Text20nto

A Framework for Ontology Learning and Data-driven
Change Discovery

Philipp Cimiano, Johanna Volker

Institute AIFB, University of Karlsruhe
{pci,jvo}@aifb.uni-karlsruhe.de

Abstract. In this paper we present Text20nto, a framework for on-
tology learning from textual resources. Three main features distinguish
Text20nto from our earlier framework TextToOnto as well as other
state-of-the-art ontology learning frameworks. First, by representing the
learned knowledge at a meta-level in the form of instantiated model-
ing primitives within a so called Probabilistic Ontology Model (POM),
we remain independent of a concrete target language while being able
to translate the instantiated primitives into any (reasonably expressive)
knowledge representation formalism. Second, user interaction is a core as-
pect of Text20nto and the fact that the system calculates a confidence
for each learned object allows to design sophisticated visualizations of
the POM. Third, by incorporating strategies for data-driven change dis-
covery, we avoid processing the whole corpus from scratch each time
it changes, only selectively updating the POM according to the corpus
changes instead. Besides increasing efficiency in this way, it also allows
a user to trace the evolution of the ontology with respect to the changes
in the underlying corpus.

1 Introduction

Since ontologies provide a shared understanding of a domain of interest, they
have become a key technology for semantics-driven modeling, especially for the
ever-increasing need for knowledge interchange and integration. Semantic anno-
tation of data with respect to a certain ontology makes it machine-processable
and allows for exchanging this data between different applications. Therefore,
ontologies are frequently used for the explicit representation of knowledge which
is implicitly given by various kinds of data. Since building an ontology for a huge
amount of data is a difficult and time consuming task a number of tools such as
TextToOnto! [17], the ASTUM system [8], the Mo’k Workbench [2], OntoLearn
[21] or OntoLT [3] have been developed in order to support the user in construct-
ing ontologies from a given set of (textual) data. However, all these tools suffer
from several shortcomings.

First of all, they all depend either on very specific or proprietary ontology mod-
els which can not always be translated to other formalisms in a straightforward

! http://sourceforge.net /projects/texttoonto/

way. This is certainly undesirable as ontology learning tools should be indepen-
dent from a certain ontology model in order to be widely applicable and used.
This is especially important in a context such as the Semantic Web in which dif-
ferent ontology models coexist next to each other. In Text20nto? we overcome
this problem by representing the learned ontological structures at a meta-level
in form of so called modeling primitives rather than in a concrete knowledge
representation language. As in [11], a collection of instantiated modeling prim-
itives can then be translated into any target language. In this way we are able
to handle the most prevalent representation languages currently used within the
Semantic Web: RDFS, OWL and F-Logic.

Second, the interaction with end-users, in contrast to linguists or machine-
learning specialists, has been largely neglected within such systems. As users
are typically the ones who are most familiar with the domain, user interaction
should be a central part of the system architecture. And third, most of these
tools lack a certain robustness with respect to changes made to the data set. In
fact, most state-of-the-art systems need to relearn the complete ontology once
the underlying corpus has changed.

Text20nto is a complete re-design and re-engineering of our system TextToOnto,
a tool suite for ontology learning from textual data [17]. Text20nto targets all
these problems by introducing two new paradigms for ontology learning: (i)
Probabilistic Ontology Models (POMs) which represent the results of the sys-
tem by attaching a probability to them and (ii) data-driven change discovery
which is responsible for detecting changes in the corpus, calculating POM deltas
with respect to the changes and accordingly modifying the POM without recal-
culating it for the whole document collection. The benefits of these key design
choices are various.

By assigning probabilities to the learned structures, the interaction with the
user can be made more efficient by presenting him the learned structures ranked
according to the certainty of the system or only presenting him the results above
a certain confidence threshold. Moreover, in Text20nto we store a pointer for
each object in the POM to those parts of the document collection from which it
was derived, allowing the user to understand why a certain concept, instance or
relation was created and thus increasing the POM’s traceability. And finally, the
POM allows to maintain even inconsistent alternatives in parallel thus relegating
the task of creating a consistent ontology to the user.

