
Lifecycle-Support in Architectures for Ontology-Based
Information Systems

Thanh Tran1 and Peter Haase1 and Holger Lewen1 and Óscar Muñoz-García2

and Asunción Gómez-Pérez2 and Rudi Studer1

1 Institute AIFB, Universität Karlsruhe, Germany
{dtr,pha,hle,rst}@aifb.uni-karlsruhe.de

2 Universidad Politécnica de Madrid, Spain {omunoz,asun}@fi.upm.es

Abstract. Ontology-based applications play an increasingly important role in
the public and corporate Semantic Web. While today there exist a range of
tools and technologies to support specific ontology engineering and management
activities, architectural design guidelines for building ontology-based applica-
tions are missing. In this paper, we present an architecture for ontology-based
applications—covering the complete ontology-lifecycle—that is intended to sup-
port software engineers in designing and developing ontology-based applications.
We illustrate the use of the architecture in a concrete case study using the NeOn
toolkit as one implementation of the architecture.

1 Introduction

Ontology-based applications play an increasingly important role in the public and cor-
porate Semantic Web. Major companies like Oracle3 and IBM4 have invested in se-
mantic technologies. These efforts and work from the research community have led to a
number of concrete implementations to support specific ontology engineering and man-
agement activities. Yet, there are not many ontology-based information systems (OIS)
available that can exploit these technologies to deliver added value for the end user.

Partly, this is due to the lack of guidance for software engineers to develop
OIS. Methodologies for the development of knowledge-based applications (e.g. Com-
monKADS [1]) can be applied to OIS, but normally focus purely on knowledge engi-
neering. Architectures for semantic web services involve ontologies, but naturally focus
on services. For instance, WSMO [2] or ODE-SWS [3] provide ontology-based mech-
anisms to formally describe services. While ontologies are a main component of these
frameworks, ontology management features are not supported. Also guidance as to how
ontologies can be used and managed at runtime by the service platform are not provided.
Even results of the W3C group on best practices and deployment5 cover only usage sce-
narios and guideline for ontology developments. The Semantic Web Framework (SMF)
proposal [4] focussofes on identifying and describing components including their de-
pendencies. This work is complementary to our work in the sense that while SMF so far

3 http://www.oracle.com/technology/tech/semantic_technologies/index.html
4 http://www.alphaworks.ibm.com/tech/semanticstk
5 http://www.w3.org/2001/sw/BestPractices/

identifies and classifies components required for managing ontology, we focus on OIS
architectures with lifecycle-support.

In particular, we discuss activities that must be supported in OIS on the basis of
the notion of ontology lifecycle. Applying best practices and architecture paradigms
such as SOA [5] and J2EE [6] from the software engineering community, we develop
a generic architecture of integrated OIS that can even support scenarios where usage
and engineering activities are intertwined at runtime. This architecture aims to pro-
vide a guideline for software engineers to design OIS. As an implementation of this
architecture, we also discuss the NeOn toolkit6, which provides a concrete framework
containing reusable components that can be leveraged for the implementation of OIS.
We demonstrate the application of both the architecture and the NeOn toolkit on the
basis of a case study in the fishery domain.

The paper is structured as follows: In Section 2, we start with the discussion of the
ontology lifecycle in ontology-based information systems. In Section 3, we present the
generic architecture for OIS and illustrate how this architecture supports ontology life-
cycle management. In Section 4, we then provide an instantiation of the generic archi-
tecture using the NeOn toolkit within a case study in the fishery domain. We conclude
the paper with an outlook in Section 5.

2 Lifecycle Management of Ontologies

In this section, we briefly present existing work on the ontology lifecycle. The concept
has mainly been used in methodologies for ontology engineering [7]. In the follow-
ing, we give a compiled overview of these methodologies to present a simple lifecycle
model (see Fig. 1). This model considers not only the engineering, but also the usage of
ontologies at runtime as well as the interplay between usage and engineering activities.

2.1 Ontology Engineering

While the individual methodologies for ontology engineering vary, they agree on the
main lifecycle activities, namely requirement analysis, development, evaluation, and
maintenance, plus orthogonal activities such as project management. In the following,
we focus on the first three engineering-related activities as described in the literature
and then discuss maintenance in the context of usage-related activities.

Requirement Analysis: In this step, domain experts and ontology engineers an-
alyze scenarios, use cases, and, in particular, intended retrieval and reasoning tasks
performed on the ontology.

Development: This is the step in which the methodologies vary most. We therefore
present an aggregated view on the different proposals for ontology development.

