
Semi-automatic Acquisition of Semantic Descriptions of Processes in the Web

Julia Hoxha and Sudhir Agarwal
Institute of Applied Informatics and Formal Description Methods (AIFB)

Karlsruhe Institute of Technology(KIT)
Karlsruhe,Germany

{julia.hoxha,sudhir.agarwal}@kit.edu

Abstract—Most of today’s business processes are complex
and consist of more than one party or single step procedures.
In the Web, this is reflected by the existence of billions of Web
sites, which may be regarded as complex processes, and on the
other side only a few thousands of publicly available WSDL
files that present single services. The availability of semantic
descriptions of services and processes in the Web facilitates
their discovery, as well as their composition into more complex
workflows. It also facilitates the automatic execution of such
workflows despite their heterogeneity. However, the deficit of
semantic descriptions of Web processes deprives the users from
using such sophisticated automatic techniques.

The scope of our research is to fill this gap by providing semi-
automatic techniques for the acquisition of a large number of
semantic process descriptions on the (deep) Web. We model
the data found in the online sources using ontologies, mine the
process a user follows through the Web forms and generate a
semantic description of this process. We present in this paper
the implementation of our algorithms for the acquisition of
process descriptions. We also provide a Web-based editor for
manual annotation of new processes and refinement of the
automatically-generated descriptions.

Keywords-web process; semantic process description; seman-
tic web; process mining; deep web;

I. INTRODUCTION

Most of the interesting processes in the Web today are
complex, often requiring inputs from the user and providing
outputs at multiple stages during execution. Furthermore, the
execution path of a process often depends on the input values
that the user provides. Today a large number of (business)
processes are offered in the Web in form of services and
websites, which we collectively refer to as Web Processes.

Consider for example a user performing a car rental search
with conditions on pickup location, type of vehicle, winter
tyres, booking with visa card, etc. In order to find the
appropriate car rental page, a search engine needs to consider
that (1) the terms used in the query may differ from those
occurring on a car rental Website, (2) the information needed
to answer the query may be scattered over multiple, even
dynamically-generated pages of a car rental process (e.g.
order and payment details appear often on separate pages).

While issue (1) has been addressed by proposing on-
tologies for semantically modeling data on Web sites [1],
there are no techniques available to capture and reason
about the dynamics of Web processes. The scope of our

research is to explore the content hidden in the Deep Web [2]
behind subsequent HTML forms. We model the data found
in the online sources using ontologies, mine the process
a user follows through the forms and generate a semantic
description of this process. Our goal is to develop techniques
to obtain semantic descriptions of static and dynamic aspects
of Web processes. We also aim to build a repository with a
large number of such semantic descriptions. 1

Current search engines still work in a very document-
centric way, disregarding the flow of information among
the pages entailing a Web-based process. There are only a
few research works in the field with a similar goal to ours,
to automatically discover and provide new semantic Web
service descriptions. They either search in the literature [3]
and in workflow definitions [4], such as in the bioinformatics
domain, or explore the Web to find and create new semantic
descriptions of services [5]. The drawback of the first two
approaches is that they lack to provide detailed semantic
service descriptions or definition of their function. The work
in [5] only covers the annotation of simple, atomic services
with a single step procedure, but does not provide methods
to discover more complex processes in the Web.

In this paper, we extend our previous work [6] and
follow a semi-automatic mining approach for the acquisition
of semantic process descriptions. We combine manual and
automatic techniques because, on the one hand, pure manual
approaches are less likely to scale to the size of the Web and,
on the other hand, pure automatic techniques cannot always
guarantee the correctness of the process descriptions.

We show in Section II how we model the processes in
Web sites and describe them semantically with a combina-
tion of process algebra and ontologies. In Section III, we
present the automatic techniques developed for mining the
semantic process descriptions. We also introduce our Web-
based, collaborative environment for manual annotation of
new processes and refinement of the automatically-generated
descriptions. In Section IV, we present an implementation
of our algorithms and discuss related work in Section V.
Section VI concludes the paper with a summary of results
and insights on future work.

1Such a repository can also be used by researchers to evaluate the
performance and scalability of their techniques, e.g. semantic discovery,
automatic composition, etc. on the descriptions of real processes.

II. SEMANTIC DESCRIPTION OF WEB PROCESSES

We semantically annotate the processes found in the
Web using the formalism suprimePDL (suprime Process
Description Language) [7]. In contrast to other existing
semantic description formalisms, which either cover only the
behavioral aspect of the processes or just the semantics of
their input/output parameters, suprimePDL is able to cover
both aspects and define interdependencies between them. In
addition, it is a very expressive language and provides clear
formal semantics.

