. Generated Puppet manifest file
...
package { ’python2.7’:
ensure => ’2.7.1-5ubuntu2’,

}
package { ’python2.7-minimal’:
ensure => ’2.7.1-5ubuntu2’,

}
package { ’readline-common’:
ensure => ’6.2-0ubuntu1’,

}
package{ ’rsync’:
ensure => ’3.0.7-2ubuntu3’,

}
...

The Puppet manifest can be applied to a different virtual
machine image and thus transfer (parts of) the configuration
from a source image to a target image. This could be
useful for migrating the configuration of an image from
one compute cloud into another one, for re-creating similar
images, etc. From our experience, the process works fairly
well but cannot be fully automated, as there are always
some incompatibilities between package names and package
version names, particularly between different operating sys-
tems. For example, transferring the configuration from a base
Ubuntu 11.04 AMI (ami-87c31aee) to another Ubuntu 11.04
AMI with Ruby Passenger Rails3 (ami-bfb473d6) resulted
in 10 errors (package could not be installed) and in 33
package updates while 339 packages remained untouched.



We believe that a semi-automated process could provide
useful assistance to system administrators. For example, a
system administrator could migrate the python and ruby
packages and libs from one image to another one (or more).

V. IMPLEMENTATION

We have implemented the configuration crawler method
as a software tool for crawling the Amazon Elastic Compute
Cloud (EC2) [12]. Ruby scripts implement the Discoverer
and Crawler components, and MongoDB servers as the
configuration model database for JSON configuration docu-
ments.

The Discoverer accesses the EC2 API and retrieves
a list of all EC2 region endpoints (AMI reposito-
ries), i.e., “ec2.us-east-1.amazonaws.com”, “ec2.us-west-
1.amazonaws.com”, etc. In a next step, the Discoverer
accesses the EC2 API to query the meta-data of all AMIs
that match given filter criteria. We excluded all paid AMIs,
since some AMIs charge substantial monthly fees billed with
the first instance launch. We further restrict the list to Linux
operating system AMIs by the most prominent AMI owners
(see Table I). The Discoverer saves the reduced AMIs into
a text file, named discovery list.

The Crawler requires a few input files: (1) the discovery
list, (2) a filter definition file, and (3) a split function
script. Given the input, the Crawler implementation runs
a fully automated procedure and fills the database with
configuration documents.

The Crawler starts multiple Crawler instances in parallel,
each of which launches an EC2 instance. Each Crawler
instance connects via ssh to its EC2 instance and uploads the
agent software. A shell script installer downloads and installs
a suitable agent. For introspection of all Linux machines, a
shell script serves as basic agent software. If the operating
system is suitable, the installer furthermore downloads and
installs an Ohai3 agent to collect additional operating system
and software package information. After the shell script and
Ohai agents have completed their introspection tasks, the
Crawler downloads all collected data from the instance and
terminates it. The collected meta-data is then uploaded by
the Crawler to Amazon S3 and later transferred into the
MongoDB database.

We also provide a Web frontend to the virtual machine
image meta-data we collected with our crawler implemen-
tation [13]. The Web frontend lists available images and
allows text searches and filtering by software libraries. The
full configuration of a virtual machine image is displayed as
a list of software libraries and version numbers.

VI. RELATED WORK

Virtual Machine Introspection (VMI) [8] is a topic of
security research. Different from our approach, the VMI

3http://wiki.opscode.com/display/chef/Ohai

framework can directly access the Virtual Machine Monitor
(VMM). We assume that the compute cloud provider does
not allow access to the VMM. Moreover, different from
VMI, we do not attempt to discover security holes. Instead,
we want to deliver information on software installations and
configurations of virtual appliances. However, the technical
approach that we used for introspection could easily be used
for other purposes, as well.

Filepp et al. [14] have developed an virtual appliance
configuration approach that installs missing software on ap-
pliances and finds an appliance which requires lowest effort.
The approach uses a repository of appliance configurations
that has been build based on the Galapagos system [15] that
only detects few well-known enterprise software packages
[16]. The notion of agents and automated crawling with
the purpose to provide a configuration model database for a
variety of applications is missing in the approach. Dastjerdi
et al. [17] propose a file format to describe virtual units that
comprise virtual machine images or appliances. Compute
cloud providers are able to advertise machine images in their
repositories in the format and, thus, allow a requirements
matchmaking. The approach, however, requires providers or
contributors to maintain the meta-data.

