
Top-k Linked Data Query Processing

Andreas Wagner, Thanh Tran, Günter Ladwig,
Andreas Harth, and Rudi Studer

Institute AIFB, Karlsruhe Institute of Technology, Germany
{a.wagner,ducthanh.tran,guenter.ladwig,harth,studer}@kit.edu

Abstract. In recent years, top-k query processing has attracted much
attention in large-scale scenarios, where computing only the k “best”
results is often sufficient. One line of research targets the so-called top-k
join problem, where the k best final results are obtained through joining
partial results. In this paper, we study the top-k join problem in a Linked
Data setting, where partial results are located at different sources and
can only be accessed via URI lookups. We show how existing work on
top-k join processing can be adapted to the Linked Data setting. Further,
we elaborate on strategies for a better estimation of scores of unprocessed
join results (to obtain tighter bounds for early termination) and for an
aggressive pruning of partial results. Based on experiments on real-world
Linked Data, we show that the proposed top-k join processing technique
substantially improves runtime performance.

1 Introduction

In recent years, the amount of Linked Data has increased rapidly. According to
the Linked Data principles1, dereferencing a Linked Data URI via HTTP should
return a machine-readable description of the entity identified by the URI. Each
URI therefore represents a virtual “data source” (see Fig. 1).

In this context, researchers have studied the problem of Linked Data query
processing [3, 5, 6, 10, 11, 16]. Processing structured queries over Linked Data can
be seen as a special case of federated query processing. However, instead of re-
lying on endpoints that provide structured querying capabilities (e.g., SPARQL
interfaces), only HTTP URI lookups are available. Thus, entire sources have to
be retrieved. Even for a single trivial query, hundreds of sources have to be pro-
cessed in their entirety [10]. Aiming at delivering up-to-date results, sources often
cannot be cached, but have to be fetched from external hosts. Thus, efficiency
and scalability are essential problems in the Linked Data setting.

A widely adapted strategy for dealing with efficiency and scalability problems
is to perform top-k processing. Instead of computing all results, top-k query
processing approaches produce only the “best” k results [8]. This is based on the
observation that results may vary in “relevance” (which can be quantified via a
ranking function), and users, especially on the Web, are often interested in only
a few relevant results. Let us illustrate top-k Linked Data query processing:

1 http://www.w3.org/DesignIssues/LinkedData.html

2

Src. 1. ex:beatles

ex : b e a t l e s
f o a f : name

”The Beat l e s ” ;
ex : album ex :

sg t pepper .
ex : album ex : he lp ;

Src. 2. ex:sgt pepper

ex : sg t pepper
f o a f : name
”Sgt . Pepper” ;

ex : song ”Lucy” .

Src. 3. ex:help

ex : he lp
f o a f : name ”Help ! ” ;
ex : song ”Help ! ” .

Fig. 1. Linked Data sources describing “The Beatles” and their songs “Help!” and
“Lucy”.

1 SELECT ∗ WHERE
2 {
3 ex : b e a t l e s ex : album ?album .
4 ?album ex : song ? song .
5 }

ex:beatles

?album

?song

ex:album
ex:song

Fig. 2. Example query returning songs in Beatles albums. The query comprises two
triple patterns q1 (line 3) and q2 (line 4).

Example 1. For the query in Fig. 2, the URIs ex:beatles, ex:help and ex:

sgt_pepper are dereferenced to produce results for ?song and ?album. The
results are retrieved from different sources, which vary in “relevance” (i.e., ex:
help provides the precise name for the song “Help!”, while ex:sgt_pepper merely
holds “Lucy” as name for a song, which is actually called “Lucy in the Sky
with Diamonds”). Such differences are captured by a ranking function, which is
used in top-k query processing to measure the result relevance. For the sake of
simplicity, assume a ranking function assigns triples in ex:beatles (s1) a score
of 1, triples in ex:sgt_pepper (s2) score 2, and those in ex:help (s3) a score of 3.
Further, assume our ranking function assigns increasing values with increasing
triple relevance.

While being appealing, top-k processing has not been studied in the Linked
Data (and the general RDF) context before. Aiming at the adaption of top-k
processing to the Linked Data setting, we provide the following contributions:

– Top-k query processing has been studied in different contexts [8]. Closest
to our work is top-k querying over Web-accessible databases [20]. However,
the Linked Data context is unique to the extent that only URI lookups are
available for accessing data. Instead of retrieving partial results matching
query parts from sources that are exposed via query interfaces (of the cor-
responding database endpoints), we have to retrieve entire sources via URI
lookups. To the best of our knowledge, this is the first work towards top-k
Linked Data query processing.

– We show that in a Linked Data setting, more detailed score information is
available. We propose strategies for using this knowledge to provide tighter
score bounds (and thus allow an earlier termination) as compared to top-k
processing in other scenarios [2, 13, 17]. Further, we propose an aggressive

3

technique for pruning partial query results that cannot contribute to the
final top-k result.

– We perform an experimental evaluation on Linked Data datasets and queries
to show that top-k processing leads to increased performance (35 % on av-
erage). We further show that our proposed top-k optimizations increase the
performance compared to a baseline implementation by 12 % on average.