The benefits of data-driven change discovery are even more obvious. First, there
is no need of processing the whole document collection when it changes thus
leading to increased efficiency. Second, the user can explicitly track the changes
to the ontology since the last change in the document collection thus being able
to trace the evolution of the ontology with respect to changes in the underlying
document collection.

This paper describes the framework and architecture of Text20nto. It does not
focus on the evaluation of the single ontology-learning algorithms, which will

2 http://ontoware.org/projects/text2onto/

: i
Algorithm
P Controller i
Algorithms

Reference
Manager

| |
I

‘ Database Access

Corpus GUI

Writer

‘ Ontology

Fig. 1. Architecture of Text2Onto

be presented elsewhere. Nevertheless, we also briefly describe the algorithms
implemented in the framework so far.

2 Architecture

The architecture of Text20nto (cf. figure 1) is centered around the Probabilis-
tic Ontology Model (see Section 2.1) which stores the results of the different
ontology learning algorithms (cf. section 2.4). The algorithms are initialized by
a controller, the purpose of which is (i) to trigger the linguistic preprocessing
of the data, (ii) to execute the ontology learning algorithms in the appropri-
ate order and (iii) to apply the algorithms’ change requests to the POM. The
fact that none of the algorithms has the permission of directly manipulating the
POM guarantees maximum transparency and allows for the flexible composition
of arbitrarily complex algorithms as described below.

The execution of each algorithm consists of three phases: First, in the noti-

fication phase, the algorithm learns about recent changes to the corpus. Second,
in the computation phase, these changes are mapped to changes with respect
to the reference repository, which stores all kinds of knowledge about the rela-
tionship between the ontology and the data (e.g. pointers to all occurrences of a
concept). And finally, in the result generation phase, requests for POM changes
are generated from the updated content of the reference repository.
The algorithms provided by the Text20nto framework can be classified accord-
ing to two different aspects: task, i.e. the kind of modeling primitives (see section
2.1) they produce, and type, that means the method which is employed in order
to extract instances of the regarding primitives from the text. Each algorithm
producing a certain kind of modeling primitive can be configured to apply sev-
eral algorithms of different types and to combine their requests for POM changes
in order to obtain a more reliable probability for each instantiated primitive (cf.
[5]). Various types of pre-defined strategies allow for specifying the way the in-
dividual probabilities are combined.

2.1 The Probabilistic Ontology Model

A Probabilistic Ontology Model (POM) as used by Text20nto is a collection of
instantiated modeling primitives which are independent of a concrete ontology

representation language. In fact, Text20nto includes a Modeling Primitive Li-
brary (MPL) which defines these primitives in a declarative fashion. The obvious
benefits of defining primitives in such a declarative way are twofold. On the one
hand, adding new primitives does not imply changing the underlying framework
thus making it flexible and extensible. On the other hand, the instantiated prim-
itives can be translated into any knowledge representation language given that
the expressivity of the primitives does not exceed the expressivity of this target
language. Thus, the POMs learned by Text20nto can be translated into various
ontology representation languages such as RDFS?, OWL 4 and F-Logic [14]. In
fact we follow a similar approach to knowledge representation as advocated in
[11] and [19]. Gruber as well as Staab et al. adopt a translation approach to
knowledge engineering in which knowledge is modeled at a meta-level rather
than in a particular knowledge representation language and is then translated
into different target languages. In Text20nto we follow this translation-based
approach to knowledge engineering and define the relevant modeling primitives
in the MPL. So called ontology writers are then responsible for translating in-
stantiated modeling primitives into a specific target knowledge representation
language. The modeling primitives we use in Text20nto are given below. The
name of the corresponding primitive of Gruber’s Frame Ontology is shown in
parenthesis where applicable:

— concepts (CLASS)

— concept inheritance (SUBCLASS-OF)

— concept instantiation (INSTANCE-OF)

— properties/relations (RELATION)

— domain and range restrictions (DOMAIN/RANGE)
— mereological relations

— equivalence

It is important to mention that the above list is in no way exhaustive and could
be extended whenever it is necessary. The motivation for considering exactly
these relations is the fact that the algorithms integrated in the framework are
currently only able to learn is-a, instance-of, part-whole as well as equivalence
relations and restrictions on the domain and range of relations.