The initial step is the identification of already available reusable ontologies and
other sources such as taxonomies or database schemas. Once reusable ontologies are
found, they have to be adapted to the specific requirements of the application. This may
include both backward (understanding, restructuring, modifying) and forward (modi-
fying, extending) engineering of these reusable ontologies w.r.t. some design patterns.

6 http://www.neon-toolkit.org/

Then, the ontologies are translated to the target representation language. Because of the
expressivity-scalability tradeoff involved in reasoning, it may be desirable to tweak the
degree of axiomatization, e.g. for performance. An important aspect in development is
collaboration. Existing proposals for reaching consensus knowledge involve the assign-
ment of roles and the definition of interaction protocols for knowledge engineers.

Integration: Inspired by the componentization of software, recent approaches ad-
vocate the modularization of ontologies [8]. Accordingly, the result of the development
step shall be a set of modularized ontologies rather than one monolithic ontology. These
modules have to be integrated, e.g. via the definition of import declarations and align-
ment rules. This integration concerns not only the modules that have been developed
for the given use case. For interoperability with external applications, they may be em-
bedded in a larger context, e.g. integrated with ontologies employed by other OIS.

Evaluation: Similar to bugs in software, inconsistencies in ontologies impede their
proper use. So the initial evaluation step is to check for inconsistencies, both at the
level of modules and in an integrated setting. Furthermore, ontologies also have to be
assessed w.r.t. specific requirements derived from the use cases. Note that any deficien-
cies detected in this phase have to be addressed, i.e. led back to development.

2.2 Ontology Usage

Usage encompasses all activities performed with an ontology after it has been engi-
neered. So far, the lifecycle as described in the literature is more of a static nature,
just like the software lifecycle. Namely, if all requirements are met, the ontology will
be deployed and the lifecycle continues with ontology evolution—also referred to as
maintenance in literature. In this phase, new requirements may arise which are fed back
into the loop, e.g. incorporated into the next release, which is then redeployed. Cur-
rent lifecycle models however do not incorporate activities involved in the actual usage
of ontologies. We will elaborate on these activities and based on them, show that the
lifecycle can be dynamic.

Search and Retrieval and Reasoning: Once the ontologies have been created, they
can be used to realize information access in the application, for example via search and
retrieval. Typically an OIS involves a reasoner to infer implicit knowledge. The schema
can be combined with instance data to support advanced retrieval, e.g. schema knowl-

ONTOLOGY ENGINEERING

Requirement
Analysis Development Integration Evaluation

ONTOLOGY USAGE

Ontology
Population Cleansing Fusion

DEPLOYMENT

EVOLUTION FEEDBACK

Search &
Retrieval

Reasoning

Fig. 1. Lifecycle Model

edge exploited for query enhancement (refinement, expansion), and A-Box reasoning
to retrieve also inferred knowledge.

Note these are two generic exemplary tasks that shall illustrate the use of ontologies.
In the actual application, search and retrieval may be only two of the many ontology-
related operations that are embedded in more complex (business) logic implementing
a concrete use case. These usages of ontologies may require support by the following
application-independent lifecycle activities that are also performed at runtime:

Ontology Population: To populate the knowledge base (KB), instances may be
collected from the user, e.g. via forms. A substantial overhead may be imposed to the
user when all instance data has to be created manually. This burden can be alleviated by
a (semi)-automatic population of the KB. Part of this knowledge creation step are also
the manipulation and deletion of instances.

Cleansing and Fusion: Automatically extracted knowledge cannot be assumed to
have the desired quality. Enhancing instance data may include identification and merg-
ing of conceptually identical instances that are only differently labeled (object identifi-
cation) as well as fusion at the level of statements, e.g. merging redundant statements.

Both the population and the fusion steps may lead to inconsistencies which have
to be resolved. Consider a user requesting data that yet has to be crawled from exter-
nal sources. Then, inconsistencies that may arise in the process have to be resolved
at runtime for the user to be able to continue his work. Found inconsistencies are fed
back to debugging and the development-phase of the ontology lifecycle. That is, ontol-
ogy evolution—the loop from usage back to engineering activities—is not only due to
changing requirements but is also necessary for the runtime usage of ontologies.

3 A Generic OIS Architecture with Lifecycle Support

In this section, we present a generic architecture that aims to serve as a guideline for
the development of any IS that involves ontologies. Hence, generic use cases that have
to be considered may involve mere ontology engineering, mere ontology usage or a
combination of both. Therefore, lifecycle activities discussed in the last section will
be incorporated as functional requirements. Due to the possible dynamic nature of the
lifecycle, it has to be supported in an integrated architecture that allows for a dynamic
interaction of engineering and usage activities.