Outline. In Section 2, we introduce the problem of Linked Data query pro-
cessing. In Section 3, we show how to adapt top-k join processing methods to
the Linked Data setting. In Sections 3.3 and 3.4, we propose two optimizations:
tighter bounds on future join results and a way to prune unnecessary partial
results. We present our evaluation in Section 4 and discuss related work in Sec-
tion 5, before concluding with Section 6.

2 Linked Data Query Processing

Data Model. We use RDF [9] as our data model. However, for clarity of presen-
tation, we do not consider the special RDF semantics (e.g., RDF blank nodes)
and focus on the main characteristics of RDF. Namely, RDF can be considered
as a general model for graph-structured data encoded as 〈s, p, o〉 triples:

Definition 1 (RDF Triple, RDF Graph). Given a set of URIs U and a set
of literals L, t = 〈s, p, o〉 ∈ U × U × (U ∪ L) is a RDF triple, and a set of RDF
triples is called a RDF graph.

The Linked Data principles used to access and publish RDF data on the Web,
mandate that (1) HTTP URIs shall be used as URIs and that (2) dereferencing
a URI returns a description of the resource identified by the URI. Thus, a URI
d can be seen as a Linked Data source, whose content, namely a set of RDF
triples T d, is obtained by dereferencing d. Triples in T d contain other HTTP
URI references (links), connecting d to other sources. The union set of sources
in U forms a Linked Data graph G = {t|t ∈ T di ∧ di ∈ U}.

Query Model. The standard language for querying RDF is SPARQL [15].
Previous work on Linked Data query processing focused on processing basic
graph patterns (BGP), which is a core feature of SPARQL.

Definition 2 (Triple Pattern, Basic Graph Pattern). A triple pattern has
the form q = 〈s, p, o〉, where s, p and o is either a URI, a literal or a variable.
A basic graph pattern is a set of triple patterns Q = {q1, . . . , qn}.

Result Model. Often, every triple pattern in a BGP query Q shares a
common variable with at least one other pattern such that Q forms a connected
graph. Computing results to a BGP query over G amounts to the task of graph
pattern matching. Basically, a result to a query Q evaluated over G (given by
µG(Q)) is a subgraph of G that matches Q. The set of all results for query Q is
denoted by ΩG(Q).

4

Query Processing. Traditionally, a query Q is evaluated by obtaining bind-
ings for each of its triple patterns and then performing a series of equi-joins be-
tween bindings obtained for patterns that share a variable. In the Linked Data
context, BGP queries are evaluated against all sources in the Linked Data graph
G. While some sources may be available locally, others have to be retrieved via
HTTP dereferencing during query processing.

For this, exploration-based link traversal [6, 5] can be performed at runtime.
The link traversal strategy assumes that Q contains at least one URI d as “en-
try point” to G. Starting from triples in T d, G is then searched for results by
following links from d to other sources. Instead of exploring sources at run-
time, knowledge about (previously processed) Linked Data sources in the form
of statistics has been exploited to determine and rank relevant sources [3, 10]
at query compilation time. Existing approaches assume a source index, which is
basically a map that associates a triple pattern q with sources containing triples
that match q. Let the result of a lookup in the source index for q be source(q).

Given a source index, Linked data query processing can be conceived as
a series of operators. We identify the source scan as a distinctive operator in
Linked Data query processing. Given a source d, scan(d) outputs all triples
in T d. A selection σTd(q) is performed on T d to output triples that match a
triple pattern q. Two triple patterns qi and qj that share a common variable are
combined via an equi-join operator qi 1 qj (i.e., bindings for qi respectively qj
are joined). In general, Qi 1 Qj joins any subexpression Qi ⊂ Q with one other
Qj ⊂ Q (Qi∩Qj = ∅). Note, in the following, we refer to an equi-join simply as
join. Also, we have

⋃
(I1, . . . , In), which outputs the union of its inputs Ii. For

clarity of presentation, we assume triple patterns form a connected graph such
that a join is the only operator used to combine triples from different patterns.
Then, Linked Data query processing can be modeled as a tree-structured plan
as exemplified in Fig. 3 (a).

Fig. 3. (a) Query plan providing a sorted access, query execution and the scheduler.
(b) Rank join operator with data from our “Beatles” example.

5

Query plans in relational databases generally consist of access plans for in-
dividual relations. Similarly, Linked Data query plans can be seen as being
composed of access plans at the bottom-level (i.e., one for each triple pat-
tern). An access plan for query Q = {q1, . . . , qn} is a tree-structured query
plan constructed in the following way: (1) At the lowest level, leaf nodes are
source scan operators, one for every source that is relevant for triple pattern
qi (i.e., one for every d ∈ source(qi)). (2) The next level contains selection
operators, one for every scan operator. (3) The root node is a union operator⋃

(σTd1 (qi), . . . , σTdn (qi)), which combines the outputs of all selection operators
for qi (with di ∈ source(qi)). At the next levels, the outputs of the access plans
(of their root operators) are successively joined to process all triple patterns of
the query, resulting in a tree of operators.