The POM is not probabilistic in a mathematical sense, but because every in-
stantiated modeling primitive gets assigned a value indicating how certain the
algorithm in question is about the existence of the corresponding instance. The
purpose of these ’probabilities’ is to facilitate the user interaction by allowing
her to filter the POM and thereby select only a number of relevant instances of
modeling primitives to be translated into a target language of her choice.

2.2 Data-driven Change Discovery

In order to define the task of data-driven change discovery we first distinguish
between change capturing and change discovery.

3 http://www.w3.org/TR/rdf-schema/
* http://www.w3.org/ TR /owl-features/

Change capturing can be defined as the generation of ontology changes from
explicit and implicit requirements. Explicit requirements are generated, for ex-
ample, by ontology engineers who want to adapt the ontology to new require-
ments or by the end-users who provide the explicit feedback about the usability
of ontology entities. The changes resulting from this kind of requirements are
called top-down changes. Implicit requirements leading to so-called bottom-up
changes are reflected in the behavior of the system and can be induced by ap-
plying change discovery methods.

Change discovery aims at generating implicit requirements by inducing ontol-
ogy changes from existing data. [20] defines three types of change discovery:
(i) structure-driven, (ii) usage-driven and (iii) data-driven. Whereas structure-
driven changes can be deduced from the ontology structure itself, usage-driven
changes result from the usage patterns created over a period of time. Data-
driven changes are generated by modifications to the underlying data, such as
text documents or a database, representing the knowledge modeled by an on-
tology. Therefore, data-driven change discovery provides methods for automatic
or semi-automatic adaption of an ontology according to modifications being ap-
plied to the underlying data set.

The benefits of data-driven change discovery are twofold. First, an elaborated
change management system enables the user to explicitly track the changes to
the ontology since the last change in the document collection thus being able
to trace the evolution of the ontology with respect to changes in the underlying
document collection. Second and even more important, there is no longer the
need of processing the whole document collection when it changes thus leading
to increased efficiency.

Independently from a particular application scenario some requirements have
to be met by any application which is designed to support data-driven change
discovery. The most important one is, of course, the need to keep track of all
changes to the data. Each change must be represented in a way which allows for
associating with it various kinds of information, such as its type, the source it
has been created from and its target object (e.g. a text document). In order to
make the whole system as transparent as possible not only changes to the data
set, but also changes to the ontology should be logged. If ontological changes
are caused by changes to the underlying data, the former should be associated
with information about the corresponding modification to the data. Moreover,
the system should allow for defining various change strategies, which specify the
degree of influence changes to the data have with respect to the ontology or the
POM respectively. This permits to take into account the confidence the user has
in different data sources or the fact that documents might become out-dated
after a while.

It is quite obvious that each algorithm in Text20nto supporting automatic or
semi-automatic data-driven change discovery requires a formal, explicit repre-
sentation of two kinds of knowledge: First, knowledge about which concepts,
instances and relations are affected by certain changes to the data and second,
knowledge about how to react to these changes in an appropriate way, i.e. how

to update the POM in response to these changes. Consequently, the concrete
knowledge to be stored by an ontology extraction system depends on the way
these algorithms are implemented. A concept extraction algorithm, for example,
might need to store the text references and term frequencies associated with
each concept, whereas a pattern-based concept classification algorithm might
have to remember the occurrences of all patterns matched in the text. There-
fore, in Text20nto each type of algorithm is provided with a suitable reference
store (see section 2). It is among the algorithm controller’s tasks to set up a
suitable store each time a new algorithm is added.

2.3 Natural Language Processing

Many existing ontology learning environments focus either on pure machine
learning techniques [2] or rely on linguistic analysis [3,21] in order to extract
ontologies from natural language text. Text20nto combines machine learning
approaches with basic linguistic processing such as tokenization or lemmatizing
and shallow parsing. Since it is based on the GATE framework [7] it is very
flexible with respect to the set of linguistic algorithms used, i.e. the underly-
ing GATE application can be freely configured by replacing existing algorithms
or adding new ones such as a deep parser if required. Another benefit of using
GATE is the seamless integration of JAPE which provides finite state transduc-
tion over annotations based on regular expressions.