Process

Resources
Dynamic
Behavior

OWL
Ontology

Pi-Calculus
Algebra

uses

described by described bydescribed by

uses

Figure 1. Process-oriented Modeling Formalism

Figure 1 shows a part of the the conceptual model of
suprimePDL relevant for the work presented in this pa-
per. The static data is described via ontologies using the
decidable description logic SHIQ(D) [8], upon which is
based OWL-DL, the decidable variant of the Web Ontology
Language OWL. 2 The formalism is based on π-Calculus
process algebra [9] to describe the dynamic behavior of
processes. In the rest of this section, we give a short
overview of suprimePDL and show how Web processes can
be semantically described with it.

A. Overview of the suprime Process Description Language

In this section, we present the expressive language
suprimePDL used for the semantic description of processes
captured in the Web pages. A named process expression,
whose syntax is given in Definition 1, is denoted by an Agent
Identifier. In our context, we model as an agent identifier the
URL where a Web page is located.

Definition 1: Syntax of Process Formalization

P ::= 0 | y[v1 . . . , vn].P ′ | y〈x1 . . . , xn〉.P ′ |
l(x1, . . . , xn)(y1, . . . , ym).P ′ |
ω?P1:P2 | P1 ‖ P2 | P1 + P2 | @A{y1, . . . , yn}

The elements in this definition have the following mean-
ing. The Null process 0 denotes a process that is used
as termination symbol in a process expression. The Input
process y[v1, . . . , vn].P ′ is a process that takes inputs at
port y, which is a communication channel, and binds them to
variables v1 . . . , vn. The subsequent behavior of this process
is defined in the process expression P ′ that follows.

2http://www.w3.org/2004/OWL/

The Output process y〈x1, . . . , xn〉.P ′ denotes a process
that outputs the values x1 . . . , xn at port y. Its subse-
quent behavior is defined in the expression P ′. The values
x1, . . . , xn are instances in a domain ontology. The Local
process l(x1, . . . , xn)(y1, . . . , ym).P ′ denotes a process that
performs the operation l with the arguments x1, . . . , xn and
produces output y1, . . . , ym. The input values x1, . . . , xn and
output values y1, . . . , ym are instances in a domain ontology.

The Deterministic Choice ω?P1:P2 is a process, whose
behavior is determined by the condition ω. If ω is true,
then its subsequent behavior is defined in the expression P1

that follows. If false, it will be followed by expression P2.
The Composition P1 ‖ P2 consists of processes P1 and P2

acting in parallel. The Summation P1 + P2 denotes a non-
deterministic choice of one of the alternatives P1 or P2. The
selected choice determines the subsequent behavior of the
process, defined in the selected expression.

@A{y1 . . . , yn} denotes the invocation of an agent iden-
tifier. More details about this formalism and its semantics
may be found in [6], [7].

B. Modeling Content using Ontologies

The information we take into analysis for semantic de-
scription of websites is the textual page content, links and
forms. Currently, our focus is on modeling links and forms,
since they initially ensure the highest potential for navigating
from one page to another via link execution (URL usage)
and form submission.

Modeling Links. We consider three main conceptual
elements in a link: URL base, variable names, and values.
Based on the typical convention of URL formation, we syn-
tactically split the link into two basic parts: the string before
”?“ is saved as URL base, whereas the string following it is
divided into variable names, which are viewed as ontology
classes, and their respective values, viewed as instances of
the class corresponding to the variable.

Modeling Forms. In order to successfully submit a form,
we need to understand the semantic information it contains.
Every form contains a set of field elements E1, E2, . . . , En.
We denote an element with Ei(label, name, domain), where
label(Ei) is its label found in the HTML page, name(Ei)
is the name of the variable bound to this element, and
domain(Ei) is the set of possible values this variable can
have, e.g. the set of names in a dropdown menu, checkbox
or radio button. Often this domain might not be defined in
the form, e.g. in the case of textbox elements.

For each field element, we also store information we find
in the structural units of the form. Therefore, we extract
the layout of its different elements and model it not in just
a flat representation, but a hierarchical structure containing
significant semantic information. Figure 2 illustrates the
hierarchical representation of the first page of a car rental
website, which we consider as a running example in this
paper.