Example 2. Fig. 3 (a) shows an example query plan for the query in Fig. 2.
Instead of scan and join, their top-k counterparts scan-sort and rank-join are
shown (explained in the next section). There are three source scan operators,
one for each of the sources: ex:beatles (s1), ex:sgt_pepper (s2), and ex:help

(s3). Together with selection and union operators, they form two access plans
for the patterns q1 and q2. The output of these access plans is combined using
one join operator.

Push-based Processing. In previous work [10, 11], push-based execution
using symmetric hash join operators was shown to have better performance than
pull-based implementations (such as [6]). In a push-based model, operators push
their results to subsequent operators instead of pulling from input operators,
i.e., the execution is driven by the incoming data. This leads to better behavior
in network settings, because, unlike in pull-based execution models, the query
execution is not blocked, when a single source is delayed [11].

3 Top-k Join Linked Data Query Processing

Top-k query processing [14, 7, 17] aims at a more efficient query execution by
focusing on the k best results, while skipping the computation of remaining re-
sults. This early termination can lead to a significant reduction in the number of
inputs to be read and processed, which translates to performance improvements.
We now discuss how existing top-k join (also called rank join) strategies can be
be adopted to the Linked Data query processing problem as presented before.
Further, we present an optimization towards tighter bounds and an aggressive
result pruning. Throughout the query processing we do not approximate, thus,
our approach always reports correct and complete top-k final results.

3.1 Preliminaries

Besides the source index employed for Linked Data query processing, we need a
ranking function as well as a sorted access for top-k processing [7, 14, 17].

Ranking Function. We assume the existence of a ranking function for
determining the “importance” of triples and (partial) query results in G:

6

Definition 3 (Ranking Function). Let a ranking function υ : G 7→ [0, 1]
assign scores to triples in G. Further, let higher scores denote higher triple im-
portance. Given Q as a query over G and ΩG(Q) as its results, υ ranks results
in ΩG(Q) (i.e., υ : ΩG(Q) 7→ [0, 1]) as an aggregation of their triple scores:
µ ∈ ΩG(Q): υ(µ) = ∆(υ(t1), . . . , υ(tn)), ti ∈ µ, where ∆ is a monotonic aggre-
gation function.

Scores for triples can, e.g., be obtained through PageRank inspired ranking [4]
or witness counts [1].

Sorted Access. A sorted access on a given join input allows to access input
elements in descending score order. In a database setting, a sorted access can
be efficiently provided by using a score index over the input data. In particular,
while work on top-k join processing over Web-accessible databases [20] aims
at a similar setting, it also assumes such a complete index. However, in the
Linked Data context, only source statistics are assumed to be available, while the
contained triples are not indexed (e.g., for the sake of result freshness). Following
this tradition, we only assume that score bounds are known (i.e., computed at
indexing time) for the sources, while triples are ranked and sorted on-the-fly.

Definition 4 (Source Score Bounds). Given a source d ∈ U , its upper
bound score υu(d) is defined as the maximal score of the triples contained in
d, i.e., υu(d) = max{υ(t)|t ∈ T d}. Conversely, the lower bound score is defined
as υl(d) = min{υ(t)|t ∈ T d}.
For each triple pattern in the source index, we store its list of relevant sources
in descending order of their upper bound scores υu. This allows sources for each
union operator to be retrieved sequentially in the order of their upper bound
scores. Further, as triples for a given source are not sorted, we replace each scan
operator with a scan-sort operator. A scan-sort operator, after retrieving a
source d, sorts its triples T d according to their scores. However, if two (or more)
sources (say, di and dj) have overlapping source score bounds (i.e., υl(di) <
υu(dj) < υu(di)), and both are inputs for the same union, the output of the
union will not be ordered if these sources are retrieved individually. We address
this problem by treating both sources as “one source”. That is, di and dj are
scanned and sorted via the same scan-sort operator. Fig. 3 (a) shows an access
plan with scan-sort operators, which provide a sorted access to the bindings of
q1 and q2. Last, note that υu(d) respectively υl(d) does not necessarily have to
be precise, it could also be estimated (e.g., based on scores of similar sources).

3.2 Push-based Top-k Join Processing
Based on the ranking function, source index, and our sorted access mechanism,
we can now adapt top-k strategies to the Linked Data setting. However, previous
work on the top-k join problem uses pull-based processing, i.e., join operators ac-
tively “pull” their inputs in order to produce an output [7, 17, 20]. In compliance
with [17], we adapt the pull/bound rank join (PBRJ) algorithm template for a
push-based execution in the Linked Data setting. For simplicity, the following
presentation of the PBRJ algorithm assumes binary joins (i.e., each join has two
inputs).