Linguistic preprocessing in Text2Onto starts by tokenization and sentence split-
ting. The resulting annotation set serves as an input for a POS tagger which in
the following assigns appropriate syntactic categories to all tokens. Finally, lem-
matizing or stemming (depending on the availability of the regarding processing
components for the current language) is done by a morphological analyzer and
a stemmer respectively.

After the basic linguistic preprocessing is done, a JAPE transducer is run over
the annotated corpus in order to match a set of particular patterns required
by the ontology learning algorithms. Whereas the left hand side of each JAPE
pattern defines a regular expression over existing annotations, the right hand
side describes the new annotations to be created (see listing 1.1). For Text20nto
we developed JAPE patterns for both shallow parsing and the identification of
modeling primitives, i.e. concepts, instances and different types of relations (c.f.
(13)).

Listing 1.1. JAPE pattern: Hearst

(NounPhrasel) : superconcept

{Token.kind == punctuation}
?

{SpaceToken .kind == space}
{Token.string == "such”}
{SpaceToken.kind == space}
{Token.string == "as”}
{SpaceToken.kind == space}

(NounPhrasesAlternatives) :subconcept

):hearstl

—>

thearstl.SubclassOfRelation { rule = ”"Hearstl” },
isubconcept .Domain = { rule "Hearstl” }
isuperconcept.Range = { rule = ”Hearstl” }

Since obviously, both types of patterns are language specific, different sets of
patterns for shallow parsing and ontology extraction have to be defined for each
language. Because of this and due to the fact that particular processing com-
ponents for GATE have to be available for the regarding language, Text20nto
currently only supports ontology learning from English texts. Fortunately, thanks
to recent research efforts made in the SEKT project® GATE components for the
linguistic analysis of various languages such as German and Spanish have been
made available recently. Since we want to provide full support for all of these lan-
guages in future releases of Text20nto, we have already integrated some of these
components, and we are currently working on the development of appropriate
patterns for Spanish and German.

2.4 Algorithms

This section briefly describes for each modeling primitive the algorithms used
to learn corresponding instances thereof. In particular we describe the way the
probability for an instantiated modeling primitive is calculated.

Concepts In Text20nto we have implemented several measures to assess the
relevance of a certain term with respect to the corpus in question. In partic-
ular, we implemented different algorithms calculating the following measures:
Relative Term Frequency (RTF), TFIDF (Term Frequency Inverted Document
Frequency), Entropy and the C-value/NC-value method in [10]. For each term,
the values of these measures are normalized into the interval [0..1] and used as
corresponding probability in the POM.

Subclass-of Relations In order to learn subclass-of relations, in Text2Onto we
have implemented various algorithms using different kinds of sources and tech-
niques following the approach in [5]. In particular we implemented algorithms
exploiting the hypernym structure of WordNet [9], matching Hearst patterns [13]
in the corpus as well as in the World Wide Web and applying linguistic heuris-
tics mentioned in [21]. The results of the different algorithms are then combined
through combination strategies as described in [5]. This approach has been eval-
uated with respect to a collection of tourism-related texts by comparing the
results with a reference taxonomy for this domain. The best result obtained was
an F-Measure of 21.81%, a precision of 17.38% and a recall of 29.95%. As the
algorithm already indicates the confidence in its prediction with a value between
0 and 1, the probability given in the POM can be set accordingly.

Mereological Relations For the purpose of discovering mereological (part-of)
relations in the corpus, we developed JAPE expressions matching the patterns
described in [4] and implemented an algorithm counting the occurrences of pat-
terns indicating a part-of relation between two terms ¢ and to, i.e. part-of(ty,t2).

5 www.sekt-project.com

The probability is then calculated by dividing by the sum of occurrences of pat-
terns in which ¢; appears as a part. Further, as in the algorithm described above
we also consult WordNet for mereological relations and combine the elementary
probabilities with a certain combination strategy.