We will start with an overview and continue with a detailed elaboration on the
components for lifecycle support. Then, we show how this generic architecture can be
adopted for the development of OIS with concrete functional requirements. While the
presented architecture abstracts from specific application settings, we also discuss how
concrete architecture paradigms can be applied to meet technological requirements.

3.1 Overview of the Architecture

The proposed architecture as shown in Fig. 2 is organized in layers according to the
control- and data flow (the control flow is indicated by the arrows) as well as the degree
of abstraction of the constituent components. The former means that components at a
higher layer invoke and request data from components at the lower layers. The latter

means that components at the same abstraction level can be found on the same architec-
ture layer. A single operation of components at a higher level of abstraction can trigger
several low level operations. For example, a functionality provided by an ontology-
based application front-end may invoke some ontology usage services, each of them, in
turn, making use of several core ontology services. These services rely on requests to
specific data sources, which are accessed via connectors of the data abstraction layer.

ONTOLOGY USAGE SERVICES

ONTOLOGY- ENGINEERING TOOLS’ FRONT-END

LOGIC LAYER

Datasource Abstraction

PRESENTATION LAYER

DATA LAYER
DBMS Filesystem Semantic

Web
Service
Registry

 Remote Ontologies

onto onto

CORE ONTOLOGY SERVICES

connector connector connector connector connector connector

ONTOLOGY ENGINEERING

CORE ONTOLOGY SERVICES

Querying Repository RegistryReasoning

ONTOLOGY ENGINEERING SERVICES

TESTING / EVALUATIONRA / DEVELOPMENT / INTEGRATION

Use Case
Modeling

Collaborative
Editing

StructuredModel
Transformation

Ontology
Modularization

Ontology
Mapping

Language
Translation

Browsing/
Visualization

Ontology
Learning

Functional
Evaluation

Inconsistency
Resolution

Performance
Evaluation

Debugging

ONTOLOGY USAGE

ONTOLOGY-BASED APPLICATIONS’ FRONT-END

Ontology
Editor

Ontology
Browser

Semantic
Search
Form

... ...

External Ontology Repository

Automatic
Ontology

Population
Cleansing Fusion

Retrieval
Related
Services

Reasoning
Related
Services

Other
Ontology
Services

Semantic
Portal

Other
Ontology
Services

Fig. 2. The Generic Architecture

Note that many of the concepts employed for this architecture proposal, i.e. the pre-
sentation components, platform services, data source abstraction and connectors follow
J2EE and SOA best practices. Also, the organization in (three different) layers is in-
spired from the n-tier architecture—a well-known organization principle in software

engineering. We now briefly discuss these concepts and the components at the different
layers (see [6, 5] for more information on J2EE and SOA best practices).

The Data Layer: This layer hosts any kind of datasources, including databases and
file systems. This may also encompass ontological sources such as external ontologies
hosted in repositories, semantic web services hosted in registries and any ontology on
the web that can be retrieved via its URI. Note that services external to the system can
be regarded as a component of the data layer because their processing is transparent
to the internal components. The processing can be considered a black-box that simply
provides data for internal components (see connectors in [9]).

The Logic Layer: At this layer, there are application-specific services that are im-
plemented for a particular use case and operate on specific object models. The former
encapsulate the processing logic and the latter capture the data. These services invoke
ontology lifecycle services to manage and retrieve semantic data. Accordingly, object
models may encapsulate data coming from conventional datasources like databases
(data) or from ontological sources (semantic data), or both. In any case, the actual data
comes from a persistent storage, most often a database. The data source abstraction
can be used to hide specific datasource implementations by providing a uniform API
and specific connectors. While not shown in Fig. 2, services at the logic layer run on a
specific platform, which provides orthogonal functionalities for the management, con-
figuration, and identification (registry) of services as well as access control and security.

The Presentation Layer: This layer hosts presentation components that the user
interacts with. These components could be simply pages or interactive forms of a web-
based system or more sophisticated UIs of a desktop application that contains a variety
of widgets. The engineering and usage operations performed by the user on these com-
ponents translate to calls to services situated at the logic layer. The data returned by
these services is then presented by the components together with the static content.

We will now continue with a more detailed elaboration on ontology-related services.

3.2 Ontology-related Services

Ontology-related services are organized in one layer for core services and one layer for
the higher level ontology lifecycle services. While the control and data flow of lifecycle
and core services are top-down as shown in Fig. 2, the interaction between the different
lifecycle activities typically corresponds to the structure of the corresponding lifecycle
activities, e.g. they follow a sequential flow. However, the actual interaction depends on
the needs of a particular use case. That is, ontology lifecycle services can be invoked
and controlled by application-specific services as needed.

