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Abstract. Recently, different Forgetting approaches for knowledge bases ex-
pressed in different logics were proposed. It was shown, that the result may not
exist in the presence of terminological cycles and sufficient, but not necessary
conditions for its existence in EL were proposed. In this paper, we show that a
uniform interpolant of any EL terminology w.r.t. any signature always exists in
EL enriched with least and greatest fixpoint constructors and show how it can be
computed by reducing the problem to the computation of Most General Subcon-
cepts and Most Specific Superconcepts for atomic concepts. Moreover, we give
the exact conditions for the existence of a uniform interpolant in EL and show
how it can be obtained using our algorithms.

1 Introduction

The importance of non-standard reasoning services supporting knowledge engineers in
modelling a particular domain or in understanding existing models by visualizing im-
plicit dependencies between concepts and roles was pointed out by the research commu-
nity [3], [5]. An example of such reasoning services supporting knowledge engineers in
different activities is the uniform interpolation. In particular for the understanding and
the development of complex knowledge bases, e.g., those consisting of general con-
cept inclusions (GCIs), the appropriate tool support would be beneficial. However, the
existing approaches to uniform interpolation and some structurally similar reasoning
problems either do not consider GCIs, since the result may not exist in the presence
of terminological cycles, or rely on sufficient but not necessary termination conditions.
E.g., decomposing EL knowledge bases into logically independent modules [8] is re-
stricted to role-acyclic EL TBoxes; uniform interpolation in a Horn extension of EL[9]
is based on acyclicity conditions; Colucci et al.[5] present a framework for non-standard
reasoning services based on Tableau extended with variable substitution by modelling
the problems as second-order concept expressions. However, termination and decidabil-
ity of the satisfiability of the corresponding formulas remained open. Wang et al.[13]
propose an approach to uniform interpolation in ALC w.r.t. general terminologies by
encoding ALC TBoxes as concepts, which is not applicable in case of EL. Currently,
the exact conditions for the existence of uniform interpolation in EL remain undeter-
mined.

Clearly, the existence of the results for such reasoning problems is closely related
to the notion of fixpoint semantics. For instance, Baader [2] shows that the structurally
similar problems of computing Least Common Subsumer and Most Specific Concept
can always be solved in cyclic classical TBoxes w.r.t. to greatest fixpoint semantics.



Similar results were obtained for general EL TBoxes with descriptive semantics[11] ,
however extended with the greatest fixpoint constructor (ELν). In this paper, we extend
the above results by showing that uniform interpolants preserving all EL consequences
of general EL terminologies w.r.t. an arbitrary signature can always be expressed in
an extension of EL with least fixpoint and greatest fixpoint constructors µ, ν as well
as the disjunction used only on the left-hand side of concept inclusions. We propose
the algorithms for computing such uniform interpolants based on the notion of most
general subconcepts and most specific superconcepts.

In the usual application scenarios it is rather useful to obtain uniform interpolants
expressed in the DL of the original terminology instead of introducing additional lan-
guage constructs. Therefore, in addition to the above algorithms, we derive the existence
criteria for uniform interpolants in EL (i.e., expressed without the above extension) and
show how such a uniform interpolant can be obtained using our algorithms.

2 Preliminaries

Let NC and NR be countably infinite and mutually disjoint sets of concept symbols and
role symbols. An EL concept C is defined as

C ::= A|>|C uC|∃r.C

where A and r range over NC and NR, respectively. In the following, we use symbols
A, B to denote atomic concepts and C,D to denote arbitrary concepts. A terminology
or TBox consists of concept inclusion axioms C v D and concept equivalence axioms
C ≡ D used as a shorthand for C v D and D v C. While knowledge bases in general
can also include a specification of individuals with the corresponding concept and role
assertions (ABox), in this paper we abstract from ABoxes and concentrate on TBoxes.
The signature of an EL concept C or an axiom α, denoted by sig(C) or sig(α), respec-
tively, is the set of concepts and role symbols occurring in it. The signature of a TBoxT ,
in symbols sig(T ), is analogously NC ∪NR. In what follows, we denote the set NC ∪{>}

as N+
C .

Before introducing the fixpoint operators, we recall the semantics of the above in-
troduced DL constructs, which is defined by the means of interpretations. An interpre-
tation I is given by the domain ∆I and a function ·I assigning each concept A ∈ NC

a subset AI of ∆I and each role r ∈ NR a subset rI of ∆I × ∆I. The interpretation of
> is fixed to ∆I. The interpretation of an arbitrary EL concept is defined inductively,
i.e., (C u D)I = CI ∩ DI and (∃r.C)I = {x | (x, y) ∈ rI, y ∈ CI}. An interpretation I
satisfies an axiom C v D if CI ⊆ DI. I is a model of a TBox, if it satisfies all of its
axioms. We say that a TBox T entails an axiom α, if α is satisfied by all models of T .
In combination with fixpoint constructors, we will additionally use concept disjunction
C t D, the semantics of which is defined by (C t D)I = CI ∪ DI.

We now introduce the logics ELµ(t),ν, a fragment of monadic second order log-
ics that we use to compute uniform interpolants of general EL TBoxes. ELµ(t),ν is an
extension of EL by the two fixpoint constructors, νX.Cν [11] and µX.Cµ [4]. X is an
element of the countably infinite set of concept variables NV and Cν, Cµ are constructed



as follows:
Cν ::= X|A|>|νX.Cν|Cν uCν|∃r.Cν

Cµ ::= X|A|>|µX.Cµ|Cµ tCµ|Cµ uCµ|∃r.Cµ

where A ranges over atomic concepts and X ranges over NV . All ELν concepts and all
ELµ(t) concepts are closed Cν and Cµ expression, i.e., all concept variables are bound
by the corresponding fixpoint constructor. Note that we define ELν concepts and all
ELµ(t) concepts in such a way, that no concept can contain both fixpoint constructors,
i.e., we do not combine the two constructors within concepts. The semantics of the
fixpoint constructors is defined using a mapping ϑ of concept variables to subsets of
∆I. For an ELµ(t),ν concept C and W ⊆ ∆I, we denote a replacement of X by W as
CI,ϑ[X→W]. The semantics of ELµ(t),ν concepts is defined by

(νX.C)I,ϑ =
⋃
{W ⊆ ∆I|W ⊆ CI,ϑ[X→W]}

(µX.C)I,ϑ =
⋂
{W ⊆ ∆I|CI,ϑ[X→W] ⊆ W}.

In order to allow for more succinct concept expressions, we use an extended version
of the fixpoint constructs allowing for mutual recursion [12], [11]. The extended con-
structors have the form νiX1...Xn.Cν,1, ...,Cν,n and µiX1...Xn.Cµ,1, ...,Cµ,n with 1 ≤ i ≤ n.
The semantics is defined as

(νiX1...Xn.C1, ...,Cn)I,ϑ =
⋃
{Wi}

(µiX1...Xn.C1, ...,Cn)I,ϑ =
⋂
{Wi}

such that there are W1, ...,Wi−1,Wi+1, ...,Wn with respectively W j ⊆ CI,ϑ[X1→W1,...,Xn→Wn]
j

and CI,ϑ[X1→W1,...,Xn→Wn]
j ⊆ W j for 1 ≤ j ≤ n.

3 TBox Inseparability and Uniform Interpolation

Intuitively, two TBoxes T1 and T2 are inseparable w.r.t. a signature Σ if they have the
same Σ consequences, i.e., consequences whose signature is a subset of Σ. Depending
on the particular application requirements, the expressivity of those Σ consequences
can vary from subsumption queries and instance queries to conjunctive queries. In this
paper, we investigate forgetting based on concept inseparability of general EL termi-
nologies defined analogously to previous work on inseparability, e.g., [10] or [9], as
follows:

Definition 1. Let T1 and T2 be two general EL TBoxes and Σ a signature. T1 and T2
are concept-inseparable w.r.t. Σ, in symbols T1 ≡

c
Σ T2, if for all EL concepts C,D with

sig(C) ∪ sig(D) ⊆ Σ holds T1 |= C v D, iff T2 |= C v D.

Given a signature Σ and a TBox T , the aim of uniform interpolation or forgetting is
to determine a TBox T ′ with sig(T ′) ⊆ Σ such that T ≡c

Σ T
′. T ′ is also called a

Uniform Interpolant (UI) of T w.r.t. Σ. As demonstrated by the following example, in
the presence of cyclic concept inclusions, a UI might not exist for a particular T and a
particular Σ, i.e., it might be not expressible as a finite set of finite axioms using only
the language constructs of EL and the signature Σ.



Example 1. Forgetting the concept A in the TBoxT = {A′ v A, A v A′′, A v ∃r.A,∃s.A v
A} results in an infinite chain of consequences A′ v ∃r.∃r.∃r....A′′ and ∃s.∃s.∃s....A′ v
A′′ containing nested existential quantifiers of unbounded depth.

Clearly, if the TBox in the above example is interpreted w.r.t. descriptive semantics,
no most specific superconcept of A′ exists, while it can be easily expressed using the
greatest fixpoint constructor ν thereby resulting in an inclusion axiom A′ v νX.(A′′ u
∃r.X). The most general subconcept of A′′ can be expressed accordingly by the means
of the least fixpoint constructor µ, i.e., µX.(A′ t ∃s.X) v A′′. In the following, we
show that the corresponding UI of T w.r.t. Σ for any EL TBox T and any signature
Σ can always be expressed in ELµ(t),ν. For this purpose, we reduce the problem of
computing UI to the problem of computing most general subconcepts MGS(Σ,T , A) and
most specific superconcepts MSS(Σ,T , A) for each concept A ∈ sig(T ).

Definition 2. Let T be an EL TBox and Σ a signature. Further, let A ∈ NC and C,Ci a
set of EL concepts. C = MSS(T , Σ, A) if the following conditions are fulfilled:

– sig(C) ⊆ Σ,
– for all Σ concepts D holds T |= A v D if T |= C v D;⊔
1≤i≤n Ci = MGS(T , Σ, A) if the following conditions are fulfilled:

– sig(Ci) ⊆ Σ,
– for all Σ concepts D holds T |= D v A if T |= D v

⊔
1≤i≤n Ci.