7

In a pull-based implementation, operators call a next method on their in-
put operators to obtain new data. In a push-based execution, the control flow
is inverted, i.e., operators have a push method that is called by their input op-
erators. Algorithm 1 shows the push method of the PBRJ operator. The input
from which the input element r was pushed is identified by i ∈ {1, 2}. Note,
by input element we mean either a triple (if the input is a union operator) or
a partial query result (if the input is another rank join operator). First, the
input element r is inserted into the hash table Hi (line 3). Then, we probe the
other input’s hash table Hj for valid join combinations (i.e., the join condition
evaluates to “true”; see line 4), which are then added to the output queue O
(line 5). Output queue O is a priority queue such that the result with the highest
score is always first. The threshold Γ is updated using the bounding strategy B,
providing an upper bound on the scores of future join results (i.e., result com-
binations comprising “unseen” input elements). When a join result in queue O
has a score equal to or greater than the threshold Γ , we know there is no future
result having a higher score. Thus, the result is ready to be reported to a subse-
quent operator. If output O contains k results, which are ready to be reported,
the algorithm stops reading inputs (so-called early termination).

As reported in [17], the PBRJ has two parameters: its bounding strategy B and
its pulling strategy P. For the former, the corner-bound is commonly employed
and is also used in our approach. The latter strategy, however, is proposed for
a pull-based execution and is thus not directly applicable. Similar to the idea
behind the pulling strategy, we aim to have control over the results that are
pushed to subsequent operators. Because a push-based join has no influence
over the data flow, we introduce a scheduling strategy to regain control. Now,
the push method only adds join results to the output queue O, but does not push
them to a subsequent operator. Instead the pushing is performed in a separate
activate method as mandated by the scheduling strategy.

Algorithm 1: PBRJ.push(r)

Input: Pushed input element r on input i ∈ {1, 2}
Data: Bounding strategy B, output queue O, threshold Γ , hash tables H1, H2

if i = 1 then j = 2;1

else j = 1;2

Insert r into hash table Hi;3

Probe Hj for valid join combinations with r ;4

foreach valid join combination o do Insert o into O;5

Γ ← B.update();6

Bounding Strategies. A bounding strategy is used to update the current
threshold (i.e., the upper bound on scores of future join results). As only those
results in the output queue can be reported that have a score equal to or greater
than the threshold Γ , it is essential that the upper bound is as low (tight) as
possible. In other words, a tight upper bound allows for an early termination of
the top-k join procedure, which results in less sources being loaded and triples
being processed. The most common choice for B is the corner bound strategy:

8

Definition 5 (Corner-Bound). For a rank join operator, we maintain an up-
per bound αi and a lower bound βi (both initialized as ∞) on the scores of its
input elements from i ∈ {1, 2}, where αi is the score of the first (highest) element
rmax
i received on input i, αi = υ(rmax

i), and βi is the score of the most recently
received input element r̂i, βi = υ(r̂i). Then, the threshold Γ for future join re-
sults is given by max{∆(α1, β2), ∆(α2, β1)}, i.e., the score for the join between
rmax
1 and r̂2 or between r̂1 and rmax

2 .

Scheduling Strategies. Deciding which input to pull from has a large effect
on operator performance [17]. Previously, this decision was captured in a pulling
strategy employed by the join operator implementation. However, in push-based
systems, the execution is not driven by results, but by the input data. Join op-
erators are only activated when input is actively being pushed from operators
lower in the operator tree. Therefore, instead of pulling, we propose a schedul-
ing strategy that determines which operators in a query plan are scheduled for
execution. That is, we move the control over which input is processed from the
join operator to the query engine, which orchestrates the query execution.

Algorithm 2 shows the execute method that takes a query Q and the number
of results k as input and returns the top-k results. First, we obtain a query plan
P from the plan method (line 1). We then use the scheduling strategy S to
obtain the next operator that should be scheduled for execution (line 2). The
scheduling strategy uses the current execution state as captured by the operators
in the query plan to select the next operator. We then activate the selected
operator (line 4). We select a new operator (line 5) until we either have obtained
the desired number of k results or there is no operator to be activated, i.e., all
inputs have been exhausted (line 3).

Algorithm 2: execute(Q, k)

Input: Query Q, #results k
Data: Query plan P , scheduling

strategy S
Output: Query results ΩG

P ←plan(Q);1

op← S.nextOp(P);2

while |ΩG| < k ∧ op 6= null do3

op.activate();4

op← S.nextOp(P);5

return ΩG6

Algorithm 3: PBRJ.activate

Data: Output queue O, threshold
Γ , subsequent operator out

while υ(O.peek()) ≥ Γ do1

r ← O.dequeue();2

out.push(r);3

Algorithm 3 shows the activate method (called by execute) for the rank
join operator. Intuitively, the activate method triggers a “flush” of the opera-
tor’s output buffer O. That is, all computed results having a score larger than
or equal to the operator’s threshold Γ (line 1) are reported to the subsequent
operator (lines 2-3). An activate method for a scan-sort operator of a source d
simply pushes all triples in d in a sorted fashion. Further, activate for selection
and union operators causes them to push their outputs to a subsequent operator.