Core Ontology Services: Functionalities offered by services at this layers are used
by lifecycle services. An ontology registry service is used to find and publish ontologies.
An ontology repository service provides access, manipulation and storage (persistence
is supported by the lower level datastore) at the level of ontologies and at the level
of ontology elements. That is, repository functionalities are also available for axioms,
concepts, properties, individuals etc. The repository service also includes logging and
versioning to ensure reversibility. Besides the common repository retrieval methods, a
query service offers a generic mechanism for retrieval. Finally, a reasoning service is
available for standard reasoning tasks such as consistency checking, classification etc.

Ontology Engineering Services: The architecture contains services for the require-
ment analysis that has functionalities similar to the ones supported in an IDE for soft-
ware development, e.g. for requirements elicitation, modeling of use cases and specifi-
cation of reasoning and retrieval tasks involved in the use cases.

In the actual development, services are provided for ontology browsing, visual-
ization, editing and integration. In particular, browsing and visualization supporting
ontologies as well as non-ontological artifacts such as interface signatures, data base
schema, and UML models to help in identifying reusable artifacts. To enable reuse,
there are services for the translation of existing ontologies to the target representation
formalism. Services for (semi)-automatic transformation of non-ontological sources to
ontologies are also incorporated into the architecture [10] to facilitate reuse. This trans-
formation is possible in both directions to ensure the interoperability of ontology data
w.r.t. these data sources. Services for ontology learning are also provided to accelerate
the development process by the generation of a base version that can be further re-
fined. Implementations of specific interaction protocols enable a collaborative editing
process. The mapping service includes support for the identification and specification
of ontology modules as well as their relations and dependencies. Also, it includes the
specification of concept mappings required for the alignment of ontologies.

After the base ontologies have been further developed, adapted to requirements and
integrated, they have to be tested and evaluated. For these tasks, there are services for
debugging (identification of axioms that are responsible for or affected by the incon-
sistency) and for the inconsistency resolution of the conflicts [11]. Also, there are ser-
vices that evaluate the coverage of the ontology w.r.t. the representative set of retrieval
and reasoning tasks envisaged for the use cases (functional evaluation). Finally, perfor-
mance evaluation services are essential to meet the requirements and are incorporated
into the architecture. In order to meet performance targets for particular scenarios, dif-
ferent configurations for ontology axiomatization may be considered.

Ontology Usage Services: In Fig. 2, some application-specific services are shown
to illustrate that ontologies may be used as a technology to implement use cases of a
particular OIS. This can involve reasoning, retrieval, but also other tasks enabled by on-
tologies. In order to support these ontology-based services, the architecture contains the
following lifecycle usage services that are rather independent from specific use cases.

Services that can automatically populate the KB reduce the effort needed for the
manual creation of instance data. These services are performed by agents that request
external ontology data as well knowledge extractors that crawl external non-ontological
sources. They implement learning algorithms to extract instances from text and multi-
media contents. Some of these population services (and ontology learning services)
may incorporate procedures for natural language processing [12] as subcomponents.

Finally, the quality of the acquired instance data has to be ensured. Cleansing ser-
vices are available to adapt the format and labels to the application requirements. The
same instances extracted from different sources may have different labels. Knowledge
fusion services identify and resolve such occurrences. Similarly, knowledge acquired
from different sources may be redundant and often contradictory. This is also addressed
by the fusion services. These services may implement a semi-automatic process, which
involves the user and engineering services such as debugging and editing. The arrows

in Fig. 2 illustrate this interaction between usage and engineering services. It is pro-
vided by the evolution support, a feature part of aforementioned usage services, which
possibly require interaction with engineering services.

3.3 Designing OIS with the Generic Architecture

We now discuss how this architecture can act as a reference that can be adapted to match
functional and technological requirements of a particular OIS.

Matching Functional Requirements: The presented architecture is very generic
and targets the management of the entire ontology lifecycle. Implementing the whole
architecture would result in a fully-fledged integrated system that supports both the
engineering and the application of ontologies. However, a particular application often
requires only a subset of the envisaged services.

Applications may feature only engineering, or only usage of ontologies that already
have been engineered using another system. Then only engineering and usage services,
respectively, have to be incorporated into the concrete architecture of the final applica-
tion. In general, the functional requirements of the system have to be analyzed. Then
these requirements have to be mapped to services of the architecture. Finally, for each
of the identified services, more fine-grained functionalities have to be derived w.r.t. the
use cases to be supported by the application.