General Relations In order to learn general relations, Text20nto employs a
shallow parsing strategy to extract subcategorization frames enriched with infor-
mation about the frequency of the terms appearing as arguments. In particular,
it extracts the following syntactic frames:

— transitive, e.g. love(subj,obj)
— intransitive + PP-complement, e.g. walk(subj,pp(to))
— transitive + PP-complement, e.g. hit(subj,obj,pp(with))

and maps this subcategorization frames to ontological relations. For example,
given the following enriched subcategorization frame

hit(subj:person,obj:thing,with: object)
the system would update the POM with these relations:

hit(domain: person,range:thing)
hit_with(domain: person,range: object)

The probability of the relation is then estimated on the basis of the frequency
of the subcategorization frame as well as of the frequency with which a certain
term appears at the argument position in question.

Instance-of Relations In order to assign instances or named entities appearing
in the corpus to their correct concept in the ontology, Text20nto relies on a
similarity-based approach extracting context vectors for instances and concepts
from the text collection and assigning instances to the concept corresponding
to the vector with the highest similarity with respect to their own vector as in
[1]. As similarity measure we use the Skewed divergence presented in [15] as it
was found to perform best in our experiments. Using this similarity measure as
well as further heuristics, we achieved an F-Measure of 32.6% when classifying
instances with respect to an ontology comprising 682 concepts [6]. Alternatively,
we also implemented a pattern-matching algorithm similar to the one used for
discovering part-of relations (see above).

Equivalence Following the assumption that terms or concepts are equivalent
to the extent to which they share similar syntactic contexts, we implemented
algorithms calculating the similarity between terms on the basis of contextual
features extracted from the corpus, whereby the context of a terms varies from
simple word windows to linguistic features extracted with a shallow parser. This
corpus-based similarity is then taken as the probability for the equivalence of
the concepts in question.

y £|POM
1 2| Graph / Tabl
Wil 2 pl able
"‘ o | View oo
D % /
2| Workflow /
S 10 | Manager)
W V
/
/
Reference N\ /
Store woopy 0.10

NLP
Algorithm Controller

Writer

Fig. 2. Usage Scenario (left) and POM visualization (right)

RDFS | | F-Logic
Writer | | Writer

3 Graphical User Interface

In addition to the core functionality of Text2Onto described above we developed
a graphical user interface featuring a corpus management component, a workflow
editor, configuration dialogues for the algorithms as well as tabular and graph-
based POM visualizations. It will be available as an Eclipse® plug-in which could
facilitate a smooth integration into ontology editors at a later development stage.

A typical usage scenario for Text20nto is depicted by figure 2 (left). The user
specifies a corpus, i.e. a collection of text, HTML or PDF documents, and starts
the graphical workflow editor. The editor provides her with a list of algorithms
which are available for the different ontology learning tasks, and assists her in
setting up an appropriate workflow for the kind of ontology she wants to learn as
well as to customize the individual ontology learning algorithms to be applied.
Once the ontology learning process is started, the corpus gets preprocessed by
the natural language processing component described in section 2.3, before it
is passed to the algorithm controller. In the following, depending on the con-
figuration of the previously specified workflow, a sequence of ontology learning
algorithms is applied to the corpus. Each algorithm starts by detecting changes
in the corpus and updating the reference store accordingly. Finally, it returns
a set of requests for POM changes to its caller, which could be the algorithm
controller, but also a more complex algorithm (cf. section 2). After the process
of ontology extraction is finished, the POM is presented to the user.

Since the POM unlike any concrete ontology is able to maintain thousands
of conflicting modeling alternatives in parallel, an appropriate and concise vi-
sualization of the POM is of crucial importance for not overwhelming the user
with too much information. Although several pre-defined filters such as a prob-
ability threshold will be available for pruning the POM, some user interaction
might still be needed for transforming the POM into a high-quality ontology.
Currently, two different visualization types are available: a tabular view showing
a number of sorted lists for all kinds of modeling primitives and a graph-based
representation which is depicted by figure 2 (right). After having finished her
interaction with the POM, i.e. after adding or removing concepts, instances or

5 http://www.eclipse.org

relations, the user can select among various ontology writers, which are provided
for translating the POM into different ontology representation languages.