OK

Location

Period

Rental Car Type

Root

Location

PickUp

Green
Collection

Period

Return

Rental Car Type

PickUp
Date

Return
Date

Fun
Collection

Prestige
Collection

YearMonth TimeDay

Green Collection

Fun Collection
Prestige Collection

PickUp Date:

PickUp: Return:

Return Date:

hasPickUp hasReturn

hasPickupDt hasReturnDt

hasTime

hasYear

hasMonth
hasDay

YearMonth TimeDay

isA
isA

isA

hasTime

hasYear
hasMonth

hasDay

3 10:00Feb 2010

6 10:00Feb 2010

instanceOf
instanceOf

instanceOf

Figure 2. Hierarchical Representation of a Form

The first step of the semantic annotation is to capture
the internal representation of each HTML form, apply nor-
malization techniques (common case conversion, stop word
removal, stemming) and model this information according to
the Form Model Schema [10], [11] as illustrated in Table I.

Form Model
Schema element

Description

Underlying
source

URL base

Form template Representation of form type. Each form template has
(1) a layout (i.e. its graphical representation), (2) a
title that identifies the HTML form and provides its
general description, (3) an action method (GET or
POST)

Form field Element composed of (1) Label, (2) Variable name,
(3) Variable type (text, submit, radio, select, etc.), (4)
Domain of values (infinite or finite)

Structural unit Logical group of closely related form fields, identi-
fied by a name (label)

Relationship Relation between structural unit and the form fields
it contains. It may also be an Inheritance

Association Binary relation between form field label and variable
name

Constraint Rule that defines what data is valid for a given
form field.A cardinality constraint specifies for a
relationship the number of instances that a structural
unit can participate in

Form instance An occurrence of form type, when its template is
filled in with data

Table I
FORM MODEL SCHEMA

This schema preserves the hierarchical representation of
the form, using parent-child relations among its elements.
A set of transformation rules, displayed in Table II, is then
used to translate the form model schema to ontologies. In
the ontology form, the elements are structured as classes and
relations, e.g. ”Period“ has a relation hasPickupDate“ with
the class ”Pick-up Date“, or as classes and instances, e.g.
”Green Collection“ is an instance of ”Rental Car Type“.

C. Modeling Behaviour with Process Algebra

We use the process description language suprimePDL
to semantically describe processes, which capture the
information flow and dynamics among the Web pages.
We have defined a set of mappings (Table III) between

Form Model Schema Element maps to
Underlying source Ontology
Form Title (part of Template) class of Ontology
Structural unit Class
Label of Form Field Class
Variable name of Form Field Instance
Association equivalenceClass relation
Relationship Property
Inheritance relationship of structural units Inheritance of classes
Constraint Axiom
Form Field Value Instance

Table II
RULES OF TRANSFORMING FORM MODEL SCHEMA TO ONTOLOGY

Web Artefact Element of the Process Description Lan-
guage

URL Agent Identifier
Web page Message
Clicking a Link Invocation of an Agent Identifier
Submitting a Form Input Process
CGI script Local operation

Table III
MAPPING BETWEEN WEB ARTIFACTS AND ELEMENTS OF THE

FORMALISM

the Web artifacts and the elements of suprimePDL.
When a URL is accessed, the corresponding Web
server generates a Web page and sends it to the
client. A URL u with arguments a1, . . . , an is
modeled as an agent identifier U(a1, . . . , an)

def
=

u(b1, . . . , bm)(o1, . . . , ol).c〈o1, . . . , ol〉.P , where
{b1, . . . , bm} ⊆ {a1, . . . , an}. The left-hand side of
the expression defines the agent identifier U with arguments
a1, . . . , an, whereas the right-hand side describes the
process of this agent, i.e. it includes a local operation u
with input arguments b1, . . . , bm and outputs o1, . . . , ol.
These outputs denote the content of the HTML page
retrieved after the operation. The page is then sent to the
client in the subsequent output activity c. The outputs oi
may be links to other Web sites or submit buttons of the
forms, each of them defining a possibility to navigate to
the next page.

If oi is a link, it denotes the instantiation of a URL. In
case of a form, the ”action” can be either a link or the
invocation of a method executed locally by the server (CGI
script). The usage of a URL is equivalent to the invocation
of an agent identifier, whereas a CGI script is equivalent to
the invocation of a local operation.

Submission of a form binds the values entered in the form
fields to the names of the corresponding fields. Submitting
a form f with field names v1, . . . , vn is regarded as an
input process f [v1, . . . , vn].P , where P denotes the process
representing the non-deterministic choice of all the submit
buttons of the form f . That is, if the form f has submit
buttons b1, . . . , bm, then P =

∑
b1, . . . , bm. Each of the

Vehicle = “Ford Focus”

U/listView

U/reservationVan

U: http://www.sixt.com U/reservationCar

Pick-up Location=“Karlsruhe”
Return Location= “Berlin”
Pick-up Date=“01-11-2009”
Return Date=“03-11-2009”

Local
Operator

Output

U/listView

Local
Operator

Output

U/payQuote

method= “PayOnReturn”

Local
Operator

Output

U/bookableQuote

U/confirm
Local

Operator
bonus= “No”,
CardType=“Visa”

Output

U/bookableQuote

Output

U/resFormVar

Output

U/resFormCar

Lvan

Lcar

Output

U/car
U/van

LU

Bookable Nonbookable

Figure 3. Graphic Representation of the Car Rental Process

field names v1, . . . , vn is modeled as an ontology class and
the possible values of the field as respective instances of this
class.