9

Now, the question remains how a scheduling strategy should select the next
operator (nextOp method). We can apply the idea behind the state-of-the-art
pulling strategy [17] to perform corner-bound-adaptive scheduling. Basically, we
choose the input which leads to the highest reduction in the corner-bound:

Definition 6 (Corner-Bound-Adaptive Scheduling). Given a rank join
operator, we prefer the input that could produce join results with the highest
scores. That is, we prefer input 1 if ∆(α2, β1) > ∆(α1, β2), otherwise we prefer
input 2. In case of ties, the input with the least current depth, or the input with
the least index is preferred. The scheduling strategy then “recursively” selects
and activates operators that may provide input elements for the preferred input.
That is, in case the chosen input is another rank join operator, which has an
empty output queue, the scheduling strategy selects and activates operators for
its preferred input in the same manner.

Example 3. Assume k = 1 and let ti,j denote the jth triple in source i (e.g.,
t1,2 = 〈ex:beatles,ex:album,ex:sgt_pepper〉). First, our scheduling strategy
prefers the input 1 and selects (via nextOp) and activates scan-sort(s1), sel(q1),
and union(q1). Note, also input 2 would have been a valid choice, as the threshold
(respectively α, β) is not set yet. The rank join reads t1,2 and t1,3 as new inputs
elements from union(q1), and both elements are inserted into H1 (α1 = β1 = 1).
The scheduler now prefers input 2 (as input 1 is exhausted) and selects and ac-
tivates scan-sort(s3), sel(q2), and union(q2), because source 3 has triples with
higher scores than source 2. Now, union(q2) pushes t3,2 and α2 respectively β2
is set to υ(t3,2) = 3. Employing a summation as ∆, the threshold Γ is set to 4
(as max{1 + 3, 1 + 3} = 4). Then, t3,2 is inserted into H2 and the joins between
t3,2 and elements in H1 are attempted; t1,3 1 t3,2 yields a result µ, which is
then inserted into the output queue. Finally, as υ(µ) = 4 ≥ Γ = 4 is true, µ is
reported as the top-1 result and the algorithm terminates. Note, not all inputs
have been processed, i.e., source 2 has not been scanned (cf. Fig. 3).

3.3 Improving Threshold Estimation

We now present two modifications to the corner-bound bounding strategy that
allow us to calculate a more precise (tighter) threshold Γ̃ , thereby achieving
earlier result reporting and termination.

Star-shaped Entity Query Bounds. A star-shaped entity query is a set
of triple patterns Qs that share a common variable at the subject position. We
observed that in Linked Data query processing, every result to such a query
is contained in one single source. This is because a result here is an entity,
and information related to that entity comes exclusively from the one source
representing that particular entity. Exploiting this knowledge, a more precise
corner-bound for joins of a star-shaped query (part) can be calculated. Namely,
we can derive that, in order to be relevant, sources for Qs must satisfy all triple
patterns in Qs (because they must capture all information for the requested
entities). Given relevant sources for Qs are denoted as D and the source up-
per bound is given by υu(d) for d ∈ D, the upper bound score υQu (Qs) for
results matching Qs can be derived based on the maximum source upper bound

10

υmax
u (D) = max{υu(d)|d ∈ D}. More precisely, υQu (Qs) = ∆(υQu (q1), . . . , υQu (qn)

with qi ∈ Qs and υQu (qi) = υmax
u (D), because every triple that contributes to

the result must be contained in a source d ∈ D, and thus, must have a score
≤ υmax

u (D).
Look-Ahead Bounds. The corner-bound strategy uses the last-seen scores

βi of input elements to calculate the current threshold. We observed that when
an input element ri is received by an operator on input i, the next input element
rnexti (and its score υ(rnexti)) is often already available in the pushing operator.
The next element is available because (1) scan-sort operators materialize their
complete output before pushing to subsequent operators, (2) rank join operators
maintain an output queue that often contains more than one result with scores
greater than or equal to the current threshold Γ , and (3) given a source di
has been pushed by a scan-sort operator, the source score upper bound of di+1

(i.e., the next source to be loaded) is available. By using the score of the next
instead of the last-seen input element, we can provide a more accurate threshold
Γ , because we can estimate the maximal score of unseen elements from that
particular input more accurately. If available, we therefore define β̃i = υ(rnexti)
as the score of the next input element. Otherwise, we use the last-seen score βi,
i.e., β̃i = βi (see Fig. 3 (b)).

Threshold Calculation. By applying both strategies, we can now refine the
bound as Γ̃ = max{min{∆(α1, β̃2), υQu (Qs)},min{∆(α2, β̃1), υQu (Qs)}}. The fol-
lowing theorem (see proof in our report [19]) allows to use Γ̃ for top-k processing:

Theorem 1. Γ̃ is correct (i.e., there is no unseen result constituting to the final

top-k results) and more precise than Γ (i.e., Γ̃ ≤ Γ holds at all times).

3.4 Early Pruning of Partial Results

Knowledge about sources can also be exploited to prune partial results from the
output queues to reduce the cost of a join as well as the memory space needed
to keep track of input elements in a join operator. The idea of pruning has been
pursued by approximate top-k selection [18] approaches. However, we do not
approximate, but only prune those partial results that are guaranteed not to
be part of the final top-k results. Intuitively, we can prune a partial result, if
its score together with the maximal possible score for the “unevaluated” query
part, is smaller than the lowest of the k so far computed complete results. Note,
the opportunity for pruning arises only when k (or more) complete results have
been produced (by the root join operator).