For instance, an application that only uses RDF(S) ontologies may not need any
lifecycle services at all. Imagine a web application, which simply presents FOAF pro-
files manually imported from external sources. Then only core ontology services are
needed to import, store and retrieve information from the profiles. A more sophisticated
version may employ agents to crawl profiles from the web. Even then, only population
and basic cleansing is needed, because due to the use of RDF(S), no inconsistencies
can arise that would require engineering services. Now, imagine an application using
OWL ontologies to manage resources of a digital library. Resources are annotated with
ontology concepts that can be defined by the user. Most annotations are extracted auto-
matically and even new concept descriptions are suggested by the system to capture the
knowledge contained in new library resources. Clearly, this application would need a
wide range of usage and engineering services and hence, an integrated application with
lifecycle support.

Matching Technological Requirements: The presented architecture is of abstract
nature and free of assumptions about specific technological settings. For the develop-
ment of a specific application, it can be used as a reference to identify the components
(as discussed previously) and to organize them with the suggested abstraction layers
and control-flow. Then, given specific technological constraints, a concrete architecture
paradigm can be chosen and applied to the abstract architecture. These paradigms cap-
ture best practices in different application settings and can also give additional guidance
for OIS engineering. We will now outline standard paradigms in software engineering
and discuss for which exemplary settings they are most appropriate.

Architecture paradigms can be distinguished along three dimensions, namely the
degree of distribution, coupling and granularity of components. Distribution can range
from non-distributed rich client, over client-server, three-tier [13], multi-tier to fully-
distributed P2P architectures. The last two dimensions make up the differences of two

more concrete architecture paradigms with specific platform assumptions, namely the
component-oriented multi-tier J2EE architecture [6] and the Service-oriented Architec-
ture (SOA) [5]. While J2EE comprises of tightly-coupled and relatively fine-grained
components, SOA advocate the use of loosely-coupled and coarse-grained services.

The main idea behind multi-tier architectures is the encapsulation of each tier, mean-
ing any tier can be upgraded or replaced without affecting the other tiers. While this
organization principle has been adopted (where layer stands for tier), the proposed ar-
chitecture does not make any assumptions about how components may be distributed.
In fact, the layered organization can be seen as an orthogonal principle that can be
combined with any of the mentioned paradigms.

For instance, elements of the architecture can be implemented as components of a
desktop application, e.g. the backend maps to a file system, services and control-flow
map to Plain Old Java Objects (POJOs) and their call hierarchy and GUI components
map to Swing widgets. In another use case, more flexible access may be required, the
application logic may call for more processing capabilities, and the amount of data
cannot be managed efficiently by a file system. Then, a database can be employed as
backend, data access can be provided by Data Access Objects (DAO) and lifecycle ser-
vices are realized as Enterprise Java Beans (EJB) of a J2EE platform, and front-ends
are implemented as Java Server Pages (JSP) to deliver contents over the web. In some
cases lifecycle components could be tightly integrated with other internal systems via
J2EE connectors [9]. In other cases external parties may want to choose from different
offerings and therefore demand a more flexible way to discover ontology services at
runtime and to interact with them on the basis of a standardized protocol. Here, SOA
may be the choice: The fine-grained functionalities of some lifecycle components are
encapsulated in form of coarse-grained services exposed to consumers via WSDL and
SOAP. Instead of using a completely new SOA platform, one may go a more evo-
lutionary way advocated by major J2EE vendors, i.e. switch to a Service Component
Architecture (SCA)7 that implements SOA. SCA provide guidelines for decoupling ser-
vice implementation and service assembly from the details of underlying infrastructure
capabilities. Components can then offer their functionalities as services that can also be
consumed externally. However for internal consumption, they do not necessarily have
to be loosely coupled—since tight coupling can avoid the overhead of creating, parsing
and transporting messages over the network.

In all, the generic architecture gives guidelines for the identification and organiza-
tion of components. The examples above illustrate that there are many other aspects
that have to be considered given concrete requirements. After the choice for a concrete
platform and the paradigm to be applied on the architecture, guidance can then be found
in the respective reference architectures, e.g. see [9] for J2EE, [5] for SOA and SCA.