Note that, if MGS(T , Σ, A) consists of several incomparable disjuncts Ci, it cannot be
expressed by an EL concept. In the following, it will come into notice that this is
not further problematic for the computation of UI, since the disjunction appears only
on the left-hand side and can therefore be expressed by the means of several inclu-
sion axioms. Analogously to MGS, we consider MSS as a conjunction using the notation
SUP(T , Σ, A) = {Ci|MSS(T , Σ, A) =

�
1≤i≤n Ci}. The corresponding notation for dis-

juncts Ci within MGS is SUB(T , Σ, A). If the TBox T and the signature Σ do not change,
we omit them and simply write MSS(A), MGS(A), SUP(A) and SUB(A). For the remainder
of this paper, we fix T to be a general EL TBox and Σ a signature. Assuming that the
TBox is normalized as described in the next Section, we compute a UI given SUB(A)
and SUP(A) for each A ∈ NC as follows:

Definition 3. UI(T , Σ) =
⋃

1≤i≤3 Mi with

– M1 = {A v D|A ∈ NC ∩ Σ,D ∈ SUP(A)}
– M2 = {C v A|A ∈ NC ∩ Σ,C ∈ SUB(A)}
– M3 = {C v D| there is A ∈ NC ∩ Σ, such that C ∈ SUB(A) and D ∈ SUP(A)}

If SUB(A) and SUP(A) can be uniquely determined for a particular TBox T and signature
Σ, the TBox UI(T , Σ) is also uniquely determined. After introducing the normalization
and the formal properties of SUP and SUB, we will prove that UI(T , Σ) ≡c

Σ T .



4 Normalization

In order to simplify the computation of SUB and SUP, we apply the following normal-
ization thereby restricting the syntactic form of T . Analogously to the normalization
employed in other approaches ([1], [7], [9]), we decompose complex axioms into syn-
tactically simple ones. The decomposition is realized recursively by replacing expres-
sions B1 u ... u Bn and ∃r.B with fresh concept symbols until all axioms in T have the
form:

– A v B
– A ≡ B1 u ... u Bn

– A ≡ ∃r.B

where A, B, Bi ∈ NC ∪ {>} and r∈ NR. For this purpose, we introduce a minimal re-
quired set of fresh concept symbols A′ ∈ ND and the corresponding definition axioms
(A′ ≡ C) for each of them. In what follows, we assume that knowledge bases are nor-
malized and refer to NC ∪ND as NC . Since concept symbols in ND are fresh, they do not
appear in Σ and are therefore elements of the forgotten signature Σ. Further, we assume
that equivalent concept symbols have been replaced by a single representative of the
corresponding equivalence class.1 The following lemma summarizes the properties of
normalized TBoxes.

Lemma 1. Any T can be extended into a normalized TBox T ′ and each model of T
can be extended into a model of T ′.

Proof. All introduced concepts in ND are defined in terms of concepts with sig(C) ⊆
sig(T ), therefore each model of T can be extended into a model of T ′.

5 Computing SUB and SUP for Acyclic Terminologies

Given an acyclic EL TBox T and a signature Σ, Algorithms 1 and 2 compute for
each A ∈ NC the elements of SUB(A) and SUP(A), respectively. The indirectly recur-
sive computation is derived from a Gentzen-style proof system relying on the above
specified normal form. Both algorithms proceed along the definitions for A in T as
well as the inclusions between atomic concepts entailed by T . Depending on whether
or not a concept B referenced in those definitions and inclusion axioms is in Σ, the
procedure SUBF(B, A) (SUPF(B, A)) returns B itself, which is the basecase of the com-
putation, or calls SUBS (B) (SUPS (B)). The second parameter of SUBF is not relevant in
case of acyclic TBoxes, but it will become important for computations based on fix-
point constructs. It will be explained in Section 7. The functions REDUCE and REDUCEC

eliminate redundancy within the computed results, which is not just an optimization,
but will also play an important role in proofs within the last section. The first of the two
functions expects as input a set of concepts and returns a subset of this set containing

1 The elimination of equivalent symbols does not affect the correctness or completeness of the
uniform interpolation, since the removed symbols can easily be included into the resulting
TBox.



only incomparable concepts. The second function accepts a conjunction and returns a
conjunction consisting only of incomparable conjuncts. Both, REDUCE and REDUCEC ,
can be easily realized using standard reasoning procedures in ELµ(t),ν, which is known
to be decidable in ExpTime [4].

Algorithm 1 computing SUBS (A) for an EL TBox T and a signature Σ
1: SUB←

⋃
SUBF(D, A),D ∈ NC such that T |= D v A

2: for all A ≡
�

1≤i≤n B j ∈ T do
3: SUB← SUB ∪ {REDUCEC(

�
1≤i≤n Ci)|(C1, ...,Cn) ∈ SUBF(B1, A) × ... × SUBF(Bn, A)}

4: end for
5: for all A ≡ ∃r.B ∈ T do
6: SUB← SUB ∪ {∃r.C|C ∈ SUBF(B, A), r ∈ Σ}
7: end for
8: return REDUCE(SUB)

Algorithm 2 computing SUPS (A) for an EL TBox T and a signature Σ
1: SUP←

⋃
SUPF(D, A),D ∈ N+

C such that T |= A v D
2: for all A ≡

�
1≤i≤n B j ∈ T do

3: SUP← SUP ∪ {C|C ∈ SUPF(B j, A)}
4: end for
5: for all A ≡ ∃r.B ∈ T do
6: SUP← SUP ∪ {∃r.REDUCEC(

�
C∈SUPF (B,A) C)|r ∈ Σ}

7: end for
8: return REDUCE(SUP)

It is easy to see that, in case of an acyclic TBox T , both algorithms terminate, while,
in case of cyclic terminologies, the algorithms do not need to terminate. In Section 7, we
show how the termination for general TBoxes can be ensured by introducing fixpoint
constructs for concepts involved in terminological cycles with particular properties in-
troduced in the next section.

6 Graphs and Trees

To allow for a more intuitive understanding of the cases, in which Algorithms 1 and 2
do not terminate, we introduce the following graphs representing the possible flow of
computation of SUB and SUP for a particular TBox T (independent from a particular
signature).

Definition 4. The SUP- and SUB-graphsASUP(T ) andASUB(T ) are defined as

– ASUP(T ) = (ΓSUP,Q, ESUP) with the set of edge labels ΓSUP = NR ∪ {v}, the set of
states Q = NC and the set of edges ESUP = {(A, r, B)|A ≡ ∃r.B ∈ T }∪{(A,v, B)|T |=
A v B}, where A, B ∈ Q and r ∈ ΓSUP.



– ASUB(T ) = (ΓSUB,Q, ESUB) with the set of edge labels ΓSUB = NR ∪ {w,u}, the set of
states Q = NC and the set of edges ESUB = {(A, r, B)|A ≡ ∃r.B ∈ T }∪{(A,w, B)|T |=
A w B} ∪ {(A,u, B)|A ≡ B u C ∈ T for any conjunction C of elements from Q},
where A, B ∈ Q and r ∈ ΓSUB.

The two graphs can be constructed in linear time after the classification of the nor-
malized TBox is finished. The corresponding subgraphs ASUP(T , Σ) and ASUB(T , Σ)
representing the computation of SUB and SUP for a particular signature Σ can then be
obtained from ASUP(T ) and ASUB(T ) by omitting all outgoing edges of nodes in Σ as
well as all edges with labels not from Σ ∪ {v,w,u}. Subsequently, concepts in Σ form
the leaves of the resulting graphs ASUP(T , Σ) and ASUB(T , Σ). For X ∈ {SUB, SUP}, we
denote the set of the paths in AX(T , Σ) from A to B as LX(A, B) and the set of the
intersection-free but possibly cyclic paths as L1

X(A, B) , i.e., paths not passing any node
more than once. As illustrated by the example below, cycles in ASUP(T ) and ASUB(T )
do not necessarily coincide. Therefore, both graphs have to be analysed to determine
the sets L1

SUP(A, B) and L1
SUB(A, B).

Example 2. The corresponding SUB- and SUP-graphs of the normalized TBox T =

{A1 v B, A1 ≡ A2 u A3, A3 v A2, A ≡ ∃r.B, A3 ≡ ∃r.B} and the signature Σ = sig(T ) are
shown in Fig. 1.

Fig. 1. SUB-graph (left) and SUP-graph (right) of T .

Note that, since the nodes from Σ are leaves inASUP(T , Σ) andASUB(T , Σ), L1
X(A, B)

contains only paths formed by nodes of the signature Σ. The presence of concepts with
L1

X(A, A) , ∅ determines whether the computation of SUB and SUP specified for the case
of acyclic terminologies terminates. In the following section, we introduce concepts
with fixpoint constructs guaranteeing the termination in the presence of such cycles.

7 SUB and SUP based on Fixpoint Constructors

In the following, we show how SUB(A) and SUP(A) can be computed for cyclic TBoxes
based on Algorithms 1 and 2. For this purpose, we now define the values of SUBF(A, B)



and SUPF(A, B) for concepts in cycles, i.e., for any A ∈ NC with L1
SUB(A, A) , ∅ and

L1
SUP(A, A) , ∅, respectively, in such a way that SUB(A) and SUP(A) are expressed by the

means of a (finite) set of ELµ(t),ν concepts. In what follows, we denote the two sets of
concepts involved in cycles as ΣC,SUB = {A|L1

SUB(A, A) , ∅} and ΣC,SUP = {A|L1
SUP(A, A) ,

∅}. For each Ai ∈ ΣC,SUP with 0 ≤ i ≤ n and each A j ∈ ΣC,SUB with 0 ≤ j ≤ m ,
we introduce two concept variables, one for being used in SUB(A) and one for SUP(A),
which we denote with X(Ai) and Y(A j), respectively. The set of all introduced variables
is denoted byVx with x ∈ {SUP, SUB}. Further, let C(Ai) and D(A j) be concept expres-
sions possibly containing free variables from Vx, defined as C(Ai) = uB∈SUPS (Ai)B and
D(A j) = tB∈SUBS (A j)B. Given the values C(Ai) and D(A j) for each Ai ∈ ΣC,SUP and each
A j ∈ ΣC,SUB, we define

N(Ai) = νiX(A1)...X(An).C(A1), ...,C(An)

M(A j) = µ jY(A1)...Y(Am).D(A1), ...,D(Am).