Example 1: Semantic description of a Car Rental Process
in the Web (see Figure 3 for the graphical representation of
the car rental process). Let U=”http://www.sixt.com/“

U()
def
= @LU (U)(U/car, U/van).c〈U/car, U/van〉.P1

P1 = @Lcar(U/car)(U/resFormCar).c〈U/resFormCar〉.Pcar +

@Lvan(U/van)(U/resFormV an).c〈U/resFormV an〉.Pvan

Pcar = p[PickLoc,RetLoc, P ickDt,RetDt].@submitRsvDetails

(PickLoc,RetLoc, P ickDt,RetDt)(h).c〈h〉.Pview

Initially, the URL U is defined as an agent identifier.
Invocation of this URL is defined by the invocation of a local
operation LU , from which a page is generated containing
two links ”U/car“ and ”U/van“. This page is displayed
to the user (output denoted with c〈〉). The behaviour that
follows is further defined in the process expression P1.
Subsequently, a user may choose to click one of the links,
defined as a non-deterministic choice. Based on this choice,
the process either continues with Pcar or Pvan.

For each link invocation an operation is executed, then a
page containing a reservationForm is given as output. The
reservation form is then filled with values of fields labeled,
respectively,”Pick-up Location“,”Return Location“,”Pick-up
Date“,”Return Date“. In this way, we may continue describ-
ing the process followed by the selection of a vehicle, choos-
ing the payment method (”PrepayOnline“, ”PayOnReturn“),
up to the final confirmation step.

III. SEMI-AUTOMATED ACQUISITION APPROACH

In this section, we explain the approach used for the
acquisition of semantic process descriptions. It entails a
combination of automatic and manual techniques. The scope
of the automatic approach is to subsequently fetch pages on
the Web via a crawler and semantically annotate the pro-
cesses that we acquire among these pages. The descriptions

Web

Page
Analyzer

Page
Invocation

Response
Analyzer

Ontology
Reasoner

Semantic
Value

Selection

Crawler

Form
Description

Link
Description

Semantic
Description
Generator

Process
Description

Management API
Browse

Interface

Process
Editor

GUI

Ontology Language

Process Description Language

Knowledge Base

Response Page

Web Page

fetchPage

fetchPage

submitPage

Form Model Schema

Link Model Schema

URL

Figure 4. Semi-automated Acquisition Approach

of these processes are stored in a repository. The manual
approach consists of a graphical editor, which supports
suprimePDL process description language. The editor is
used to annotate new processes or refine the automatically-
generated process descriptions. Figure 4 gives an overview
of the components and steps involved in our acquisition
approach.

Crawler. The crawler is initially started with a predefined
queue of URLs. The Web page located at each URL is
fetched, its HTML content is analyzed and translated into
a semantic representation using the Semantic Translator
module.

Semantic Description Generator. This module translates
the information found in links and forms into ontologies,
using the approach introduced in section II-B. Variables
names of the crawled hypertext links are saved as ontology
classes and their respective values as instances. This is done
by the Link Description module. At the same time, for each
extracted form with a set of field elements Ei, each field
label label(Ei) is also stored as a class. The name name(Ei)
of the field element and the values of its domain domain(Ei)
are used to create ontological instances of this class. This is
realized by the Form Description module (see Figure 4).

The module Process Description maps the artifacts of
the Web page with the elements of our process description
language as presented in Section II-C.

We extract from the content of the current Web page all
its hypertext links and the URLs specified in the ”action“
element of forms. These links are stored in the initial queue,
so that each of them is crawled in the next iteration. This
consists of the Page Invocation step, where a link from the
queue is invoked or a form is submitted. The page received

in its response is the Response Page.
Page Invocation. One of the most challenging task of

the crawler for accomplishing page invocation is the form
submission. In order to submit a form successfully, appro-
priate values should be chosen for its input field elements.
We have to correctly build the URL action, which is then
called for form submission. The selection of these values
requires understanding of the pages and use of reasoning
techniques to provide not only syntactically-correct, but also
semantically-correct input parameters.