4 Case Study – An Instantiation of the Generic Architecture

In this section, we discuss the application of the generic architecture w.r.t. a concrete
case study of the NeOn project8 at FAO (United Nations Food and Agriculture Or-

7 http://www.osoa.org/display/Main/Service+Component+Architecture+Home
8 http://www.neon-project.org/web-content/

ganization). Within this case study, we are developing an ontology-based information
system to facilitate the assessment of fisheries stock depletion by integrating the vari-
ety of information sources available. The FAO Fisheries department manages statistical
data on fishing, GIS data, information on aquaculture, geographic entities, description
of fish stocks, etc. Although much of the data are ‘structured’, they are not necessarily
interoperable. In addition, there are information resources that are not available through
databases but as parts of websites, or as documents, etc. These data sources could be
better exploited by bringing together related and relevant information with the use of
ontologies, to provide inference-based services, enabling policy makers and national
governments to make informed decisions. In this context, the goal of the case study
is to implement an ontology-based Fishery Stock Depletion Assessment System (FS-
DAS) as well as an application to manage the fishery ontologies and their lifecycle.
In the following, we follow the methodological guidelines of the previous section: We
illustrate how to match the functional requirements by analyzing the use cases w.r.t. the
individual phases of the ontology lifecycle, and finally show how we match technical
requirements in the realization of these use cases as two particular configurations of the
NeOn toolkit.

4.1 Uses Cases within the Lifecycle of the Fishery Ontology

In the ontology lifecycle of the case study we find a clear separation between the ontol-
ogy engineering and ontology usage phases. In fact, we find two different sets of users
that are involved in ontology engineering and ontology usage. We will now discuss se-
lected use cases in the lifecycle that provide functional requirements that need to be
covered in the architecture of the system.

Ontology Engineering: The ontology engineering environment needs to put mech-
anisms in place to allow all actors involved in the process to create and maintain dis-
tributed networked ontologies and ontology mappings in the fishery knowledge com-
munity. These mechanisms require many of the generic ontology engineering services
discussed in the previous chapter.

There are several actors involved in the engineering phase of the fishery ontology
lifecycle [14], including experts in ontology modeling, ontology editors, and subject
matter experts. Each of the actors needs to be supported in different use cases of the on-
tology development. Ontology development follows a well defined collaborative work-
flow, which needs to be supported in the engineering environment. Further, contex-
tualized visualization and editing modes—depending on the actor and the task to be
performed—are important for the usability and effectiveness of the engineering envi-
ronment.

Due to the scale and heterogeneity of the various information sources, there must
be an easy way to create mappings between ontologies in a manual and semi-automatic
way. Modularization of ontologies—i.e. creation of modules manually and semi-
automatically as well as merging modules—must also be taken into account. The gen-
eration of ontologies from textual sources is another key issue. Given a textual corpora
the system must provide a list of candidate elements of the ontology (classes, instances
and relations between concepts), showing the documents and excerpts supporting the
extracted terminology.

Before publishing a new version of an ontology, debugging and evaluation must be
performed. This involves checking for logical consistency, making comparisons with
other ontologies, and evaluating structural and functional properties of the ontology.

Ontology Usage: The fishery ontologies are used within the FSDAS system to assist
the users—i.e. fishery experts in the FAO Fishery department—in gathering, analyzing
and producing information on the status and trends of fish stock. For example, a fishery
expert may want to research why the stock of tuna is depleting in the Mediterranean
Sea. For this purpose, the ontology-based FSDAS allows authorized users to browse
and query a knowledge base of fisheries digital resources.

The major use case within FSDAS is to perform ad-hoc queries, using both free-text
and ontology elements such as concepts and relations, against the fishery data sources.
In this context, matching of keywords and phrases to ontology elements, assistance
on query formulation and query refinement are supported by the system. The second
major use case related to information access is browsing and navigating the fishery
data sources, e.g. using the ontology to find related data instances for a given concept,
i.e. analyzing stock depletion. In interacting with the FSDAS, users are able to maintain
a profile and store favorite queries.

At runtime, the FSDAS directly integrates dynamic resources to populate the fishery
ontology with data instances, e.g. by crawling remote system websites, etc. Addition-
ally, users have the ability to annotate data instances with the FSDAS system.

Finally, the users of the FSDAS system have the ability to comment the use of the
application and in particular propose modifications to the ontology. This information is
fed back into the ontology development phase to support the evolution of the fishery
ontology. Once a new version of the fishery ontology has been approved, it can be
deployed in the runtime FSDAS application, closing the loop of the ontology lifecycle.

4.2 Instantiation of the Generic Architecture

We now discuss how we address technical requirements in the realization of the case
study using the NeOn toolkit [15] as an implementation of our generic architecture.
The NeOn toolkit provides an infrastructure and software components for both the en-
gineering and the runtime usage of ontologies. For the case study, two applications are
developed, one for the engineering of the fishery ontologies and one for the FSDAS run-
time system. They are used by different sets of end users—i.e. ontology engineers and
fishery experts—with different technological requirements. They are realized as two
particular configurations of the NeOn toolkit, i.e. realized using a subset of components
provided by the toolkit. In particular, both applications are built on a shared infrastruc-
ture, shared data sources and shared core ontology services. However, whereas one is
configured with a bundle of ontology engineering services, the other relies completely
on usage services—as shown in Figure 3.