Since free variables are not allowed in the resulting SUB(A) and SUP(A) for any
A ∈ NC , we need to ensure that only the quantified fixpoint expressions, i.e., M(B) or
N(B) for any B ∈ NC , are included into SUB(A) or SUP(A) in Algorithms 1 and 2. For
this purpose, we realize two different levels of visibility within SUBF(A) and SUPF(A) by
the means of the second parameter B. This parameter points to the concept, from which
SUBF and SUPF are called and determines, which of the two visibility levels applies.
In case B is involved in the corresponding cycle, e.g., B ∈ ΣC,SUP for A ∈ ΣC,SUP, the
internal value of SUBF(A) and SUPF(A) is returned, which is given by the corresponding
variable Y(A)/X(A) and is only used to compute C(B) or D(B). For B outside the corre-
sponding cycles, we return the complete fixpoint expression in its quantified form, i.e.,
M(A)/N(A), which is then included into SUB(A) and SUP(A). Therefore, by the means
of this additional distinguishing, we ensure that all variables in the resulting SUB(A)
and SUP(A) for any A ∈ NC are quantified. The full set of distinguishments realized by
SUPF(A, B) and SUBF(A, B) is given by:

SUPF(A, B) =



A if A ∈ Σ
X(A) if A ∈ ΣC,SUP,

B ∈ ΣC,SUP

N(A) if A ∈ ΣC,SUP,
B < ΣC,SUP

SUPS (A) otherwise

SUBF(A, B) =



A if A ∈ Σ
Y(A) if A ∈ ΣC,SUB,

B ∈ ΣC,SUB

M(A) if A ∈ ΣC,SUB,
B < ΣC,SUB

SUBS (A) otherwise .

Now we summarize the definition of SUP(A) and SUB(A) for the general case of
SUB(A) and SUP(A) in ELµ(t),ν.

Definition 5. Let A ∈ NC . The set of conjuncts for computing MSS(A) and the set of
disjuncts for computing MGS(A) in ELµ(t),ν, in symbols SUPELµ(t),ν (A) and SUBELµ(t),ν (A),
are given by SUPF(A,>) and SUBF(A,>), respectively, in case A ∈ Σ, and by SUPS (A)
and SUBS (A), otherwise.



We denote the EL variants of SUP(A) and SUB(A) as SUPEL(A) and SUBEL(A). Given
an acyclic TBox, i.e., a TBox with ΣC,SUB ∪ ΣC,SUB = ∅, SUPELµ(t),ν (A) and SUBELµ(t),ν (A)
computed as stated in Definition 5 coincide with SUPEL(A) and SUBEL(A).

Theorem 1 (Termination). Let A ∈ NC . The computation of SUPELµ(t),ν (A) and SUBELµ(t),ν (A)
always terminates in at most exponential time.

Proof. We start with SUP(A) and show that the theorem holds for it. Assume that the
input is finite, i.e., T is finite and contains only finite concept descriptions.

1. Assume that ΣC,SUP = ∅. Algorithm 2 is called for each concept at least once. Since
Algorithm 2 itself only contains loops iterating on the input directly, it terminates,
if the input is finite and the call of SUPF(A′, A) for each A′ ocurring in the cor-
responding axioms terminates with a finite result. We can show by induction that
Algorithm 2 terminates for an arbitrary concept A:

– If A does not depend on other concepts as stated in Algorithm 2, the result is
empty and the algorithm terminates without any processing.

– If A only depends on concepts A′ from Σ as stated in Algorithm 2, SUPF(A′)
returns A′ itself for each A′ and the algorithm terminates.

– If A only depends on concepts A′ from Σ or concepts B′, for which SUPF(B′)
terminates with a final result.

2. Now assume that ΣC,SUP , ∅. SUPF encapsulates all concepts in ΣC,SUP into a single
computational unit with incoming edges from concepts referencing any concept in
ΣC,SUP and outgoing edges to concepts referenced from any concept in ΣC,SUP. These
two sets of referencing and references concepts are disjoint by definition, i.e., if a
concept directly or indirectly references ΣC,SUP, it is not referenced from ΣC,SUP.
This simplifies the overall computation as follows:

– On the one hand, we can first compute N(A) for all A ∈ ΣC,SUP and then consider
SUPS (A, B) for all B referencing ΣC,SUP as another case, in which no further
computations are required and Algorithm 2 terminates for B.

– On the other hand, we can compute N(A) for all A ∈ ΣC,SUP independently
from concepts referencing ΣC,SUP by just considering dependencies to concepts
in ΣC,SUP and concepts not referencing ΣC,SUP. In this case, either B ∈ ΣC,SUP and
the corresponding concept variable is returned, or the computation of SUP(B)
is acyclic and terminates as shown for acylcic terminologies.

Since the structure of SUBF and SUPF is analogous and SUBS also only contains
loops iterating on the finite input directly, the argumentation for SUB is identical. The
exponential time is due to the complex conjunction constructs introduced in line 3 of
Algorithm 1. ut

Theorem 2 (Correctness SUP and SUB). Let A ∈ NC . The computed SUPELµ(t),ν (A) and
SUBELµ(t),ν (A) satisfy the conditions stated in Definition 2.

The proof of this theorem is the Section A of the appendix.

Theorem 3 (UI). Let SUP(A) and SUB(A) be computed according to Definition 5. Then,
UI(T , Σ) is an ELµ(t),ν TBox, which always exists and it holds that UI(T , Σ) ≡c

Σ T .

The proof of this theorem is the Section B of the appendix.



8 Existence of UI in EL

Clearly, if SUPELµ(t),ν (A) and SUBELµ(t),ν (A) coincide with SUPEL(A) and SUBEL(A) for all
A ∈ NC , in other words, if T does not contain pure Σ cycles, a UI in EL exists. This
would be a sufficient, but not necessary criterion for the existence of a UI. From Defini-
tion 3, we can deduce a very general form of criterion requiring the deductive closure of
any UI2 to contain an (arbitrary) finite EL justification for the set of all non-EL axioms
in the UI(T , Σ). Interestingly, if SUB and SUP are computed using Algorithms 1 and
2, this criterion can be easily checked, since it is equivalent to a very simple criterion,
which is an immediate consequence of the following theorem:

Theorem 4 (Existence). Let UIEL(T , Σ) be the subset of UI(T , Σ) containing exactly
the EL axioms of UI(T , Σ). LetT ′ be an EL TBox with sig(T ′) ⊆ Σ such thatT ′ ≡c

Σ T .
Then UIEL(T , Σ) ≡ T ′.

The theorem claims that, if a finite EL justification for the set of all non-EL axioms
in UI(T , Σ) exists, it is already a subset of it. Subsequently, a UI of T w.r.t. Σ in EL
exists, iff UIEL(T , Σ) |= UI(T , Σ). The proof of this theorem is based on the following
ideas. First, note that given the form of non-EL concepts present in SUPELµ(t),ν and
SUBELµ(t),ν , there is no finite way to express a non-EL axiom by the means of EL and
Σ without introducing new consequences or losing some consequences. To see this,
consider the concepts C1 = µX.(A t ∃r.X) and C2 = νX.(A u ∃r.X) , which are the
simplest possible non-EL concepts in SUBELµ(t),ν and SUPELµ(t),ν , respectively, in case of
a normalized TBox T . There is no equivalent EL concept for C1 or C2, but there might
be a superconcept of C1 or a subconcept of C2, which is an EL concept. For this reason,
the deductive closure of a UI can only contain a finite EL justification for C1 v C′1,
where C′1 is an arbitrary concept, if there is a more general EL concept C′′1 such that
UIEL(T , Σ) |= C′′1 v C′1, where UIEL(T , Σ) is the EL subset of UI(T , Σ). Analogously,
the deductive closure of a UI contains a finite EL justification for C′2 v C2, where
C′2 is an arbitrary concept, only if there is a more specific EL concept C′′2 such that
UIEL(T , Σ) |= C′2 v C′′2 . We summarize these thoughts in the following lemma, which
is proved in Section C of the appendix.

Lemma 2. Let T ′ be an EL TBox with sig(T ′) ⊆ Σ such that T ′ ≡c
Σ T . Further, let

A ∈ ΣC,SUP ∪ ΣC,SUB with C1 ∈ SUB(A) and C2 ∈ SUP(A). Then there is an EL concept
C′ such that

– T 6|= C′ ≡ C1 and T 6|= C′ ≡ C2
– UI(T , Σ) |= C1 v C′ and UI(T , Σ) |= C′ v C2.

Second, since {C1 v C′,C′ v C2} |= C1 v C2 and any minimal justification of
{C1 v C′,C′ v C2} in UI(T , Σ) does not contain C1 v C2, it holds that UI(T , Σ) \ {C1 v

C2} |= C1 v C2. Therefore, if T ′ exists, each non-EL axiom is redundant, i.e., it
could be removed from UI(T , Σ) without losing any consequences. In order to prove
Theorem 4, we additionally have to show that the dependencies between the axioms
in UI(T , Σ) \ UIEL(T , Σ) do not lead to a loss of equivalence between UI(T , Σ) and

2 The deductive closure is the same for any UI by definition.



UIEL(T , Σ). This step is required, since in general it does not hold that T \ {α, β} |= T
if T \ {α} |= T and T \ {β} |= T due to possible dependencies between α and β. For
the same reason, there can be different possibilities to eliminate redundancy in a TBox.
We now consider which kind of redundancy is possible in UI(T , Σ). By the means of
the functions REDUCE and REDUCEC we have ensured that the sets SUPELµ(t),ν (A) and
SUBELµ(t),ν (A) do not contain any redundancy. Therefore, it remains to consider the con-
struction of UI(T , Σ) using SUP(A) and SUB(A) for A ∈ NC as stated in Definition 3.
From the definition of MGS and MSS follows that the sets M1,M2 in Definition 3 cannot
be redundant if the sets SUPELµ(t),ν (A) and SUBELµ(t),ν (A) contain only incomparable ele-
ments. Therefore, it remains to consider the redundancy introduces during the construc-
tion of M3. We denote by PΣ = {(C1,C2)| there is A ∈ Σ s.t. C1 ∈ SUB(A),C2 ∈ SUP(A)}
the set of all concept pairs relevant for the construction of M3 and the subset of PΣ con-
taining the “redundant” concept pairs by R = {(C1,C2) ∈ PΣ |UI(T , Σ) \ {C1 v C2} |=

C1 v C2}. I.e., R is the set of concept pairs that are potentially nonessential for the
construction of a UI due to entailment of the corresponding inclusion axiom by the re-
mainder of a UI if the axiom itself is omitted. Due to possible dependencies between
the elements of R, there may be several different maximal subsets M of R such that
UI(T , Σ) \ {C1 v C2|(C1,C2) ∈ M} |= UI(T , Σ). We denote the set of all such maximal
subsets of R as RMAX = {M|M ⊆ R, UI(T , Σ) \ {C1 v C2|(C1,C2) ∈ M} |= UI(T , Σ),
for all (C′1,C

′
2) ∈ PΣ \ M holds UI(T , Σ) \ ({C′1 v C′2} ∪ {C1 v C2|(C1,C2) ∈ M}) 6|=

UI(T , Σ)}. The next lemma states that if a concept pair with at least one non-EL concept
is contained in one set M ∈ RMAX, it is contained in all M ∈ RMAX.