Semantic Value Selection. We solve the problem of
input value selection for form submission using methods
of discovering semantic relations among ontology classes.
This is the case of a form with field element E(label, name,
domain), for which we need a set of input values that are
not provided in the form itself, i.e. domain(E) = ∅. We
use semantic relations of ontologies stored in the knowledge
base, in order to find other classes that are equivalent to
the ontology class label(E). We use the instances of these
equivalent classes as the set from which we choose an input
value for field element E. For reasoning tasks, this module
uses the Ontology Reasoner.

Example 2: Semantic Value Selection of Web Forms
Link ”http://www.wetter.com/germany/g03?town=Karlsruhe“
is previously crawled and semantically annotated in our
system. Variable name ”town“ is stored as a class Town
in the knowledge base and ”Karlsruhe“ as instance of this
class. In a later iteration, a form is extracted from another
Web page, containing a textbox field with label ”‘Return
City”’, which is again stored as an ontology class City.
In order to submit the form, an appropriate input value
is to be chosen for this particular field. We use Ontology
Reasoner to find equivalent classes or subclasses of City, in
this case we find the class Town and use its instances (e.g.
”Karlsruhe“) as the set from which to choose the input
value for the textbox ”‘Return City”’.

The inferred values are sent to the Value Selection mod-
ule, which builds the final action URL of the form and
passes it to Page Invocation. This module is responsible for
the submission of the form using the provided URL and a
protocol that is in accordance with the HTML specification
submission methods ”GET“ or ”POST“.

Knowledge Base. There are three main conceptual parts
of the repository, based on the types of stored resources:
Ontology (classes and instances), Mapping and Process
Description. Upon this knowledge base, we have built a
Management API that is used to add new ontologies, map-
pings and process descriptions, as well as edit/delete existing
ones.

Manual Acquisition. The manual part of our acquisition
approach is illustrated in the lower section of Figure 4.
Using the Browse Interface, a user may access and navigate
the whole repository of process descriptions, which are
displayed in a graphical representation. Via the Process

Editor, new processes of the Web can be manually anno-
tated, creating new semantic process descriptions that can
be stored in the repository. Additionally, all the existing
descriptions may be accessed and refined with the editor.
Equivalence or subclass relations among ontology classes,
which we use in the Semantic Value Selection module,
may be defined manually. We are also investigating the
deployment of techniques [12], [13] to achieve Ontology
Mapping automatically within our acquisition approach.

A. Acquisition Algorithms

After having described the various components of our
approach (see Figure 4), we further present how these
modules interact with each-other and how the approach is
formalized in the algorithms that we deploy.

The main method, which starts the crawler and im-
plements the automatic acquisition of the descriptions, is
displayed in Algorithm 1. We create an agent identifier for
each unique URL q of the queue. The creation of the agent
identifier is done, separately, for each link (Alg.1, Line 6)
calling method processLink given in Algorithm 2, and for
each form (Alg.1, Line 9) calling method processForm of
Algorithm 3.

The content page p located at this URL is fetched using
appropriate methods invokeLinkFetchPageContent and sub-
mitFormFetchPageContent, depending on the type of URL
being processed. The links and forms found in p are ex-
tracted and added to the main queue (Line 21 of Algorithm 1
for links; Line 8 and 14 of Algorithm 3 for forms). In this
way, they are iteratively processed in the next main loop of
Algorithm 1.

For each of the extracted links and forms found on the
page with URL q, we create an agent identifier and add it to
set N . This set is then used to expand the definition of the
initial agent identifier of q, extending the process expression
P with the Summation of identifiers in N (Alg.1, Line 29).
This describes a process of non-deterministic choice, where
the action URLs of forms and the links in the Web page p
are the options from which a user may choose to continue
in another page.

Algorithm 2 semantically annotates the link, extending
accordingly the ontology with new classes and instances
using method mapLinkToOntology. In this algorithm, a new
agent identifier is created for the link (Alg. 2, Line 8).
Referring to Figure 4, this algorithm is covered by the
module Link Description.