More precisely, let Q be a query and µ(Qf) a partial query result, with Qf

as “finished” part and Qr as “remaining” part (Qf ⊂ Q and Qr = Q \Qf). The
upper bound on the scores of all final results based on µ(Qf) ∈ ΩG(Qf) can be
obtained by aggregating the score of µ(Qf) and the maximal score υQu (Qr) of
results µ(Qr) ∈ ΩG(Qr). υu(Qr) can be computed as the aggregation of maximal
source upper bounds obtained for every triple pattern in Qr = {q1, . . . , qm}, i.e.,
υQu (Qr) = ∆(υQu (q1), . . . , υQu (qm)), where υQu (qi) = max{υu(d)|d ∈ source(qi)}.
A tighter bound for υQu (Qr) can be obtained, if Qr contains one or more entity

11

queries (see previous section) and aggregating their scores in a greedy fashion.
Last, the following theorem can be established (see proof in [19]):

Theorem 2. A result µf ∈ ΩG(Qf) cannot be part of the top-k results for Q
if ∆(υ(µf), υQu (Qr)) < min{υ(µ)|µ ∈ Ωk

G(Q)}, where Ωk
G(Q) are the currently

known k results of Q.

4 Experimental Evaluation

In the following, we present our evaluation and show that (1) top-k processing
outperforms state-of-the-art Linked Data query processing, when producing only
a number of top results, and (2) our tighter bounding and early pruning strategy
outperform baseline rank join operators in the Linked Data setting.

Systems. In total, we implemented three different systems, all based on
push-based join processing. For all queries, we generated left-deep query plans
with random orders of join operators. All systems use the same plans and are
different only in the implementation of the join operator.

First, we have the push-based symmetric hash join operator (shj) [10, 11],
which does not employ top-k processing techniques, but instead produces all
results and then sorts them to obtain the requested top-k results. Also, there
are two implementations of the rank join operator. Both use the corner-bound-
adaptive scheduling strategy (which has been shown to be optimal in previous
work [17]), but with different bounding strategies. The first uses the corner-
bound (rj-cc) from previous work [17], while the second (rj-tc) employs our
optimization with tighter bounds and early result pruning. The shj baseline is
used to study the benefits of top-k processing in the Linked Data setting, while
rj-cc is employed to analyze the effect of the proposed optimizations.

All systems were implemented in Java 6. Experiments were run on a Linux
server with two Intel Xeon 2.80GHz Dual-Core CPUs, 8GB RAM and a Segate
ST31000340AS 1TB hard disk. Before each query execution, all operating system
caches were cleared. The presented values are averages collected over three runs.

Dataset and Queries. We use 8 queries from the Linked Data query set
of the FedBench benchmark. Due to schema changes in DBpedia and time-outs
observed during the experiments (> 2 min), three of the 11 FedBench queries
were omitted. Additionally, we use 12 queries we created. In total, we have 20
queries that differ in the number of results they produce (from 1 to 10118) and
in their complexity in terms of the number of triple patterns (from 2 to 5). A
complete listing of our queries can be found in [19].

To obtain the dataset, we executed all queries directly over the Web of Linked
Data using a link-traversal approach [6] and recorded all Linked Data sources
that were retrieved during execution. In total, we downloaded 681,408 Linked
Data sources, comprising a total of 1,867,485 triples. From this dataset we cre-
ated a source index that is used by the query planner to obtain relevant sources
for the given triple patterns.

Scores were randomly assigned to triples in the dataset. We applied three
different score distributions: uniform, normal (µ = 5, σ2 = 1) and exponential

12

(λ = 1). This allows us to abstract from a particular ranking and examine
the applicability of top-k processing for different classes of functions. We used
summation as the score aggregation function ∆.

We observed that network latency greatly varies between hosts and evaluation
runs. In order to systematically study the effects of top-k processing, we thus
decided to store the sources locally, and to simulate Linked Data query processing
on a single machine (as done before [10, 11]).

Parameters. Parameter k ∈ {1, 5, 10, 20} denotes the number top-k results
to be computed. Further, there are the three different score distributions d ∈
{u, n, e} (uniform, normal and exponential, respectively).

Overall Results. Fig. 4a shows an overview of processing times for all
queries (k = 1, d = n). We can see that for all queries the rank join approaches
perform better or at least equal to the baseline shj operator. On average, the
execution times for rj-cc and rj-tc were 23.13s and 20.32s, whereas for shj it was
43.05s. This represents an improvement in performance of the rj-cc and rj-tc
operators over the shj operator by factors of 1.86 and 2.14, respectively.

The improved performance of the rank join operators is due to top-k pro-
cessing, because these operators do not have to process all input data in order
to produce the k top results, but can terminate early. On the other hand, the
shj implementation produces all results. Fig. 4b shows the average number of
retrieved sources for different values of k. We can see clearly that the rank join
approaches retrieve fewer sources than the baseline approach. In fact, rj-cc and
rj-tc retrieve and process only 41% and 34%, respectively, of the sources that
the shj approach requires. This is a significant advantage in the Linked Data
context, where sources can only be retrieved in their entirety.