Lemma 3. Let A ∈ ΣC,SUP ∪ ΣC,SUB with C1 ∈ SUB(A) and C2 ∈ SUP(A). Further let
M′ ∈ RMAX such that (C1,C2) ∈ M′. Then for each M ∈ RMAX holds (C1,C2) ∈ M.

The proof of this theorem is the Section C of the appendix. Note that all concept
pairs with at least one non-EL concept are contained in the intersection of RMAX, iff
UIEL(T , Σ) ≡ T ′. As a consequence of the above two lemmas and the fact that for
any (C1,C2) ∈ R there exists at least one M ∈ RMAX, it is sufficient to check whether all
concept pairs with at least one non-EL concept are contained in R to determine whether
the T ′ in Theorem 4 exists.

9 Summary

In this paper, we provided ExpTime algorithms for computing uniform interpolants of
general EL terminologies preserving all EL concept inclusions for a particular signa-
ture based on the notion of most general subconcepts and most specific superconcepts.
We showed that such interpolants can always be expressed in logic ELµ(t),ν—an ex-
tension of EL with least fixpoint and greatest fixpoint constructors µ, ν as well as the
disjunction used only on the left-hand side of concept inclusions. We also stated the
exact existence criteria for an EL interpolant and showed how it can be obtained from
the corresponding interpolant expressed in ELµ(t),ν.
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A Proof of Theorem 2

The algorithms presented in this paper are based on Proof Theory. The used Gentzen-
stile proof system shown in Fig. 2 has been derived analogously to the proof system for
Horn-SHIQ terminologies presented in [7]. In principle, the proof system by Kazakov
can also be used in the subsequent proofs, however it requires a different normalization
(e.g., encoding all ∃r.A v B as A v ∀r−.B), which we prefer not to use for simplicity
reasons. Instead, we derive rules fitting our normal form. The proof system is sound and
complete for classification in logic ELH r

ran, which is a Horn-extension of EL by role
inclusions and the range operator ran. For a role r, ran(r) can be used in concept inclu-
sion axioms in addition to the already introduced EL constructs. the reason for the proof
system being complete for ELH r

ran is the planned extension of the presented forgetting
approach to ELH r

ran in future work. Since the proof system is complete for classifi-
cation, an arbitrary subsumption between two non-atomic concepts is entailed by the
TBox T , if it is derivable in the presented proof system after the corresponding defini-
tion for the non-atomic concept on the left- and the right-hand side of the subsumption
has been added to the TBox. It is easy to see that adding a definition for a concept
description C with sig(C) ∈ sig(T ) by introducing a fresh concept symbol yields a con-
servative extension of T . In the following, we denote the resulting TBox after inserting
a definition for a concept C or a set M of concepts into T and applying the normaliza-
tion to it as EXT(T ,C) and EXT(T ,M), respectively. SYM(C) denotes the corresponding
fresh concept symbol introduced to define C and DEF(C) denotes the concept D such
that SYM(C) ≡ D ∈ EXT(T ,C). Note that DEF(C) is not necessarily syntactically equiv-
alent to C due to normalization. We further denote the set of all fresh concept symbols
introduced by the latter extension of T as ND = sig(EXT(T ,C))/sig(T ). Moreover, ./
denotes one of {v,≡}. Until further notice, we use NC and N+

C to refer to the signature
of T (not the signature of EXT(T ,C)).

Lemma 4 (Soundness and Completeness). Let T be a normalized ELH r
ran TBox,

A, B ∈ NC . Then T |= A v B, iff T ` A v B.

Proof. While the soundness of the proof system (if-direction) is readily checked for
each rule, the proof of completeness is more sophisticated. In order to show the only-
if-direction of the lemma, we assume for any A, B that T ` A v B does not hold
and construct a model of T , in which there is an individual a ∈ AI/BI. The model is
constructed analogously to [1]:

– ∆I := {A u ran(r)|A ∈ N+
C , r ∈ NR} ∪ {∗}

– AI := {B u ran(r) ∈ ∆I|T ` B u ran(r) v A, r ∈ NR} ∪ {∗}

– rI := {(A u ran(r j), B u ran(ri)) ∈ ∆I × ∆I|T ` A v ∃r.B, ri v r ∈ T , r j ∈

NR} ∪ {(∗, A u ran(ri)) ∈ ∆I × ∆I|ri v r ∈ T }

The given interpretation is a model of T , since it satisfies all its axioms:

– B1 v B2 ∈ T are satisfied, since for each Au ran(r) ∈ BI1 holds T ` Au ran(r) v B1

and, therefore A ∈ BI2 due to the rule GCI. To see this, consider the antecedent
T ` A u ran(r) v B1, B2 v B2 and the consequence T ` A u ran(r) v B2.



C v C
(Ax)

C v >
(AxTop)

D v E
C u D v E

(AndL)

C v E C v D
C v D u E

(AndR)

C v D1 D2 v D
C v D

(GCI) where D1 ./ D2 ∈ T

C v ∃r1.D ran(r2) v D1

C v ∃r1.(D u D1)
(Ran) where r1 v r2 ∈ T

C v ∃r1.D1 D1 u ran(r1) v D2 ∃r2.D2 v D
C v D

(Dom)

ran(r2) v D
ran(r1) v D

(RanSub) where r1 v r2 ∈ T

Fig. 2. Gentzen-style proof system for normalized ELH r
ran terminologies in the presence of GCIs.

– A1 ≡ B1 u ... u Bn ∈ T are satisfied, since for each direction, A1 v B1 u ... u Bn

and B1u ...u Bn v A1 holds the same condition as above. For each Au ran(r) ∈ AI1
holds A u ran(r) ∈ (B1 u ... u Bn)I again due to the rule GCI. For the direction
A u ran(r) ∈ (B1 u ... u Bn)I implies A u ran(r) ∈ AI1 , we first obtain A u ran(r) ∈
BI1 ∩ ...∩BIn , which implies T ` Au ran(r) v B1, ..., Au ran(r) v Bn. By rule AndR,
we obtain T ` Au ran(r) v B1u ...u Bn, and by GCI follows T ` Au ran(r) v A1.
By definition of I, A u ran(r) ∈ AI1 .

– B1 ≡ ∃r.B2 ∈ T is shown for each direction as follows. First, recall that (∃r.B2)I =

{a|(a, b) ∈ rI, b ∈ BI2 }. The argumentation for the direction BI1 ⊆ (∃r.B2)I is as
above. Using the rule GCI we obtain T ` A u ran(r) v ∃r.B2, from which we
conclude that (Auran(r), B2uran(r)) ∈ rI, and since B2uran(r) ∈ BI2 by definition,
we obtain A u ran(r) ∈ (∃r.B2)I. For the opposite direction, we first conclude from
C ∈ (∃r.B2)I that there is B u ran(r) ∈ BI2 such that (C, B u ran(r)) ∈ rI. These
conclusions imply that T ` C v ∃r.B and T ` B u ran(r) v B2. Given that
B1 ≡ ∃r.B2 ∈ T , we can first obtain T ` ∃r.B2 v B1 and then employ the rule Dom
to obtain T ` C v B1. From the definition of I follows C ∈ BI1 .

– r1 v r2 ∈ T follows from the definition of rI. If there are (C, Bu ran(r1)) ∈ rI1 , then
T ` C v ∃r1.B. After the application of Dom, we obtain T ` C v ∃r2.B, and, by
the definition of I, (C, B u ran(r1)) ∈ rI2 .

– A ≡ ran(r) ∈ T is shown analogously to B1 ≡ ∃r.B2 ∈ T for each direction.
Assume that A1 u ran(r1) ∈ AI, i.e., T ` A1 u ran(r1) v A. By rule GCI we again
obtain T ` A1 u ran(r1) v ran(r), and, by the definition of rI, (∗, A1 u ran(r1)) ∈
rI. Recall that ran(r)I = {b|(a, b) ∈ rI}. Therefore, also A1 u ran(r1) ∈ ran(r)I.
For the opposite direction, note that using AndL and RanS ub, we can obtain from
T ` ran(r) v A the consequence A′ u ran(ri) v A with an arbitrary A′ and ri v r.



Since ran(r)I only contains elements of the form A′ u ran(ri) with ri v r, and, by
definition, AI contains all elements A′ u ran(ri) such that T ` A′ u ran(r) v A and
ri v r, it is easy to see that all elements of ran(r)I are subsumed by AI. ut

Lemma 5 (Cut Elimination). Let T be a normalized ELH r
ran TBox, C1,C2 and C3

ELH
r
ran concepts. If T ` C1 v C2 and T ` C2 v C3, then also T ` C1 v C3.

The proof is standard, and is structurally equivalent to that in [6].
For the subsequent theorems concerning the properties of SUB, we introduce the

following auxiliary function Pre : NC : 22NC , which allows us for any atomic concept
A to refer to all its subconcepts of a particular form, namely a conjunction of a minimal
required set of NC concepts. For each such conjunction, the set of its conjuncts is an
element of Pre.

Definition 6. Let T be an ELH r
ran TBox and A ∈ NC . Pre(A) is the smallest set with

the following properties:

– {A} ∈ Pre(A).
– For each M ∈ Pre(A) and each B ∈ M, if there is B ≡ B1 u ... u Bn ∈ T , then also

(M/{B}) ∪ {B1, ..., Bn} ∈ Pre(A).
– For each M ∈ Pre(A) and each B ∈ M, if there is T |= B′ v B, then also (M/{B})∪
{B′} ∈ Pre(A).