Forms found in a Web page are separately processed in
Algorithm 3. The action URL of a form is used as a link,
which we store in the main queue and then invoke in order to
submit this form. The HTML content of the form is extracted
with method getFormModelSchema (Line 1) and translated
to ontology classes (method mapFormModelSchemaToOn-
tology in Line 2). Furthermore, a new agent identifier is
created, whose definition (Line 7, 13) depends on the action

Input: Set Q of pairs(URL, type)
// type defines how to fetch content of page located at URL
Output: Global sets: Identifiers A, Ontologies O, local

Operations T
1 A := ∅; O := ∅; T := ∅;
2 while Q 6= ∅ do
3 foreach q ∈ Q, where q = (URL, type) do
4 Q := Q − q; //dequeue q

// Aq - definition of Agent Identifier for q
5 if type(q) = ”link“ then
6 Aq := processLink(q(URL)); // Alg. 2
7 p := invokeLinkFetchPageContent(q(URL));
8 else
9 Aq := processForm(q(URL)); // Alg. 3

10 p :=
submitFormFetchPageContent(q(URL));

11 end
12 A := A ∪Aq ;
13 Lp := extractLinks(p);
14 Fp := extractForms(p);
15 elements(p) := Lp ∪ Fp;

// Refine definition Aq , use elements(p) instead
of h

16 Aq := refineDefinition(elements(p));
17 N := ∅; // Local setN of agent identifiers for p
18 foreach l ∈ Lp do
19 Al := processLink(l); // Algorithm 2
20 N := N ∪ Al ;
21 Q := Q ∪ (l,”link“);
22 A := A ∪Al ;
23 end
24 foreach f ∈ Fp do
25 Af := processForm(f); // Algorithm 3
26 N := N ∪ Af ;

// URL of f is queued in method processForm
27 A := A ∪Af ;
28 end

// Refine process expression P in Aq

29 P =
∑

An∈N An;
30 end
31 end
Algorithm 1: Automatic Acquisition of Semantic
Process Descriptions

method of the form. The techniques realised here are covered
by the module Form Description of Figure 4.

Special importance in Algorithm 3 has the method re-
sponsible for building the action URL of the form (Line 4),
where we need to find approprite values for the input fields.
This comprises our Semantic Value Selection module. We
map each field label to an ontology class of our knowledge
base, and choose the input values from the set of instances
of this class. When no such class exists, we search for
an equivalent class that matches our concept at hand (as
explained in Example 2).

IV. IMPLEMENTATION

The presented automatic approach provides semantic de-
scriptions of processes on the Web and annotation of their

Input: URL l
Output: Agent Identifier Al

// Denote with b the URL base (extract string before ”?“)
1 b := baseURL(l);
2 Ob := mapLinkToOntology(l);

// Let P be the set of pairs (name,value) of arguments in l
3 P := formSetArgumentPairs(l);
4 names(l) := set of names in P;
5 values(l) := set of values in P;

// Initialize a set of string h to ∅
// Create local operation Tb, add it to set of Operations T

6 Tb := Lb(names(l))(h);
7 T := T ∪ Tb ;

// Create agent identifier Al

8 Al(names(l))
def
= @Lb(names(l))(h).c〈h〉.P ;

Algorithm 2: Process Link

Input: Form f
Output: Agent Identifier Af

1 Sf= getFormModelSchema(f);
// Create ontology Of , concepts and instances

2 Of := mapFormModelSchemaToOntology(Sf);
// Denote with names(f)) set of field names

3 names(f) := getFormFieldsNames(Sf);
// Let l denote action URL of f

4 l := buildActionURL(f);
// Let m denote action Method of f

5 if m = ”GET“ then
6 names(l) := set of argument names in l;

// Create agent identifier Af ,add its URL to main
Queue

7 Af ()
def
= p[names(f)].@l{names(f)/names(l)};

8 Q := Q ∪ (l,”link“);
9 else if m = ”POST“ then

// Initialize a set of string h to ∅
// Create local operation type Tl, add it to set of

Operations T
10 Tl := l(names(f))(h);
11 T := T ∪ Tl;

// Create agent identifier Af ,add its link to main
Queue

12 Af ()
def
= p[names(f)].@l(names(f))(h).c〈h〉.P ;

13 Q := Q ∪ (l,”form“);
14 end

Algorithm 3: Process Form Algorithm

content with ontologies. We have implemented the algo-
rithms and the techniques shown in Figure 4. We imple-
mented a thread for each link, therefore the crawler browses
all the given URLs simultaneously. Afterwards, it subse-
quently processes the links and forms found in the pages of
the websites. As explained earlier, ontologies and process
descriptions are generated with our acquisition algorithms.
We have created a knowledge base, which contains OWL
files for ontologies and XML files for the semantic descrip-
tions of processes. The ontologies, classes and instances
are stored in this base using OWL API. We have also

implemented an API with Java classes and methods, which
handle the management of process descriptions based on
suprimePDL formalism. For reasoning tasks, we use Hermit
OWL Reasoner 3.