4 Related Work

Several ontology learning frameworks have been designed and implemented in
the last decade. The Mo’K workbench [2], for instance, basically relies on un-
supervised machine learning methods to induce concept hierarchies from text
collections. In particular, the framework focuses on agglomerative clustering
techniques and allows ontology engineers to easily experiment with different
parameters. OntoLT [3] is an ontology learning plug-in for the Protégé ontology
editor. It is targeted more at end users and heavily relies on linguistic analysis.
It basically makes use of the internal structure of noun phrases to derive onto-
logical knowledge from texts.

The framework by Velardi et al., OntoLearn [21], mainly focuses on the problem
of word sense disambiguation, i.e. of finding the correct sense of a word with
respect to a general ontology or lexical database. In particular, they present a
novel algorithm called SSI relying on the structure of the general ontology for
this purpose. Furthermore, they include an explanation component for users con-
sisting in a gloss generation component which generates definitions for concepts
which were found relevant in a certain domain.

TextToOnto [17] is a framework implementing a variety of algorithms for di-
verse ontology learning subtasks. In particular, it implements diverse relevance
measures for term extraction, different algorithms for taxonomy construction
as well as techniques for learning relations between concepts [16]. The focus of
TextToOnto has been so far on the algorithmic backbone with the result that
the combination of different algorithms as well as the interaction with the user
had been neglected so far. The successor Text20nto targets exactly these issues
by introducing the POM as a container for the results of different algorithms as
well as adding probabilities to the learned structures to facilitate the interaction
with the user.

Common to all the above mentioned frameworks is some sort of natural lan-
guage processing to derive features on the basis of which to learn ontological
structures. However, all these tools neglect the fact that the document collec-
tion can change and that it is unfeasible to start the whole learning process from
scratch. Text20nto overcomes this shortening by storing current results in stores
and calculating POM deltas caused by the addition or deletion of documents.
Very related is also the approach of [12] in which a qualitative calculus is pre-
sented which is able to reason on the results of different algorithms, resolving
inconsistencies and exploiting synergies. Interesting is the dynamic aspect of the
approach, in which the addition of more textual material leads to a reduction in
the number of hypothesis maintained in parallel by the system.

Furthermore, as argued in the introduction, previously developed ontology learn-
ing frameworks all lack an explanation component helping the user to understand
why something has changed in the underlying POM. In addition, most tools do

not indicate how certain a learned object actually is, thus making it more diffi-
cult for the user to select only the most reliable findings of the system.

5 Conclusion and Outlook

We have presented our framework Text20nto with the aim of learning ontolo-
gies from textual data. Its novel aspects as compared to similar frameworks are:
(i) the independence of the actual ontology model or knowledge representation
language, (ii) the introduction of probabilistic ontology models allowing more
sophisticated models of user interaction and (iii) the integration of data-driven
change discovery strategies increasing the efficiency of the system as well as the
traceability of the learned ontology with respect to changes in the corpus, thus
making the whole process more transparent.

In future versions of Text20nto a graphical workflow engine will provide support
for the automatic or semi-automatic composition of complex ontology learning
workflows. For transforming the POM into a consistent OWL or RDF ontology
we aim at a tight integration with the KAON evolution framework [20] which
will allow to detect and resolve inconsistencies in the generated POMs. The
development of the explanation component will be carried on with particular
regard to the DILIGENT methodology [18]. By generating machine readable ex-
planations we will make a major step in the direction of making Text2Onto part
of the DILIGENT process. We are currently preparing an evaluation setting for
comparing the results of the newly developed ontology learning algorithms with
previous implementations provided by TextToOnto and other ontology learning
tools. Moreover, a detailed user evaluation will offer valuable clues to the usabil-
ity of the graphical user interface and the benefits gained from the availability
of an explanation component.