However, we also see that the rank join operators sometimes do not perform
better than shj. In these cases, the result is small (e.g., Q18 has only two results).
The rank join operators have to read all inputs and compute all results in these
cases. For example, for Q20 the rank join approaches retrieve and process all
35103 sources, just as the shj approach does.

Bounding Strategies. We now examine the effect of the bounding strate-
gies on overall execution time. The average processing times mentioned earlier
represent an improvement of 12% of rj-tc over rj-cc. For Q3, the improvement
is even higher, where rj-tc takes 11s, compared to 30s for rj-cc.

The improved performance can be explained with the tighter, more precise
bounding strategy of rj-tc compared to rj-cc. For example, our bounding strat-
egy can take advantage of a large star-shaped subexpression with 3 patterns
in Q3, leading to better performance because of better upper bound estimates.
Moreover, we observed that the look-ahead strategy helps to calculate a much
tighter upper bound especially when there are large score differences between
successive elements from a particular input.

In both cases, a tighter (more precise) bound means that results can be
reported earlier and less inputs have to be read. This is directly reflected in the
number of sources that are processed by rj-tc and rj-cc, where on average, rj-tc
requires 23% fewer sources than rj-cc. Note, while in Fig. 4a rj-tc’s performance

13

0

5000

10000

15000

20000

25000

30000

35000

k:1 k:5 k:10 k:20

#s
o

u
rc

e
s

re
tr

ie
ve

d

0

10

20

30

40

50

60

70

80

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18 q19 q20

Ti
m

e
 [

s]

rj-cc

rj-tc

shj

0

10

20

30

40

50

k:1 k:5 k:10 k:20

Ti
m

e
 [

s]

(a)

(b) (c)

0

10

20

30

40

50

dist:n dist:e dist:u

Ti
m

e
 [

s]
 (d)

0

10

20

30

40

50

60

70

2TP 3TP 4TP 5TP

Ti
m

e
 [

s]

rj-cc

rj-tc

shj

(e)

Fig. 4. (a) All queries with their evaluation times (k = 1, d = n). (b) Average number
of sources over all queries (different k, d = n). (c) Average evaluation time over all
queries (different k, d = n). (d) Average evaluation time over all queries (different
score distributions, k = 10). (e) Average evaluation time over all queries with varying
number of triple patterns (k = 1, d = n).

often seems to be comparable to rj-cc, Fig. 4b makes the differences more clear
in terms of the number of retrieved sources. For instance, both systems require
an equal amount of processing times for Q17. However rj-tc retrieves 7% less
sources. Such “small” savings did not show properly in our evaluation (as we
retrieved sources locally), but would effect processing time in a real-world setting
with network latency.

Concerning the outlier Q19, we noticed that rj-tc did read slightly more
input (2%) than rj-cc. This behavior is due to our implementation: Sources are
retrieved in parallel to join execution. In some cases, the join operators and the
source retriever did not stop at the same time.

We conclude that rj-tc performs equally well or better than rj-cc. For some
queries (i.e., entity queries and inputs with large score differences) we are able
to achieve performance gains up to 60% compared to the rj-cc baseline.

Early Pruning. We observed that this strategy leads to lower buffer sizes
(thus, less memory consumption). For instance with Q9, rj-tc could prune 8%
of its buffered data. However, we also noticed that the number of sources loaded
and scanned is actually the key factor. While pruning had positive effects, the
improvement is small compared to what could be achieved with tighter bounds
(for Q9 73% of total processing time was spent on loading and scanning sources).

Effect of Result Size k. Fig. 4c depicts the average query processing
time for all three approaches at different k (with d = n). We observed that the
time for shj is constant in k, as shj always computes all results, and that the
rank join approaches outperform shj for all k. However, with increasing k, more
inputs need to be processed. Thus, the runtime differences between the rank join
approaches and shj operator become smaller. For instance, for k = 1 the average
time saving over all queries is 46% (52%) for rj-cc (rj-tc), while it is only 31%
(41%) for k = 10.

Further, we can see in Fig. 4c that rj-tc outperforms rj-cc over all values for
k. The differences are due to our tighter bounding strategy, which substantially

14

reduces the amount of required inputs. For instance, for k = 10, rj-tc requires
21% less inputs than rj-cc on average.

We see that rj-tc and rj-cc behave similarly for increasing k. Both operators
become less efficient with increasing k (Fig. 4c).

Effect of Score Distributions. Fig. 4d shows average processing times for
all approaches for the three score distributions. We see that the performance of
both rank join operators varied only slightly w.r.t. different score distributions.
For instance, rj-cc performed better by 7% on the normal distribution compared
to the uniform distribution. The shj operator has constant evaluation times over
all distributions.

Effect of Query Complexity. Fig. 4e shows average processing times (with
k = 1, d = n) for different numbers of triple patterns. Overall, processing times
increase for all systems with an increasing number of patterns. Again, we see
that the rank join operators outperform shj for all query sizes. In particular, for
5 queries patterns, we noticed the effects of our entity bounds more clearly, as
those queries often contained entity queries up to the length of 3.