Manual Annotation. The automatically-generated pro-
cess descriptions may be syntactically or semantically in-
complete. For example, our automatic acquisition technique
cannot fetch password-protected Web pages. Our aim is to
obtain very precise descriptions, in order to also support
sophisticated use cases. To increase the quality of process
descriptions, we have developed a graphical editor, which
can be used by end-users to refine and complete the existing
process descriptions, as well as manually add new ones.

The graphical editor is Web-based, built upon the open
source version of the oryx editor 4, whose functionality can
be extended via stencil sets to support new languages. We
exploited this feature and defined stencil sets for our process
description language and the ontology language as presented
in Section II. The graphical editor is available online 5. It
also serves as an interface to show all the semantic process
descriptions that we have automatically generated and stored
in the repository using our techniques. We have further
implemented a module that converts these descriptions into
a predefined JSON format, which we import in the editor
for graphical display. Via the editor the user may browse the
repository, open a process description and edit it graphically.
It enables modeling new process descriptions and ontologies,
as well as saving the refined or newly created process
descriptions/ontologies in the repository.

Suprime Framework. The presented acquisition approach
is implemented as a part of our Suprime Framework (Intel-
ligent Management and Usage of Processes and Services) 6,
which entails a collection of semantic techniques for discov-
ery, ranking, composition, execution and policy reasoning of
processes. Suprime architecture is illustrated in Figure 5. The
highlighted components are the modules of the acquisition
approach that we have displayed in Figure 4. The goal of
the acquisition part is the provision with semantic process
descriptions, upon which we may then deploy intelligent
tasks, e.g. composition in more complex workflows and
their execution. These descriptions may be used for the
elaboration of sophisticated tools and search strategies.

V. RELATED WORK

Process mining is a field, which has undergone a body of
research [14], [15], focusing on the discovery of explicit
process models based on workflow event logs. However,
these techniques require a set of structured logs with a
predefined format, which is not possible to be provided in
the context of Web pages that are extremely heterogeneous.

3http://hermit-reasoner.com
4http://oryx-editor.org/
5http://suprime.aifb.uni-karlsruhe.de/acquisition
6http://suprime.aifb.uni-karlsruhe.de/

Process
Language

Ontology
Language

Search GUIProcess EditorExecution GUI

Ranking

Search

Composition

Discovery

Execution
Engine

Execution

Repository
Management

System

Acquisition

Automatic
Acquisition

Preference
Language

Query
Language

Ontology
Reasoner

Behavior
Reasoner

Policy
Reasoner

Reasoning

UI

Middleware

Data,
Reasoning,
Infrastructure

Execution
Environment

Knowledge Base

Figure 5. Architecture of suprime Framework

In [4] workflow definitions, which are compositions of
atomic Web services, are explored to learn semantic types
of input/output parameters of such services. In [3] textual
information in the literature is used to infer descriptions of
bionformatics services, providing a high level classification
of services, but a limited description of their function.
Neither [4] nor [3] can provide semantic descriptions
for the services as detailed as our approach. The work
in [5] explores the Web to find services and create semantic
descriptions based on brute-force form submission. In our
approach, we exploit the context information and incorporate
reasoning-based selection of values for the input parameters.
Furthermore, we generate descriptions for more complex
Web processes by submitting subsequent forms and consid-
ering the flow between them.

Research has been conducted for crawling the Web [16],
[17], [18], in order to obtain the content of pages hidden
behind HTML forms. Some of these approaches index the
obtained information and use it to increase the coverage of
the search engines. In difference to these approaches, our
work is not restricted only to single pages, but it deals with
a sequence of pages on the Web, in order to expressively
describe the flow of information and the dependency among
them. While the work in [18] focuses on discovering pro-
cesses explicitly published on the Web, such as ”‘howto”’
articles, our aim is to mine implicit processes among the
pages, which are not explicitly published.

Similar to our research objective, seekda 7 is following the
approach of crawling the Web and searching for publicly
available Web services. The difference with our work is

7http://seekda.com/

that they focus only on the search of WSDL and RESTful
services, while our context is broader. We crawl any page of
the Web annotate its content and semantically describe as a
process the flow among the pages.

VI. CONCLUSION AND FUTURE WORK

The work presented in this paper is mainly motivated by
the unavailability of semantic descriptions of dynamics of
Web processes. We introduce an approach to fill this gap,
mining subsequent pages of the deep Web and semantically
describing the implicit processes captured in these pages
using our suprimePDL formalism.

Our main contribution in this paper is a semi-automatic
technique to build a repository of semantic descriptions of
Web sites, which offers a view of the Web not only from
the content perspective, but also from a process-oriented
perspective. The automatic part of our approach produces
descriptions of the content and flow among Web pages. The
generated descriptions can be refined and new processes can
be annotated via a Web-based process description editor.
This is another contribution of our work that helps recover
the scarcity of resources for manual annotation.