In contrast to our approach Lutterkort and McLoughlin
[18] see meta-data of virtual machine images to be bundled
together with its files. Marginal and distributed meta-data
proposed by the approach makes it very costly to conduct
an analysis.

Other approaches in the field of meta-data of virtual
machine images have addressed somehow related issues.
Reimer et al. [19] have recognized a sprawl of virtual
machine images and introduced a semantic-based approach
to describe the contents of an image. However, contents of
an image are described by hash values of files tying the
approach to detection of contents by identical files only.
Also, this approach requires the administrator of images to
adopt a certain format. Similarily, Kecskemeti et al. [20]
propose an approach to decompose virtual appliances on a
file level to optimize storage and transfer over networks,
however, lack an identification of software actually included
in an appliance. Wilson and Matthew [21] create virtual ap-
pliances from multiple software packages with configuration
management technologies but void keeping the configuration
of appliances in a meta-data database. Liu [22] shows how
configuration meta-data allows an automated configuration
of appliances, but aims at configuration settings only and
misses support for rebuilding virtual appliances as a reason
of trust or migration.

VII. CONCLUSIONS & FUTURE WORK

Building and sharing software stacks as VM images in
compute clouds is gaining popularity and has already lead to
an abundance of images that are available in public compute
clouds. We find that the meta-data that describes the publicly



available images lacks important information that software
developers and system administrators need for selecting the
appliance that fits their requirements.

Our work presents a method to automate the process
of collecting additional meta-data about VM image con-
figurations. The method can be applied in both private or
public compute clouds. We evaluate the method by crawling
public VM images in Amazon’s Elastic Compute Cloud
(EC2), however, plan to extend our work to a broader
spectrum of compute cloud providers. The data that we
collect with our Crawler is stored in a database and can
be used by applications that we envision to benefit from the
configuration model data and adaptability of the method.
These applications include VM image selection and search,
as well as statistic analysis (for example for market research
or appliance categorization). Moreover, generating config-
uration manifests from models in the configuration model
database would allow cloning or migrating images.

The presented method is open to extensions and more
complex applications. With extensions to the configuration
data model, more detailed analytics could be conducted, e.g.,
geo-location of image repositories would allow geographic
querying and matching methods. Moreover, transforming
version attributes from text to numbers, in the configuration
data model or during analytics, could enable advanced
querying possibilities. With further research and develop-
ment of configuration management agents, a wider operating
system support for extended configuration discovery might
be possible. Advanced agents might be able to also include
configuration settings of software packages, e.g., configura-
tion files in “/etc” and other file paths, into the introspection
method.

Furthermore, future work aims at introducing an extended
logic for cost budget limitations and parametrization into the
crawler method. Further parametrization helps to restrict a
crawling process to the collection of particular meta-data
attributes from a pre-ordered list of virtual appliances to
minimize the introspection effort and adapt the method to
specific applications. With cost budgets and parametrization
an optimization logic must consider cloud service price
models and align virtual machine runtimes, e.g., collect as
much of the requested meta-data as possible, shutdown a
machine introspection right before an additionally billed
hour and repair broken results if any.

We plan to extend our Crawler implementation to support
multiple public compute services and develop the presented
applications to more advanced software prototypes. More-
over, we publish our Crawler implementation as open source
software, hoping that the open source community uses it
as a basis for future research and development. With the
presented method and implementation at hand, we expect the
emergence and evolution of more compute cloud crawlers
along with public configuration model databases.

Acknowledgments.: The work presented in this paper
was partially funded by the German Federal Ministry of
Education and Research (BMBF) in the context of the
Software-Cluster project EMERGENT (software-cluster.org)
under grant number “01IC10S01”. The authors assume re-
sponsibility for the content.

We thank Amazon Web Services for the research grant
that supported this work.

REFERENCES

[1] C. Sapuntzakis, D. Brumley, R. Chandra, N. Zeldovich,
J. Chow, M. S. Lam, and M. Rosenblum, “Virtual appliances
for deploying and maintaining software,” in Proceedings of
the Seventeenth Large Installation Systems Administration
Conference (LISA 2003), October 2003.

[2] A. Aboulnaga, K. Salem, A. A. Soror, U. F. Minhas,
P. Kokosielis, and S. Kamath, “Deploying database appliances
in the cloud,” IEEE Data Eng. Bull., vol. 32, no. 1, pp. 13–20,
2009.