Note that the sets M ∈ Pre(A)/{{A}} do not contain A, since no equivalent NC concepts
are present in normalized terminologies. Therefore the dependencies between NC con-
cepts corresponding to Pre are acyclic. The concepts constructed by conjunction from
the sets M ∈ Pre(A)/{{A}} can be elements of the set constructed in line 3 of Algorithm
1. However, since the construction depends on Σ, and there are also concept definitions
of the form ∃r.B, they are not the only possible elements of this set.

In the following, we will make use of the limited interaction between concepts in
NC and concepts in ND stated in the next lemma.

Lemma 6. LetT be an ELH r
ran TBox and C an ELH r

ran concept with sig(C) ⊆ sig(T ),
but not syntactically present in T . Let B′ ∈ ND. Then

1. Each sequent of the form C v B′, which has B′ v B′ as a direct antecedent, is either
a result of AndL such that C = C′ u B′, or a result of GCI w.r.t. B′ ≡ DEF(B′) ∈
EXT(T ,C).

2. Each sequent of the form B′ v C, which has B′ v B′ as a direct antecedent, is either
a result of AndR such that C = C′ u B′, or a result of GCI w.r.t. B′ ≡ DEF(B′) ∈
EXT(T ,C).

Proof. Note that concepts in ND are only allowed one definition and occur only within
definitions of other concepts from ND. Therefore, the interaction between concepts in
NC and concepts in ND is limited to the interaction between their definitions and NC .
The only rules that admit the above form of antecedent and consequence are in case of
C v B′ AndL, which requires the consequence to have a conjunction on the left-hand
side, and GCI, in which case the only axiom that could be used for the rule application



is B′ ≡ DEF(B′) ∈ EXT(T ,C). In case of B′ v C, the situation is equivalent, except that
AndR instead of AndL is the applied rule. ut

In the following, we consider only proofs with a minimal proof tree, i.e., proof tree
not containing any sequent twice on the same path. A direct consequence of the above
lemma and the fact that concepts in ND are only allowed one definition and occur only
within definitions of other concepts from ND is the following theorem applying to finite
minimal proofs.

Theorem 5. Let T be an ELH r
ran TBox and C an ELH r

ran concept with sig(C) ⊆
sig(T ), but not syntactically present in T . Let A ∈ ND. Then the following sequents are
not derivable without an application of the rule GCI w.r.t. A ≡ C′ ∈ EXT(T ,C):

1. A v ∃r.D,
2. A v A′,
3. ∃r.D v A,
4. A′ v A,
5. A v

�
1≤i≤n A′i ,

6. A′′ v A,

where A′ ∈ NC , A′i ∈ NC ∪ ND, r ∈ NR,D and ELH r
ran concept, and A′′ ∈ ND such that

the rule GCI w.r.t. A′′ ≡ C′′ ∈ EXT(T ,C) is not part of the proof for A′′ v A.

Proof. We show the proof for the first statement by induction on the proof length. As-
sume that EXT(T ,C) ` A v ∃r.D. Then rules Dom,Ran and GCI could be the last
applied rules. If Dom was the last applied rule, then A v ∃r′.D′ for some r′ and
D′ has also a proof. If for the derivation of A v ∃r′.D′ an application of GCI w.r.t.
A ≡ C′ ∈ EXT(T ,C) was required, then also for the derivation of A v ∃r.D. If Ran
was the last applied rule, then the theorem also follows from the induction hypothesis,
since A v ∃r′.D′ for some r′ and D′ is again a sequent before the application of the
rule. If GCI w.r.t. B ≡ C′ ∈ EXT(T ,C) for some concept B was the last applied rule, the
sequent before the application was one of the following:

– A v B. Ax,GCI and Dom could be the last applied rules. If Domwas the last applied
rule, then A v ∃r′.D′ for some r′ and D′ has also a proof and the theorem follows
from the induction hypothesis. If Ax was the last applied rule, then B = A and
therefore, the application of GCI w.r.t. A ≡ C′ ∈ EXT(T ,C) took place. If GCI was
the last applied rule, then the situation is the same as above and, since the proof is
finite, one of the discussed cases will occur.

– A′ v DEF(B). If DEF(B) = ∃r′.D′ for some r′ ∈ NR and D′ ∈ NC ∪ ND, the theorem
follows again from the induction hypothesis. If DEF(B) =

�
1≤i≤n B′i for B′i ∈ NC ∪

ND, then, additionally AndR is applicable. The sequents before its application had
the form A v B′i . If B′i = A, then Ax is applicable. However there must be also other
concepts in

�
1≤i≤n B′i , since concepts from ND do not occur in non-equivalence

axioms and equivalence axioms with one atomic concept on both sides do not occur
in normalized terminologies. For this reason, there will be also at least one concept
B′i , A and the sequent A v B′i must also have a proof. The other rules applicable
are GCI and Dom, however the situation is the same as discussed and, therefore, the
theorem follows from the induction hypothesis.



The correctness of the remaining statement can be shown analogously.

Theorem 6. Let T be an ELH r
ran TBox and C an ELH r

ran concept with sig(C) ⊆
sig(T ) such that

C =
�

1≤ j≤n

A j u
�

1≤k≤m

∃rk.Dk

Further let A ∈ ND and assume that DEF(C) =
�

1≤ j≤n A j u
�

1≤k≤m A′k with A′k ∈
ND, A′k ≡ ∃rk.D′k ∈ EXT(T ,C), where D′k is either in NC or in ND. Further, assume
EXT(T ,C) ` SYM(C) v A. Then one of the following is true:

1. There is A′k = A.
2. Rule GCI w.r.t. A ≡ C′ ∈ T is part of the proof.

Proof. We show this theorem by induction on the length of the proof. Only GCI,AndL,Dom
could be the last applied rules within a proof of the sequent SYM(C) v A. If Dom was
the last applied rule, then ∃r.D v A for some r and D also has a proof. Due to lemma
6, GCI w.r.t. A ≡ C′ ∈ EXT(T ,C) is part of the proof. If AndL was the last applied rule
and the sequent before the application has the same form,i.e., the left-hand side is a con-
junction, then the theorem follows from the induction hypothesis. Otherwise, if A′ is the
only remaining conjunct and it is in NC , by Lemma 6, GCI w.r.t. A ≡ C′ ∈ EXT(T ,C) is
part of the proof. If A′ is not in NC , only GCI,Ax,Dom could be the last applied rules.
If Dom was the last applied rule, then the situation is as above and condition 2 is true.
Ax requires that A′ = A, which corresponds to condition 1. In the case of GCI w.r.t.
B ≡ C′ ∈ EXT(T ,C) for some concept B, the sequent before the application was one of
the following:

– A′ v B, DEF(B) v A. If DEF(B) = ∃r.D for some R ∈ NR and D ∈ NC ∪ ND, then
by Lemma 6, GCI w.r.t. A ≡ C′ ∈ EXT(T ,C) is part of the proof for the sequent
∃r.D v A. If DEF(B) =

�
1≤i≤n B′i for B′i ∈ NC ∪ ND, i follows from the induction

hypothesis, that either condition 2 is true, in which case also the theorem is true for�
1≤i≤m+n A′i v A, or there is B′i = A. In the latter case, B′i corresponds to one of

A′k. This is due to the fact that for A′ v B also applies the induction hypothesis and
either there is A′k = B, in which case the only definition for B has the form ∃rk.D′k
which contradicts with the previous assumption about B, or the condition 2 holds
for A′ v B, in which case the proof is not minimal or not final.

– A′ v DEF(B), B v A. The theorem follows from the last statement of Lemma 5
(that GCI w.r.t. at least one of the definitions DEF(B), DEF(A) is required) and the
assumption that the proof is minimal and final.

If GCI was applied w.r.t. B ≡ C′ ∈ EXT(T ,C) for some concept B, then the situation is
the same as above, when A′ is the only remaining conjunct and GCI was the last applied
rule. ut

Theorem 7. Let T be a normalized ELH r
ran TBox, rk ∈ NR, A and A j ∈ NC , C an

ELH
r
ran concept, Dk for 1 ≤ k ≤ m a set of ELH r

ran concepts. Assume that

C =
�

1≤ j≤n

A j u
�

1≤k≤m

∃rk.Dk

and T |= C v A. Then at least one of the following conditions is true:



(A1) There is A j such that T |= A j v A
(A2) There is a subset M of {A j|1 ≤ j ≤ n} such that A ≡

�
A j∈M A j ∈ T .

(A3) There are rk,Dk and there exist r′ ∈ NR, B′ ∈ NC such that T |= rk v r′, T |=
Dk u ran(rk) v B′ and A ≡ ∃r′.B′ ∈ T .

(A4) There is a set of NC concepts M ∈ Pre(A)/{{A}} such that for each B′ ∈ M holds�
1≤ j≤n A j u

�
1≤k≤m ∃rk.Dk v B′ and at least one of the conditions [A1]-[A3] holds

w.r.t. B′ and the latter inclusion axiom.

Proof. If T |= C v A, then EXT(T ,C) ` DEF(C) v A. We consider all rules, that could
have been the last rule applied in order to obtain the above sequent and show by induc-
tion on the length of the proof that, in each case, at least one of [A1]-[A4] is true. Rules
AxTop,AndR,Ran do not allow for a concept from NC on the right-hand side. In case of
the rules Ax and RanSub, the condition [A1] is an immediate consequence. It remains to
consider the rules AndL,Dom and GCI. If DEF(C) is a conjunction

�
1≤ j≤n+m B j, AndL

could be the last applied rule. If one of the theorem conditions is true for the antecedent,
it is also true for the consequence, since T |=

�
1≤ j≤n+m B j v

�
1≤ j≤n+m−1 B j and all B j

from the smaller conjunction are in DEF(C) as well.
If GCI w.r.t. C′1 ≡ C′2 ∈ EXT(T ,C) for some concept C′1,C

′
2 was the last applied rule,

then one of C′1,C
′
2 has to be atomic in normalized TBoxes. Assume that C′1 is atomic.