6 Acknowledgments

Research reported in this paper has been partially financed by the EU in the IST-
2003-506826 project SEKT (http://www.sekt-project.com) and the IST-2001-
34038 project Dot.Kom (http://www.dot-kom.org). We would like to thank our
students Simon Sparn, Stephan Oehlert, Giinter Ladwig and Matthias Hartung
for their assistance in implementing the system and all our colleagues for fruitful
discussions.

References

1. E. Alfonseca and S. Manandhar. Extending a lexical ontology by a combination of
distributional semantics signatures. In Proceedings of the 13th International Con-
ference on Knowledge Engineering and Knowledge Management (EKAW), 2002.

2. G. Bisson, C. Nedellec, and L. Canamero. Designing clustering methods for on-
tology building - The Mo’K workbench. In Proceedings of the ECAI Ontology
Learning Workshop, pages 13-19, 2000.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

P. Buitelaar, D. Olejnik, and M. Sintek. OntoLT: A protégé plug-in for ontology
extraction from text. In Proceedings of the International Semantic Web Conference
(ISWC), 2003.

E. Charniak and M. Berland. Finding parts in very large corpora. In Proceedings
of the 87th Annual Meeting of the ACL, pages 57—64, 1999.

P. Cimiano, A. Pivk, L. Schmidt-Thieme, and S. Staab. Learning taxonomic re-
lations from heterogeneous sources. In Proceedings of the ECAI 2004 Ontology
Learning and Population Workshop, 2004.

P. Cimiano and J. Volker. Towards large-scale, unsupervised and ontology-based
named entity recognition. Technical Report. AIFB, University of Karlsruhe, 2004.
H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE: A framework
and graphical development environment for robust NLP tools and applications. In
Proceedings of the 40th Annual Meeting of the ACL, 2002.

D. Faure and C. Nedellec. A corpus-based conceptual clustering method for verb
frames and ontology. In Proceedings of the LREC Workshop on Adapting lexical
and corpus resources to sublanguages and applications, 1998.

C. Fellbaum. WordNet, an electronic lexical database. MIT Press, 1998.

. K. Frantzi, S. Ananiadou, and J. Tsuji. The c-value/nc-value method of automatic

recognition for multi -word terms. In Proceedings of the ECDL, pages 585-604,
1998.

T. Gruber. A translation approach to portable ontology specifications. Knowledge
Acquisition, 5(2):199-220, 1993.

U. Hahn and K. Schnattinger. Towards text knowledge engineering. In AAAI/I-
AAI pages 524-531, 1998.

M. Hearst. Automatic acquisition of hyponyms from large text corpora. In Pro-
ceedings of the 14th International Conference on Computational Linguistics, pages
539-545, 1992.

M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-
based languages. Journal of the ACM, 42:741-843, 1995.

L. Lee. Measures of distributional similarity. In 87th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 25-32, 1999.

A. Maedche and S. Staab. Discovering conceptual relations from text. In W. Horn,
editor, Proceedings of the 14th European Conference on Artificial Intellignece
(ECAI’2000), 2000.

A. Maedche and S. Staab. Ontology learning. In S. Staab and R. Studer, editors,
Handbook on Ontologies, pages 173—189. Springer, 2004.

H. S. Pinto, C. Tempich, and S. Staab. Diligent: Towards a fine-grained method-
ology for distributed, loosely-controlled and evolving engingeering of ontologies.
In Proceedings of the 16th European Conference on Artificial Intelligence (ECAI),
2004.

S. Staab, E. Erdmann, and A. Maedche. Engineering ontologies using semantic
patterns. In Proceedings of the IJCAI’01 Workshop on E-Business and Intelligent
Web, 2001.

L. Stojanovic. Methods and Tools for Ontology Evolution. PhD thesis, University
of Karlsruhe, 2004.

P. Velardi, R. Navigli, A. Cuchiarelli, and F. Neri. Evaluation of ontolearn, a
methodology for automatic population of domain ontologies. In P. Buitelaar,
P. Cimiano, and B. Magnini, editors, Ontology Learning from Text: Methods, Ap-
plications and Evaluation. I0S Press, 2005. to appear.