[3] Eric Hammond, http://www.alestic.com, accessed 25th April
2012. [Online]. Available: http://www.alestic.com

[4] Bitnami, http://www.bitnami.org, accessed 25th April 2012.
[Online]. Available: http://www.bitnami.org

[5] rPath, http://www.rpath.com, accessed 25th April 2012.
[Online]. Available: http://www.rpath.com

[6] Turnkey Linux, http://www.turnkeylinux.org, accessed 25th
April 2012. [Online]. Available: http://www.turnkeylinux.org

[7] The Cloudmarket, http://www.thecloudmarket.com, accessed
25th April 2012. [Online]. Available: http://www.
thecloudmarket.com

[8] T. Garfinkel and M. Rosenblum, “A virtual machine intro-
spection based architecture for intrusion detection,” in NDSS,
2003.

[9] M. Menzel and R. Ranjan, “CloudGenius: Decision Support
for Web Server Cloud Migration,” in Proceedings of
the 21st International Conference on World Wide Web.
New York, NY, USA: ACM, 2012. [Online]. Available:
http://arxiv.org/abs/1203.3997

[10] D. Blei, A. Ng, and M. Jordan, “Latent dirichlet allocation,”
The Journal of Machine Learning Research, vol. 3, pp. 993–
1022, 2003.

[11] Puppetlabs, “Puppet,” http://projects.puppetlabs.com/projects/puppet,
accessed 25th April 2012. [Online]. Available:
http://projects.puppetlabs.com/projects/puppet

[12] “The Crawler Implementation,” Github Repository. [Online].
Available: https://github.com/myownthemepark/ami-crawler

[13] “The Crawler Ride,” Web application, 2012. [Online].
Available: http://crawlerride.appspot.com



[14] R. Filepp, L. Shwartz, C. Ward, R. Kearney, K. Cheng,
C. Young, and Y. Ghosheh, “Image selection as a service for
cloud computing environments,” in Service-Oriented Com-
puting and Applications (SOCA), 2010 IEEE International
Conference on, dec. 2010, pp. 1 –8.

[15] K. Magoutis, M. Devarakonda, N. Joukov, and N. G.
Vogl, “Galapagos: Model-driven discovery of end-to-end
application-storage relationships in distributed systems,” IBM
Journal of Research and Development, vol. 52, no. 4.5, pp.
367 –377, july 2008.

[16] IBM, “Tivoli application dependency discovery manager,”
http://www-01.ibm.com/software/tivoli/products/taddm/, ac-
cessed 25th April 2012.

[17] A. V. Dastjerdi, S. G. H. Tabatabaei, and R. Buyya, “An
Effective Architecture for Automated Appliance Management
System Applying Ontology-Based Cloud Discovery,” in
Proceedings of the 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing,
IEEE Computer Society. Ieee, 2010, pp. 104–112.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=5493487

[18] D. Lutterkort and M. McLoughlin, “Manageable
virtual appliances,” Linux Symposium, 2007. [Online].
Available: http://ols.fedoraproject.org/OLS/Reprints-2007/
OLS2007-Proceedings-V1.pdf#page=293

[19] D. Reimer, A. Thomas, G. Ammons, T. Mummert, B. Alpern,
and V. Bala, “Opening black boxes: using semantic
information to combat virtual machine image sprawl,”
in Proceedings of the fourth ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments,
ser. VEE ’08. New York, NY, USA: ACM, 2008, pp.
111–120. [Online]. Available: http://doi.acm.org/10.1145/
1346256.1346272

[20] G. Kecskemeti, G. Terstyánszky, P. Kacsuk, and Z. Németh,
“An approach for virtual appliance distribution for service
deployment,” Future Generation Comp. Syst., vol. 27, no. 3,
pp. 280–289, 2011.

[21] M. S. Wilson, “Constructing and managing appliances
for cloud deployments from repositories of reusable
components,” in Proceedings of the 2009 conference on
Hot topics in cloud computing, ser. HotCloud’09. Berkeley,
CA, USA: USENIX Association, 2009. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855533.1855549

[22] H. Liu, “Rapid application configuration in amazon cloud
using configurable virtual appliances,” in Proceedings of the
2011 ACM Symposium on Applied Computing, ser. SAC ’11.
New York, NY, USA: ACM, 2011, pp. 147–154. [Online].
Available: http://doi.acm.org/10.1145/1982185.1982221