If C′1 is in ND and the proof is assumed to be final and minimal, then by Theorem 5, it
can only be one of B j. In this case, C′2 = ∃rk.SYM(Dk), and if condition [A3] or [A4]
holds for ∃rk.SYM(Dk) v A, it also holds for C v A. Note that ∃rk.SYM(Dk) v A is a
special case of the theorem, in which a subset of rules applicable to obtain the sequent
DEF(C) v A could be the last applied rule. Therefore, it follows from the induction
hypothesis, that one of the condition [A3] or [A4] holds for ∃rk.SYM(Dk) v A.

If C′1 ∈ NC , then for DEF(C) v A holds [A4], if for DEF(C) v C′1 holds one of the
four conditions. If C′2 is atomic but not C′1, it cannot be in ND by Theorem 5. One of the
following was the sequent before the application of the rule:

– DEF(C) v ∃r.D,C′2 v A for some r ∈ NR and D ∈ NC ∪ ND, then, in addition to
the rules AndL,Dom and GCI, Ran could be the last applied rule. In this case, if
one of the theorem conditions [A3] or [A4] w.r.t. C′2 holds for DEF(C) v ∃r.D′ with
D′ = D u ran(r), then they also hold for DEF(C) v ∃r.D w.r.t. C′2, in which case
[A4] holds for DEF(C) v A, since Pre(C′2) ⊆ Pre(A).

– DEF(C) v
�

1≤i≤n B′i ,C
′
2 v A for B′i ∈ NC ∪ ND. In this case, AndR could be the

last applied rule, in addition to three rules applicable for the original sequent. If
AndR was the last applied rule, then [A4] holds for DEF(C) v A, if for each sequent
DEF(C) v B′i holds one of [A1]- [A4], since Pre(B′1) × ... × Pre(B′n) ⊆ Pre(A).

If Dom was the last applied rule, then the sequents before the rule application were
DEF(C) v ∃r1.D1, ran(r1) u D1 v D2,∃r2.D2 v A. For the last sequent, [A3] or [A4]
hold for ∃r2.D2 v A by the induction hypothesis. Since r1 v r2 ∈ T and EXT(T ,C) `
ran(r1) u D1 v D2, the same condition holds also for ∃r1.D1 v A. If DEF(C) consists
only of a single Ak and EXT(T ,C) ` DEF(C) v ∃r1.D1 was derived using only GCI
w.r.t. DEF(Ak) and Ran,Dom, then the same condition holds for DEF(C) v A, since in
this case rk v r1 ∈ T and T |= ran(rk) u Dk v D1. Otherwise, GCI was applied w.r.t.
DEF(A′) for some A′ ∈ NC for the same reasons as already discussed in case on GCI. In



this case, [A4] holds for DEF(C) v A, since from the induction hypothesis follows that
one of [A1]- [A4] holds for DEF(C) v A′ and Pre(A′) ⊆ Pre(A). ut

Before we can prove the correctness of computing MGS, we introduce the following
structure, which is used as a basis for the induction in the subsequent proof. In the
following, we denote the set of sequents of a proof p as S (p) and the subset of S (p)
containing only sequents of the form C v A for A ∈ NC and an ELH r

ran concept C as
S ′(p). We refer to the right-hand side concept of a sequent b as Right(b).

Definition 7. Let T be an ELH r
ran TBox, A ∈ NC and C an ELH r

ran concept. Further
let p be a proof for a sequent a = C v A. The corresponding RPG(p) is a tuple (N, E)
with the set of nodes N ⊆ S ′(p) and the set of edges E ⊆ S ′(p) × S ′(p). We further
distinguish the elements of E into elements of EA3 and elements of EA4, which are
disjoint subsets of E. N and E are minimal sets with the following properties:

– a ∈ N.
– For each b ∈ N and each c ∈ S ′(p) such that for b holds condition [A3] from

Theorem 7 w.r.t. c holds: c ∈ N and (b, c) ∈ EA3.
– For each b ∈ N and each M ∈ Pre(Right(b)) such that for b holds condition [A4]

from Theorem 7 w.r.t. M holds: c ∈ N and (b, c) ∈ EA4,M for each c ∈ M.

While the RPG(p) contains all possible dependencies, we are interested in tree-shaped
subgraphs of RPG(p) not containing any proper subsets of edge sets EA4,M , but always
containing at least one outgoing edge, if a sequent does not fulfill [A1] or [A2].

Definition 8. Let T be an ELH r
ran TBox, A ∈ NC and C an ELH r

ran concept. Further
let p be a proof for a sequent a = C v A and (N, E) the corresponding RPG(p). A tree
with the set of nodes NT ⊆ N and the set of edges ET ⊆ E is a RP-tree (Reverse Proof
tree), if NT and ET are minimal sets such that a ∈ NT and for each b ∈ NT either one
of [A1] and [A2] holds and {(b, b′)|(b, b′) ∈ ET } = ∅, or exactly one of the following
holds:

– There is b′ ∈ NT such that (b, b′) ∈ ET,A3.
– There is M ∈ Pre(Right(b)) such that b′ ∈ NT and (b, b′) ∈ ET,A4,M for each

b′ ∈ M.

Now we state that for each proof for a sequent of the form C v A for A ∈ NC and
an ELH r

ran concept C there exists such a tree.

Lemma 7. Let T be an ELH r
ran TBox, A ∈ NC and C an ELH r

ran concept. Further let
p be a proof for a sequent a = C v A and (N, E) the corresponding RPG(p). Then there
exists a finite RP-tree such that for each (a, b) ∈ ET holds that b occurs in p before a.

We can now prove the first part of Theorem 2.

Theorem 8. Let SUBELµ(t),ν (A) be computed as stated in Definition 5. Then the following
holds:

– For each C′ ∈ SUBELµ(t),ν (A) holds sig(C′) ⊆ Σ;
– For each A ∈ NC and each EL concept C with T |= C v A and sig(C) ⊆ Σ there is

a concept C′ such that T |= C v C′ and MGS(A) = C′ tC′′ for some concept C′′ .



Proof. To prove this theorem, we consider the general concept C =
�

1≤ j≤n A ju
�

1≤k≤m ∃rk.Dk

with A j ∈ NC , rk ∈ NR and assume that sig(C) ⊆ Σ and T |= C v A. We consider the
elements of SUBS (B), which, in case B ∈ ΣC,SUB, are used to compose the quantified
fixpoint concept M(B), and, otherwise, coincide with the elements of SUB(B). If MGS
contains fixpoint concepts, then it can be represented by an infinite disjunction of EL
concepts which has the same semantics. We show the correctness of the above theorem
by iterating through the cases discussed in Theorem 7. We use induction on the depth
of the corresponding RP-tree. According to the definition of RP-trees, each node a is
a leaf, has one outgoing edge from ET,A3, or has the complete set of outgoing edges
ET,A4,M for a particular M ∈ Pre(ARight(a)). First, we show that, for sequents fulfill-
ing one of the conditions [A1] and [A2], i.e., the leaves of the RP-tree, the theorem is
true.

(A1) There is A j such that T |= A j v A. In this case, A j is included into SUBS (A) in line
1, and therefore C′ = A with C v C′.

(A2) There is a subset M of {A j|1 ≤ i ≤ n} such that A ≡
�

Ai∈M Ai ∈ T . In this case,�
Ai∈M Ai is included into SUBS (A) in line 3, which implies that C′ =

�
Ai∈M Ai and

C v C′.

Now we assume that a = C v A is a sequent within the RP-tree and the theorem is
true for all its successor sequents. Assume that a has an outgoing ET,A3-edge to b =

Dk u ran(rk) v D′′, i.e., there are rk,Dk and there exist r′,D′ such that T |= rk v r′,
T |= Dk u ran(rk) v D′ and A ≡ ∃r′.D′ ∈ T . Then, the theorem is also true for a
for the following reasons. If A ≡ ∃r′.D′ ∈ T and ∃r′.D′ is a Σ concept, it is included
into SUBS (A) in line 6, which implies that C′ = ∃r′.D′ and C v C′. If ∃r′.D′ is not
a Σ concept, either r′ ∈ Σ or D′ is not a Σ concept or both. If r′ ∈ Σ, there is s with
T |= rk v s v r′ such that, according to line 6, {∃s.D′′|D′′ ∈ SUBF(D′)} ⊆ SUBS (A). If,
as assumed above, there is a D′′ ∈ SUB(D′) such that T |= Dk u ran(rk) v D′′, it holds
that T |= ∃rk.Dk v ∃s.D′′, since T |= rk v s. Subsequently, C′ = ∃s.D′′.

Assume that a has the complete set of outgoing edges ET,A4,M for a particular M ∈
Pre(A) and for each successor the theorem holds. Each element of Pre(A) is either
a NC concept B such that T |= B v A, or a conjunction of NC concepts which is
a direct definition of A or obtained from such a definition by replacing concepts by
their NC definitions or NC subconcepts. For NC concepts B, SUBF(B) , and therefore the
corresponding C′′ with T |= C v C′′ is directly included into SUBS (A) and corresponds
to C′. For NC concepts occurring within the NC definition of A, the conjunction of such
concepts C′′i is included in line 3 into SUBS (A), and therefore, C′ =

�
1≤i≤n C′′i . Since

the elements Mi of Pre(A) form a tree w.r.t. v-relation applied to the corresponding
concepts constructed from each Mi, we can show by induction that, if, for some Mi ∈

Pre(A) holds that there is a concept C′′i such that T |= C v C′′j for each B j ∈ Mi, then
there is also such a concept C′ with T |= C v C′, which is an element of the disjunction
MGS(A) due to line 1 or line 3. ut

Theorem 9. Let T be a normalized ELH r
ran TBox, rk ∈ NR, A ∈ NC and Dk,C ELH

r
ran

concepts. Assume that C = ∃rk.Dk and T |= A v C. Then there is B ∈ NC such that
T |= A v B and B ≡ ∃r′.D′ ∈ T for some r′ ∈ NR and D′ an ELH r

ran concept with
T |= r′ v rk and T |= ran(r′) u D′ v Dk.