5 Related Work

The top-k join problem has been addressed before, as discussed by a recent sur-
vey [8]. The J* rank join, based on the A* algorithm, was proposed in [14]. Other
rank join algorithms, HRJN and HRJN*, were introduced in [7] and further ex-
tended in [12]. In contrast to previous works, we aim at the Linked Data context.
As recent work [6, 3, 10, 11] has shown, Linked Data query processing introduces
various novel challenges. In particular, in contrast to the state-of-the-art pull -
based rank join, we need a push-based execution for queries over Linked Data.
We therefore adapt pull strategies to the push-based execution model (based on
operator scheduling). Further, our work is different from prior work on Web-
accessible databases [20], because we rely exclusively on simple HTTP lookups
for data access, and use only basic statistics in the source index.

There are different bounding strategies: In [2, 17], the authors introduced
a new Feasible-Region (FR) bound for the general setting of n-ary joins and
multiple score attributes. However, it has been proven that the PBRJ template
is instance-optimal in the restricted setting of binary joins using corner-bound
and a single score attribute [2, 17]. We adapt the corner-bound to the Linked
Data setting and provide tighter, more precise bounds that allow for earlier
termination and better performance.

Similar to our pruning approach, [18] estimates the likelihood of partial re-
sults contributing to a final result (if the estimate is below a given threshold
partial results are pruned). However, [18] addressed the selection top-k problem,
which is different to our top-k join problem. More importantly, we do not rely on
probabilistic estimates for pruning, but employ accurate upper bounds. Thus,
we do not approximate final top-k results.

6 Conclusion

We discussed how existing top-k join techniques can be adapted to the Linked
Data context. Moreover, we provide two optimizations: (1) tighter bounds es-

15

timation for early termination, and (2) aggressive result pruning. We show in
real-world Linked Data experiments that top-k processing can substantially im-
prove performance compared to the state-of-the-art baseline. Further perfor-
mance gains could be observed using the proposed optimizations. In future work,
we like to address different scheduling strategies as well as further Linked Data
aspects like network latency or source availability.

References

1. S. Elbassuoni, M. Ramanath, R. Schenkel, M. Sydow, and G. Weikum. Language-
model-based ranking for queries on rdf-graphs. In CIKM, pages 977–986, 2009.

2. J. Finger and N. Polyzotis. Robust and efficient algorithms for rank join evaluation.
In SIGMOD, pages 415–428, 2009.

3. A. Harth, K. Hose, M. Karnstedt, A. Polleres, K. Sattler, and J. Umbrich. Data
summaries for on-demand queries over linked data. In World Wide Web, 2010.

4. A. Harth, S. Kinsella, and S. Decker. Using naming authority to rank data and
ontologies for web search. In ISWC, pages 277–292, 2009.

5. O. Hartig. Zero-knowledge query planning for an iterator implementation of link
traversal based query execution. In ESWC, 2011.

6. O. Hartig, C. Bizer, and J. Freytag. Executing SPARQL queries over the web of
linked data. In ISWC, 2009.

7. I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting top-k join queries in
relational databases. The VLDB Journal, 13:207–221, 2004.

8. I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing
techniques in relational database systems. ACM Comput. Surv., pages 11:1–11:58,
2008.

9. G. Klyne, J. J. Carroll, and B. McBride. Resource description framework (RDF):
concepts and abstract syntax, 2004.

10. G. Ladwig and T. Tran. Linked data query processing strategies. In ISWC, 2010.
11. G. Ladwig and T. Tran. Sihjoin: Querying remote and local linked data. In ESWC,

2011.
12. C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song. Ranksql: query algebra and

optimization for relational top-k queries. In SIGMOD, pages 131–142, 2005.
13. N. Mamoulis, M. L. Yiu, K. H. Cheng, and D. W. Cheung. Efficient top-k aggre-

gation of ranked inputs. ACM Trans. Database Syst., 2007.
14. A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and J. S. Vitter. Supporting

incremental join queries on ranked inputs. In VLDB, pages 281–290, 2001.
15. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. W3C

Recommendation, 2008.
16. F. Schmedding. Incremental sparql evaluation for query answering on linked data.

In Workshop on Consuming Linked Data in conjunction with ISWC, 2011.
17. K. Schnaitter and N. Polyzotis. Optimal algorithms for evaluating rank joins in

database systems. ACM Trans. Database Syst., 35:6:1–6:47, 2010.
18. M. Theobald, G. Weikum, and R. Schenkel. Top-k query evaluation with proba-

bilistic guarantees. In VLDB, pages 648–659, 2004.
19. A. Wagner, D. T. Tran, A. H. Günter Ladwig, and R. Studer. Top-k linked data

query processing. http://www.aifb.kit.edu/web/Techreport3022, 2011.
20. M. Wu, L. Berti-Equille, A. Marian, C. M. Procopiuc, and D. Srivastava. Processing

top-k join queries. VLDB, pages 860–870, 2010.