The Core Ontology Services shared across the engineering and runtime environ-
ments are based on the NeOn ontology model API—an API that supports the man-
agement of rule extended OWL ontologies and ontology mappings [16]—and include
services for reasoning and querying, an ontology repository and registry etc. Based on
the core ontology services, there are higher-level services that cover the ontology usage
and engineering use cases discussed above.

ONTOLOGY-BASED APPLICATIONS’ FRONT-ENDONTOLOGY- ENGINEERING TOOLS’ FRONT-END

Datasource Abstraction

PRESENTATION LAYER

DATA LAYER

connector connector

FSDAS Portal
Graph-Based

Ontology
Browser

Collaborative
Ontology

Editor

UML-Based
Ontology

Editor

Mapping
Editor

ONTOLOGY ENGINEERING SERVICES

Tightly-coupled Components

Automated
Ontology Mapping

Contextualized
Visualization

Ontology
Modularization

Loosely-coupled Components

DebuggingCollaborative Workflow
Support

Ontology Learning Evaluation

CORE ONTOLOGY SERVICES

Reasoning

OWL
Reasoner

Repository RegistryQuerying

SPARQL
Query Support

DL Conjunctive
Query Support

ASFA Abstracts

OSGI RUNTIME

ECLIPSE RICH CLIENT WEB CLIENT

ONTOLOGY USAGE SERVICES

Fishery
Ontology

Population

Duplicate
Detection

Instance
Annotation

Stock
Depletion
Analysis

Search &
Query

Refinement
User Profiling

Ontology Editing &
Change Capturing

Visualization

FIGIS
Resources

FIRMS
Resources

Document
Repository

Regional non-FAO
Resources

National non-FAO
Resources

connectorconnectorconnector connector

ONTOLOGY ENGINEERING ONTOLOGY USAGE

LOGIC LAYER

WebDAV-Based
Ontology Repository

OMV- /ebXML-Based
Ontology Registry

Fig. 3. Case Study Architecture based on the NeOn Platform

The shared infrastructure of core services is based on OSGi, an open Java-based
platform9 that is the foundation of a service oriented architecture. Besides many other
standard platform services, OSGi defines a lifecycle model and a service registry, that
allows for the dynamic interaction of services. The standard implementation used within
the NeOn toolkit is Eclipse Equinox10. The OSGi platform is designed to support both
distributed client-server configurations and desktop configurations via Eclipse/OSGi.
In fact, for the realization of the case study, we implement the ontology engineering
environment using a desktop configuration, i.e. an Eclipse rich-client application, while
the FSDAS is realized using a distributed configuration where user interfaces of the
application are web-based. The reason for this lies in the technical requirements of the

9 http://www.osgi.org/
10 http://eclipse.org/equinox/

two different user groups, where the ontology engineers require a rich tool set on their
local desktops, whereas the fishery experts as non-technical users want to work with
light-weight applications in web environments.

In the ontology engineering environment, we distinguish between tightly and
loosely coupled components: Loosely coupled components are non-interactive, large
grain, potentially remotely used components. They are integrated as Web Services. In
contrast, tightly coupled components are highly interactive, fine grained, locally used
components. Every engineering use case discussed previously is addressed by a compo-
nent consisting of one or more Eclipse plugins. The modularity via the plugin concept of
Eclipse follows the philosophy that “everything is a plugin”. Using this plugin concept,
components for ontology editing, visualization and other functionalities for the differ-
ent actors in the engineering process through the integration of various components
provided by the NeOn toolkit. As an example, the collaborative ontology engineering
is supported by a number of services that are provided by loosely and tightly coupled
components: The local ontology editing is tightly integrated with the change capturing,
while certain services to support the collaborative workflow such as conflict resolution
as well as validation and evaluation services are loosely coupled as web services.

The FSDAS application is realized as a distributed configuration, which combines
OSGi with server-based technology. In our configuration, this is achieved by embed-
ding web-server technology in the OSGi runtime platform, making the ontology usage
services accessible in the web-based FSDAS portal.

5 Conclusion

In order to provide guidance for the development of ontology-based information sys-
tems, we have developed an integrated architecture that takes the complete ontology
lifecycle into account. As we have illustrated, such an architecture is required to address
use cases where ontology usage and engineering are intertwined at runtime, resulting in
a dynamic feedback loop. This loop and the lifecycle activities act as functional require-
ments, which are addressed in our proposal for a generic architecture for ontology-based
information systems.