Proof. We will make use of the limited interaction between concepts in NC and con-
cepts in ND to show that B ∈ NC . From the latter fact also follows that B ≡ ∃r′.D′ ∈ T ,
since the above extension of T does not allow new definitions for concepts in NC . In
the following, we use induction on the length of the proof. In principle, the last ap-
plied rule for deriving the sequent A v ∃rk.Dk could be any rule except AndR,AndL
and Ax,AxTop. First, we consider the rules Dom,RanSub, and Ran, that could be ap-
plied last to obtain EXT(T ,C) ` A v ∃rk.Dk. Assume that the condition of the theorem
holds for the antecedent. In case of RanSub, A = ran(r2). If we assume that the con-
dition was true for ran(r1) v ∃rk.Dk, then it is also true for ran(r2) v ∃rk.Dk, since
T |= ran(r2) v B. And in case of Ran, if we assume, that the condition holds for
A v ∃rk.D, then it also holds for A v ∃rk.Dk, since T |= ran(r′) u D′ v D implies
T |= ran(r′) u D′ v ran(r2) u D due to T |= ran(r′) v ran(r2). If Dom was the last
applied rule, then the condition holds, if either T |= r2 v rk and T |= ran(r2)uD2 v Dk

and the condition holds for the sequent A v ∃r1.D1, or for the sequent ∃r2.D2 v ∃rk.Dk

holds the corresponding condition, i.e., there is B ∈ NC such that T |= ∃r2.D2 v B
and B ≡ ∃r′.D′ for some r′ ∈ NR and D′ an ELH r

ran concept with T |= r′ v r1 and
T |= ran(r′) u D′ v Dk. The same situation appears also when the rule GCI is applied,
therefore we now consider GCI and the corresponding situation.

If GCI was the last applied rule, then the sequent before the application of the rule
was T ` A v D1 D2 v ∃rk.Dk. Note that in normalized TBoxes, at least one of
D1,D2 is an atomic concept. If D2 is atomic, then D2 ∈ NC due to Theorem 5 and
the assumed minimality of proofs, and the condition of the theorem holds, if it holds
for D2 v ∃rk.Dk. If D2 is atomic (and therefore also in NC) and D2 is of the form
∃r.D, then either T |= r v r1 and T |= ran(r) u D v Dk, in which case D1 is such a
concept B as required in the condition of the theorem, or the same condition holds for
T ` ∃r.D v ∃rk.Dk, i.e., there is B ∈ NC such that T |= ∃r.D v B and B ≡ ∃r′.D′ for
some r′ ∈ NR and D′ an ELH r

ran concept with T |= r′ v r1 and T |= ran(r′) u D′ v
Dk. The last rule applied to derive the sequent T ` ∃r.D v ∃rk.Dk could be one of
the rules GCI,Ran,Dom, which can be considered in the same way as for the sequent
A v ∃rk.Dk. Additionally, it could be Ax, in which case rk = r and Dk = D, and D1
again corresponds to the concept B specified in the condition of the theorem. If D2 is a
conjunction of atomic concepts

�
1≤i≤n Ai, then the conditions holds, if there is B ∈ NC

such that T |=
�

1≤i≤n Ai v B and B ≡ ∃r′.D′ for some r′ ∈ NR and D′ an ELH r
ran

concept with T |= r′ v r1 and T |= ran(r′) u D′ v Dk. In this case, also the same
rules could have been applied last except for RanSub, and additionally AndL. If AndL
was the last applied rule, and we assume that the condition holds for the antecedent�

1≤i≤n−1 Ai v ∃rk.Dk, then the condition also holds for
�

1≤i≤n−1 Ai u An v ∃rk.Dk,
since T |=

�
1≤i≤n−1 Ai u An v

�
1≤i≤n−1 Ai. ut

We can now prove the second part of Theorem 2.

Theorem 10. Let SUPELµ(t),ν (A) be computed as stated in Definition 5. Then the follow-
ing holds:

– For each C′ ∈ SUPELµ(t),ν (A) holds sig(C′) ⊆ Σ;
– For each A ∈ NC and each EL concept C with T |= A v C and sig(C) ⊆ Σ there is

a concept C′ such that T |= C′ v C and MSS(A) = C′ uC′′ for some concept C′′ .



Proof. To prove this theorem, consider the general concept C =
�

1≤ j≤n A ju
�

1≤k≤m ∃rk.Dk.
Then, T |= A v C, iff for each conjunct Ci of C holds T |= A v Ci. We consider the
elements of SUPS (B), which, in case B ∈ ΣC,SUP, are used to compose the quantified
fixpoint concept N(B), and, otherwise, coincide with the elements of SUP(B). If MSS
contains fixpoint concepts, then it can be represented by an infinite conjunction of EL
concepts which has the same semantics as MSS. If Ci is an element of NC , then according
to line 1, it is included into SUPS (A) and, therefore, corresponds to C′. If Ci = ∃rk.Dk,
then, by Theorem 9 , there is B ∈ NC such that T |= A v B and B ≡ ∃r′.D′ for some
r′ ∈ NR and D′ an ELH r

ran concept with T |= r′ v rk and T |= ran(r′) u D′ v Dk. If
B ∈ Σ, then B ∈ SUPS (A) and C′ = B. Otherwise, according to line 1, SUPS (A) contains
the elements of SUPS (B). In case of ΣC,SUP concepts, the corresponding variable X(B)
is a direct element of SUPS (A), which implies that all direct elements of SUPS (B) will
be elements of the infinite conjunction represented by SUP(A). If ∃r′.D′ is a Σ concept,
then C′ = ∃r′.D′. Otherwise, either r′ ∈ Σ or D′ is not a Σ concept or both. If r′ ∈ Σ,
there is s with T |= r′ v s v rk such that, according to line 6, ∃s.(

�
C′′∈CC′′) ∈ SUPS (A)

for C = {C′′ ∈ SUPF(B′)|T |= ran(r′) u D′ v B′}. Since T |= ran(r′) u D′ v Dk and
Dk ∈ Σ, Dk will be an element of C. Therefore, C′ = ∃s.(

�
C′′∈CC′′). ut

B Proof of Theorem 3

Lemma 8. Let C,D two EL concepts and r ∈ NR and assume that C =
�

1≤ j≤n A j u�
1≤k≤m ∃rk.Dk with rk ∈ NR, A j ∈ NC and Dk a set of EL concepts. T |= C v ∃r.D, if

one of the following conditions is true:

1. There are rk,Dk such that T |= rk v r and T |= ran(rk) u Dk v D.
2. There is B ∈ NC such that T |= C v B and T |= B v ∃r.D.

Proof. We use the extension EXT(T , {C,∃r.D}) and proof the theorem using the proof
system presented above by induction on the length of the proof. By Theorem 4, EXT(T , {C,∃r.D}) `
SYM(C) v SYM(∃r.SYM(D)). In the following, we denote EXT(T , {C,∃r.D}) asT ′, SYM(C)
simply with Cs, SYM(∃r.SYM(D)) with Ds and SYM(D) with D′.

The last rules applied to derive the sequent Cs v Ds could be Dom,GCI and Ax. In
case of Ax, condition 1 is an immediate consequence. In case of GCI w.r.t. C1 ./ C2 for
some concepts C1,C2, at least one of the concepts has to be atomic. If C1 is atomic and
C1 ∈ ND, then from Theorem 6 follows that it has to be one of Ak ≡ DEF(∃rk.Dk). In
this case, the theorem is true, since C2 = DEF(∃rk.Dk) and condition 1 or 2 for C2 v Ds

follows from the induction hypothesis. If condition 1 holds for C2 v Ds , then it also
holds for Cs v Ds, since T |= rk v r and T |= ran(r) u Dk v D. If 2 holds for C2 v Ds,
i.e., there is B with the corresponding properties, then it also holds that T |= Cs v B
and therefore, condition 2 holds. If C1 ∈ NC , C1 corresponds to B and the the theorem
is true.

If C2 is atomic, then from Theorem 6 follows that it can not be in ND, if we assume
that the proof is finite and minimal. If C2 ∈ NC , then the theorem is also true, since
T |= B v Ds.

If Dom was the last applied rule, then the two sequents Cs v ∃r1.D1,∃r2.D2 v Ds

have been derived before the rule application. From the induction hypothesis follows



that for each of the two sequents, one of the theorem conditions holds. If for both holds
1, then also for Cs v Ds, since r1 v r2 ∈ T and ran(r1)uD1 v D2 was the third sequent
derived before the application of Dom. If at least for one of the two sequents condition
2 holds, then it also holds for Cs v Ds, since Cs v B v Ds. ut

We now restate and prove the claim of Theorem 3.

Theorem 11. Let UI(T , Σ) be constructed as in Definition 3 using SUPELµ(t),ν (A) and
SUBELµ(t),ν (A). Then UI(T , Σ) ≡c

Σ T .

Proof. By definition, UI(T , Σ) ≡c
Σ T , if for all EL concepts C,D with sig(C)∪sig(D) ⊆

Σ holds T |= C v D, iff UI(T , Σ) |= C v D. We start with the if-direction and consider
two general concepts C,D with sig(C) ∪ sig(D) ⊆ Σ. Assume that C =

�
1≤ j≤n A j u�

1≤k≤m ∃rk.Dk with rk ∈ NR, A j ∈ NC for 1 ≤ j ≤ n and Dk a set of EL concepts. If
D is a conjunction, then UI(T , Σ) |= C v D holds, iff for each conjunct Di of D holds
UI(T , Σ) |= C v Di.

If Di ∈ NC , then, by Definition 3, Ci v Di ∈ UI(T , Σ) for all Ci ∈ SUB
ELµ(t),ν (Di).

Therefore UI(T , Σ) |= MGS(Di) v Di. By Theorem 8 there is a concept C′ such that
T |= C v C′ and MGS(Di) = C′ tC′′ for some concept C′′. Therefore, also UI(T , Σ) |=
C v Di.