We are working on elaborating our techniques to find the
semantics of the function that maps the input parameters
of a form to the output variables, which we find upon
form submission on the subsequent page. Since our goal
in this paper is to introduce the process-oriented view of the
Web and the acquisition approach, we are planning in the
future to deploy techniques for the evaluation of the process
descriptions. Our strategy is to produce a large number of
descriptions randomly and create dynamic Web sites out of
them, which will serve as our test benchmark. We plan to use
our acquisition approach on these sites and get the semantic
process descriptions, which we will evaluate using graph
comparison techniques [19] towards the randomly-produced
descriptions.

REFERENCES

[1] Handschuh, S., Staab, S.: Annotation for the Semantic Web.
IOS Press (2003)

[2] Bergman, M.: The Deep Web: Surfacing Hidden Value.
Journal of Electronic Publishing 7 (2001)

[3] Afzal, H., Stevens, R., Nenadic, G.: Mining semantic descrip-
tions of bioinformatics web services from the literature. In:
ESWC’09: Proceedings of the 6th European Semantic Web
Conference, Springer-Verlag (2009)

[4] Belhajjame, K., Embury, S.M., Paton, N.W., Stevens, R.,
Goble, C.A.: Automatic annotation of web services based
on workflow definitions. In: ISWC’06: Proceedings of the
5th International Semantic Web Conference, Springer-Verlag
(2006) 116–129

[5] Ambite, J.L., Darbha, S., Goel, A., Knoblock, C.A., Lerman,
K., Parundekar, R., Russ, T.: Automatically constructing
semantic web services from online sources. In: ISWC ’09:
Proceedings of the 8th International Semantic Web Confer-
ence, Berlin, Heidelberg, Springer-Verlag (2009) 17–32

[6] Agarwal, S.: Semi-Automatic Acquisition of Semantic De-
scriptions of Web Sites. In: Proceedings of The Third In-
ternational Conference on Advances in Semantic Processing,
Malta, IEEE (2009)

[7] Agarwal, S., Rudolph, S., Abecker, A.: Semantic Description
of Distributed Business Processes. In: AAAI Spring Sympo-
sium - AI Meets Business Rules and Process Management,
Stanford, USA (2008)

[8] Horrocks, I., Sattler, U., Tobies, S.: Practical Reasoning for
Expressive Description Logics. In: Proc. of LPAR’99. Volume
1705., Springer-Verlag (1999) 161–180

[9] Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile
Processes, Part I+II. Journal of Information and Computation
(September 1992) 1–87

[10] Astrova, I.: Reverse Engineering of Relational Databases to
Ontologies. In: ESWS. Volume 3053. (2004) 327–341

[11] Benslimane, S.M., Malki, M., Rahmouni, M.K., Benslimane,
D.: Extracting Personalised Ontology from Data-Intensive
Web Application: an HTML Forms-Based Reverse Engineer-
ing Approach. Informatica 18(4) (2007) 511–534

[12] Sabou, M., Motta, E.: SCARLET: Semantic Relation Dis-
covery by Harvesting Online Ontologies. The Semantic Web:
Research and Applications (2008) 854–858

[13] Voelker, J., Haase, P., Hitzler, P.: Learning Expressive
Ontologies. In: Ontology Learning and Population: Bridging
the Gap between Text and Knowledge. Volume 167. IOS
Press (2008) 45–69

[14] Rembert, A.J.: Comprehensive workflow mining. In: Pro-
ceedings of 44-th ACM-SE, USA, ACM (2006) 222–227

[15] Van der Aalst, W., Vandongen, B., Herbst, J., Maruster, L.,
Schimm, G., Weijters, a.: Workflow mining: A survey of
issues and approaches. Data & Knowledge Engineering 47
(2003) 237–267

[16] Raghavan, S., Garcia-Molina, H.: Crawling the hidden web.
Proceedings of the International Conference on Very Large
Data Bases (2001) 129138

[17] Madhavan, J., Ko, D., Kot, b., Ganapathy, V., Rasmussen, A.,
Halevy, A.: Google’s Deep Web crawl. Proceedings of the
VLDB Endowment archive 1 (2008) 12411252

[18] Liu, Y., Agah, A.: Crawling and Extracting Process Data from
the Web. Work (2009) 545–552

[19] Dijkman, R., Dumas, M., Garcia-Banuelos, L.: Graph Match-
ing Algorithms for Business Process Model Similarity Search.
5701 (2009) 48–63