We have discussed how to adapt this architecture to functional requirements of spe-
cific use cases, from simple ontology applications to systems for integrated ontology
engineering and management. To demonstrate the value of our architecture, we have
shown its application in a concrete case study, using the NeOn toolkit. This toolkit is a
concrete implementation of our generic architecture, integrating reusable lifecycle com-
ponents from and for the community that can facilitate the adoption of semantic tech-
nologies. In the future, we will further add components to the toolkit as well as promote
the integration of tools externally developed by the community, either as tightly-coupled
components or loosely-coupled services. We expect the toolkit to evolve to a more com-
plete set of reusable components which—combined with the generic architecture—can
serve as guidelines for the design and can be leveraged for the implementation of many
other OIS with lifecycle support.

Acknowledgements

This work was partially supported by the European Commission in the IST projects
NeOn (IST-2006-027595) and X-Media (IST-FP6-026978).

References

1. Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., Van de Velde, W.,
Wielinga, B.: Knowledge Engineering and Management: The CommonKADS Methodology.
MITPress (1999)

2. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: WSMX - A Semantic Service-
Oriented Architecture. In: Proceedings of the IEEE International Conference on Web Ser-
vices (ICWS’05), IEEE Computer Society Washington, DC, USA (2005) 321–328

3. Gómez-Pérez, A., González-Cabero, R., Lama, M.: ODE SWS: A Framework for Designing
and Composing Semantic Web Services. IEEE Intelligent Systems 19 (2004) 24–31

4. García-Castro, R., Suárez-Figueroa, M.C., Gómez-Pérez, A., Maynard, D., Costache, S.,
Palma, R., Euzenat, J., Lécué, F., Léger, A., Vitvar, T., Zaremba, M., Zyskowski, D., Kacz-
marek, M., Dzbor, M., Hartmann, J., Dasiopoulou, S.: Architecture of the Semantic Web
Framework. Technical Report D1.2.4, Knowledge Web Consortium (2007)

5. MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F., Metz, R.: OASIS Reference Model
for Service Oriented Architecture v1.0, OASIS Official Committee Specification, approved
August 2006 (2006)

6. Singh, I., Stearns, B., Johnson, M., Enterprise Team: Designing Enterprise Applications
with the J2EE (tm) Platform. The Java Series. Addison-Wesley Longman Publishing Co.,
Inc. Boston, MA, USA (2002)

7. Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering. Advanced
Information and Knowlege Processing. Springer (2003)

8. Wang, Y., Bao, J., Haase, P., Qi, G.: Evaluating formalisms for modular ontologies in dis-
tributed information systems. In: Proc. of The First International Conference on Web Rea-
soning and Rule Systems (RR2007). LNCS 4524, Springer (2007) 178–182

9. Sharma, R., Stearns, B., Ng, T.: J2EE (tm) Connector Architecture and Enterprise Appli-
cation Integration. The Java Series. Addison-Wesley Longman Publishing Co., Inc. Boston,
MA, USA (2002)

10. Wu, Z., Chen, H., Wang, H., Wang, Y., Mao, Y., Tang, J., Zhou, C.: Dartgrid: a semantic
web toolkit for integrating heterogeneous relational databases. In: Semantic Web Challenge
at 4th International Semantic Web Conference (ISWC’06), Athens, USA (2006)

11. Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A framework for
handling inconsistency in changing ontologies. In: Proceedings of the Fourth International
Semantic Web Conference (ISWC2005). Volume 3729 of LNCS., Springer (2005) 353–367

12. Valarakos, A., Paliouras, G., Karkaletsis, V., Vouros, G.: Enhancing Ontological Knowledge
through Ontology Population and Enrichment. Proc. of the 14th Int. Conference on Knowl-
edge Engineering and Knowledge Management (EKAW 2004), LNAI 3257 (2004) 144–156

13. Eckerson, W.W., et al.: Three Tier Client/Server Architecture: Achieving Scalability, Perfor-
mance, and Efficiency in Client Server Applications. Open Information Systems 10 (1995)

14. Iglesias, M., Caracciolo, C., Jaques, Y.: NeOn Deliverable D7.1.1 Specification of user
requirements in the fishery case study . Technical Report D7.1.1, NeOn Consortium (2007)

15. Waterfeld, W., Weiten, M., Haase, P.: NeOn Deliverable D6.2.1 Specification of NeOn ref-
erence architecture and NeOn APIs. Technical Report D6.2.1, NeOn Consortium (2007)

16. Haase, P., Rudolph, S., Wang, Y., Brockmans, S., Palma, R., Euzenat, J., d’Aquin, M.: Net-
worked Ontology Model. Technical Report D1.1.1, NeOn Consortium (2006)