If Di < NC , but has the form ∃r′.D′ for some r′ ∈ NR and an EL concept D′ with
sig(D′) ⊆ Σ , then we can show by induction on the role depth of C that UI(T , Σ) |=
C v Di. If the role depth of C is 0, i.e., it does not contain any existential quantifiers,
then condition 2 of Lemma 8 holds, i.e., there is B ∈ NC such that T |= C v B v
∃r′.D′. If B ∈ Σ, then by Definition 3, C′ v D′ ∈ UI(T , Σ) for any C′ ∈ SUB(B) and
D′ ∈ SUP(B). By Theorems 8 and 10, there are such C′ and D′ with T |= C v C′ and
T |= D′ v ∃r′.D′. If T |= C v C′ implies UI(T , Σ) |= C v C′ and T |= D′ v ∃r′.D′

implies UI(T , Σ) |= D′ v ∃r′.D′, then also UI(T , Σ) |= C v ∃r′.D′. If B ∈ Σ, then
by Definition 3, C′ v B ∈ UI(T , Σ) for any C′ ∈ SUB(B) and B v D′ ∈ UI(T , Σ) for
any D′ ∈ SUP(B). Therefore, also in this case, UI(T , Σ) |= C v ∃r′.D′ if T |= C v C′

implies UI(T , Σ) |= C v C′ and T |= D′ v ∃r′.D′ implies UI(T , Σ) |= D′ v ∃r′.D′.
To see that UI(T , Σ) |= C v C′ for C′ ∈ SUB(B), we refer to Theorem 7, by which

either A1 or A2 holds for C v B, in which case UI(T , Σ) |= C v C′ is a direct con-
sequence of the inclusion axioms formed using SUB(B), or there is M ∈ Pre(B) such
that A1 or A2 holds for each Bi ∈ M. In the second case, we can easily determine the
corresponding M′ ∈ Pre(B) such that M′ ⊆ Σ and

�
A∈M′ A ∈ SUB(B) by replacing all

elements of M by their subconcepts or conjunctions until all elements are in Σ. Since
this corresponds to the procedure of Algorithm 1, we can set

�
A∈M′ A = C′, in which

case the statement UI(T , Σ) |= C v C′ is a direct consequence.
To see that UI(T , Σ) |= D′ v ∃r′.D′ for D′ ∈ SUP(B), we again refer to Lemma

8, in which again only condition 1 is possible. Since the signature of T is finite, there
is a finite set of atomic concepts Ai with 1 ≤ i ≤ n ordered by v such that T |= Ai v

Ai+1 v ∃r′.D′ for each i and there are r′′,D′′ such that ∃r′′.D′′ ∈ SUP(An) and for
∃r′.D′ v ∃r′.D′ holds A3 of Theorem 7. Then UI(T , Σ) |= B v An, from which follows
UI(T , Σ) |= B v ∃r′.D′ and UI(T , Σ) |= ∃r′.D′ v ∃r′.D′ is easy to see, since the role
hierarchy of UI(T , Σ) contains all role subsumptions for roles in Σ and it holds that
UI(T , Σ) |= r′′ v r′.



Now assume that the role depth of C is not 0. Then, by Lemma 8, also condition 1 is
possible, in which case there are rk,Dk such that T |= rk v r and T |= ran(rk)uDk v D′.
By induction hypothesis, UI(T , Σ) |= ran(rk)uDk v D′. Then also UI(T , Σ) |= C v Di,
since the role hierarchy contains all role subsumptions for roles in Σ and it holds that
UI(T , Σ) |= rk v r′. It remains to consider the case that the role depth of C is not 0
and the condition 2 of Lemma 8 holds. Here, we show by induction on the depth of the
corresponding RP-tree that UI(T , Σ) |= C v Di, the leaves of which are nodes Ak with
A1 or A2 of Theorem 7 applying to C v Ak. Assume that Di is such a leaf. Then one of
the following is the case:

(A1) There is A j such that T |= A j v Di, in which case also UI(T , Σ) |= A j v Di, since
A j v Di ∈ UI(T , Σ). Therefore, UI(T , Σ) |= C v Di.

(A2) There is a subset M of {A j|1 ≤ j ≤ n} such that Di ≡
�

A j∈M A j ∈ T . In this case,�
A j∈M A j v Di ∈ UI(T , Σ) and, therefore, UI(T , Σ) |= C v Di.

Now we assume that a=C′ v Di is a sequent within the RP-tree and the UI(T , Σ) |=
b is true for all its successor sequents b = C′′ v C′. Assume that a has an outgoing
ET,A3 edge to b = Dk u ran(rk) v D′′, i.e., there are rk,Dk and there exist r′,D′ such
that T |= rk v r′, T |= Dk u ran(rk) v D′ and A ≡ ∃r′.D′ ∈ T . Then also UI(T , Σ) |= a,
since the role hierarchy contains all role subsumptions for roles in Σ, therefore it holds
that UI(T , Σ) |= rk v r′.

Assume that a has the complete set of outgoing edges ET,A4,M for a particular M ∈
Pre(Di) and for each successor bk holds UI(T , Σ) |= bk. Each element of Pre(Di) is
either a NC concept B such that T |= B v Di, or a conjunction of NC concepts which
is a direct definition of Di or obtained from such a definition by replacing concepts by
their NC definitions or NC subconcepts.

For NC concepts B, SUBF(B) , and therefore the corresponding C′′ withT |= C v C′′

is directly included into SUBS (A) and corresponds to C′. For NC concepts occurring
within the NC definition of A, the conjunction of such concepts C′′i is included in line
3 into SUBS (A), and therefore, C′ =

�
1≤i≤n C′′i . Since the elements Mi of Pre(A) form

a tree w.r.t. v relation applied to the corresponding concepts constructed from each Mi,
we can show by induction that, if, for some Mi ∈ Pre(A) holds that there is a concept
C′′i such that T |= C v C′′j for each B j ∈ Mi, then there is also such a concept C′ with
T |= C v C′, which is an element of the disjunction MGS(A) due to line 1 or line 3.

For the only-if direction, is easy to see, that all inclusion axioms contained in
UI(T , Σ) are consequences of T . ut

C Proof of Lemmas 2 and 3

Lemma 2 follows directly from the following lemma:

Lemma 9. Let A ∈ ΣC,SUP ∪ ΣC,SUB, C1 ∈ SUB(A) and C2 ∈ SUP(A). Let T ′ be an EL
TBox with sig(T ′) ⊆ Σ such that T ′ ≡c

Σ T . Then there is a concept A′ ∈ NC \ {A} and
there are two EL concepts C′1 ∈ SUB(A

′) and C′2 ∈ SUP(A
′) such that T |= C1 v C′1 and

T |= C′2 v C2.



Proof. IfT ′ |= C1 v C2, then a consequence-driven classification of the TBox EXT(T ′, {C1,C2}

would yield SYM(C1) v SYM(C2). Since our proof system in Fig. 2 does not allow for
fixpoint constructs, we extend it with the following rules:

C v D1

C v D1 t D2
(OrR)

C(νX.C(X)) v νX.C(X)
(Gfp1)

µX.C(X) v C(µX.C(X))
(Lfp1)

νX.C(X) v C(νX.C(X))
(Gfp2)

C(µX.C(X)) v µX.C(X)
(Lfp2)

C(A) v A
µX.C(X) v A

(LfpA1)

A v C(A)
A v νX.C(X)

(GfpA1)

µX.C(X) v A
µX.C(X) v C(A)

(LfpA2)

A v νX.C(X)
C(A) v νX.C(X)

(GfpA2)

C1(A) v A C2(A) v A
µX.(C1(X) tC2(X)) v A

(OrLfp)

In [11] it has been shown that each concept using the mutual fixpoint constructor has
a corresponding non-mutual representation, therefore, we restrict the proof system to
the more simple rules for non-mutual fixpoint constructors. In the above rules, C(A)
denotes a concept, in which A occurs at least once within an existential quantification.
The correctness of the rules can be seen easily, the completeness can be shown analo-
gously to Theorem 4 by constructing the canonical model and showing that, if for some
A, B ∈ NC the subsumption cannot be deduced, then the subset relationship also does
not hold in the model. First, note that, on the one hand, T ′ is an EL TBox. Therefore,
the inclusion C1 v C2 is derived using only EL axioms. On the other hand, the two
concepts C1 ∈ SUB(A) and C2 ∈ SUP(A) are never both LFP (Least FixPoint)-concepts
or both GFP (Greatest FixPoint)-concepts. Therefore, the subsumption between them
cannot be derived using only rules Lfp1,Gfp1,Lfp2,Gfp2. A close look at the above
proof system extension reveals that the rules LfpA1,GfpA1,OrLfp are the only rules
deriving consequences containing fixpoint concepts from a set of EL sequents. In all
these rules, the sequents before the application of the rule must be cyclic inclusion
axioms for a particular atomic concept A′. The EL concept C(A′) structurally corre-
sponds to the resulting LFP- or GFP-concept, i.e., the fixpoint concept is obtained from
C(A′) by replacing all occurrences of A′ within C(A′) by a concept variable. Moreover,
A′ ∈ NC \ {A}, since C1 ∈ SUBM(A) and C2 ∈ SUPM(A). As argued above, no inclusion
axioms with an GFP-concept only on the left-hand side or with an LFP-concept only



on the right-hand side can be derived unless the TBox contains such inclusion axioms.
Since additionally C(A′) is an EL concept, the inclusions C(A′) v A′ or A′ v C(A′)
were derived using only EL inclusions. For the same reason, the concept C′1 in SUB(A′)
such that due to Theorem 8 the inclusion C(A′) v C′1 holds, is an EL concept. The argu-
mentation for C′2 =∈ SUP(A′) being an EL concept with C′2 v C(A′) is analogous. ut

Lemma 3 It remains to prove Lemma 3, which claims that if SUP(A) for A ∈ ΣC,SUP or
SUB(A) for A ∈ ΣC,SUB together with any concept C is in one set M ∈ RMAX, it is contained
in all M ∈ RMAX. Assume that there exists an EL TBox T ′ such that T ′ |= C1 v C2 for a
non-EL concept C1 ∈ SUBM(A), for instance. Assume that (C1,C2) <

⋂
RMAX. We know

that there is at least one set M1 ∈ RMAX such that (C1,C2) ∈ M1. Then, there must be a
second set M2 ∈ RMAX such that (C1,C2) < M2. We know from Lemma 9 that there is a
concept A′ , A and there are two EL concepts C′1 ∈ SUB(A

′) and C′2 =∈ SUP(A′) such
that T |= C1 v C′1 and T |= C′2 v C2. Assume that (C′1,C

′
2) < M2, then it follows that

(C1,C2) ∈ M2, since C′1 v C′2 is a justification for C1 v C2 and the set M2 is maximal,
i.e., no axioms can be added to it without loosing consequences in T ′. Assume that
(C′1,C

′
2) ∈ M2, then C′1 must be an LFP-concept, which contradicts with the assumption

of Lemma 9. To see that C′1 must indeed be an LFP-concept, consider the rules for the
extension of EL with fixpoints. As argued in the proof for Lemma 9, LFP-concepts can
only appear on the right-hand side in inclusion axioms, if the concept of the left-hand
side of the axiom is also an LFP-concept. ut
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