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Summary. Research into the processing of symbolic knowledge by means of con-
nectionist networks aims at systems which combine the declarative nature of logic-
based artificial intelligence with the robustness and trainability of artificial neu-
ral networks. This endeavour has been addressed quite successfully in the past for
propositional knowledge representation and reasoning tasks. However, as soon as
these tasks are extended beyond propositional logic, it is not obvious at all what
neural-symbolic systems should look like such that they are truly connectionist and
allow for a declarative reading at the same time.

The Core Method — which we present here — aims at such an integration. It is
a method for connectionist model generation using recurrent networks with feed-
forward core. These networks can be trained by standard algorithms to learn sym-
bolic knowledge, and they can be used for reasoning about this knowledge.

9.1 Introduction

From the very beginning, artificial neural networks have been related to propo-
sitional logic. McCulloch-Pitts networks, as presented in the seminal paper

* Sebastian Bader was supported by the GK334 of the German Research Founda-
tion.

T Andreas Witzel was supported by a Marie Curie Early Stage Research fellowship
in the project GloRiClass (MEST-CT-2005-020841).



206 Sebastian Bader, Pascal Hitzler, Steffen Holldobler and Andreas Witzel

from 1943 [1], represent propositional formulae. Finding a global minimum
of the energy function modeling a symmetric network corresponds to finding
a model of a propositional logic formula and vice versa [2]. These are just
two examples for the strong relation between neural networks and proposi-
tional logic, which is well-known and well-studied. However, similar research
concerning more expressive logics did not start until the late 1980s, which
prompted John McCarthy to talk about the propositional fixation of connec-
tionist systems in [3].

Since then, there have been numerous attempts to model first-order frag-
ments in connectionist systems.* In [5] energy minimization was used to model
inference processes involving unary relations. In [6] and [7] multi-place pred-
icates and rules over such predicates are modeled. In [8] a connectionist in-
ference system for a limited class of logic programs was developed. But a
deeper analysis of these and other systems reveals that the systems are in
fact propositional, and their capabilities were limited at best. Recursive auto-
associative memories based on ideas first presented in [9], holographic reduced
representations [10] or the networks used in [11] have considerable problems
with deeply nested structures. We are unaware of any connectionist system
that fully incorporates the power of symbolic knowledge and computation as
argued for in e.g. [12], and indeed there remain many open challenges on the
way to realising this vision [13].

In this chapter we are mainly interested in knowledge based artificial neural
networks, i.e., networks which are initialized by available background knowl-
edge before training methods are applied. In [14] it has been shown that such
networks perform better than purely empirical and hand-built classifiers. [14]
uses background knowledge in the form of propositional rules and encodes
these rules in multi-layer feed-forward networks. Independently, we have de-
veloped a connectionist system for computing the least model of propositional
logic programs if such a model exists [15]. This system has been further de-
veloped to the so-called Core Method: background knowledge represented as
logic programs is encoded in a feed-forward network, recurrent connections
allow for a computation or approximation of the least model of the logic pro-
gram (if it exists), training methods can be applied to the feed-forward kernel
in order to improve the performance of the network, and, finally, an improved
program can be extracted from the trained kernel closing the neural-symbolic
cycle as depicted in Figure 9.1.

In this chapter, we will present the Core Method in Section 9.3. In par-
ticular, we will discuss its propositional version including its relation to [14]
and its extensions. The main focus of this paper will be on extending the
Core Method to deal with first-order logic programs in Section 9.4. In partic-
ular, we will give a feasibility result, present a first practical implementation,
and discuss preliminary experimental data in Section 9.5. These main sections

* See also the survey [4].
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Fig. 9.1. The Neural-Symbolic Cycle.

are framed by introducing basic notions and notations in Section 9.2 and an
outlook in Section 9.6.

9.2 Preliminaries

We assume the reader to be familiar with basic notions from artificial neu-
ral networks and logic programs and refer to e.g. [16] and [17], respectively.
Nevertheless, we repeat some basic notions.

9.2.1 Logic Programs

A logic program over some first order language L is a set of clauses of the
form A« Ly A--- N\ Ly, where A is an atom in £, and the L; are literals in
L, that is, atoms or negated atoms. A is called the head of the clause, the L;
are called body literals, and their conjunction Li A --- A L, is called the body
of the clause. If n = 0, A is called a fact. A clause is ground if it does not
contain any variables. Local variables are those variables occurring in some
body but not in the corresponding head. A logic program is covered if none
of the clauses contain local variables. A logic program is propositional if all
predicate letters occurring in the program are nullary.

FEzample 1. The following propositional logic program will serve as our run-
ning example in Section 9.3.

P1={np, % p is always true.
r«— pAq, % 1 is true if p is true and q is false.

r—-pAq} % 7 is true if p is false and q is true.
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Ezample 2. The following (first order) logic program will serve as our running
example in Section 9.4.

Py ={ e(0). % 0 is even
e(s(X)) < o(X). % the successor s(X) of an odd X is even
o(X) ——e(X). } % X isodd if it is not even

The Herbrand universe Uy is the set of all ground terms of £, the Herbrand
base B is the set of all ground atoms, which we assume to be infinite — indeed
the case of a finite B, can be reduced to a propositional setting. A ground
instance of a literal or a clause is obtained by replacing all variables by terms
from U,. For a logic program P, G(P) denotes the set of all ground instances
of clauses from P.

A level mapping is a function assigning a natural number |A| > 1 to each
ground atom A. For negative ground literals we define |-A| := |A|. A logic
program P is called acyclic if there exists a level mapping | - | such that for
all clauses A < Ly A--- A L, € G(P) we have |A| > |L;| for 1 <i <n.

Exzample 3. Consider the program from Example 2 and let s” denote the n-
fold application of s. One possible level mapping for which we find that Ps is
acyclic is given as:

|-|: B — Nt
e(s"(0)) — 2n+1
o(s™(0)) — 2n + 2.

A (Herbrand) interpretation I is a subset of B.. Those atoms A with A € T
are said to be true under I, those with A ¢ I are said to be false under I.
Zr denotes the set of all interpretations. An interpretation I is a (Herbrand)
model of a logic program P (in symbols: I = P) if I is a model for each clause
in G(P) in the usual sense.

Exzample 4. For the program Ps from Example 2 we have
M :={e(s™(0)) | n even} U {o(s™(0)) | m odd} = P.

Given a logic program P, the single-step operator Tp : Ty — Zp maps
an interpretation I to the set of exactly those atoms A for which there is a
clause A — body € G(P) such that the body is true under I. The operator Tp
captures the semantics of P as the Herbrand models of the latter are exactly
the pre-fixed points of the former, i.e. those interpretations I with Tp(I) C I.
For logic programming purposes it is usually preferable to consider fixed points
of Tp, instead of pre-fixed points, as the intended meaning of programs. These
fixed points are called supported models of the program [18]. In Example 2,
the (obviously intended) model My is supported, while B, is a model but not
supported.
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9.2.2 Artificial Neural Networks

Artificial neural networks consist of simple computational units (neurons),
which receive real numbers as inputs via weighted connections and perform
simple operations: the weighted inputs are added and simple functions (like
threshold, sigmoidal) are applied to the sum. We will consider networks, where
the units are organized in layers. Neurons which do not receive input from
other neurons are called input neurons, and those without outgoing connec-
tions to other neurons are called output neurons. Such so-called feed-forward
networks compute functions from R™ to R™, where n and m are the number
of input and output units, respectively. The gray shaded area in Figure 9.2
shows a simple feed-forward network. In this paper we will construct recurrent
networks by connecting the output units of a feed-forward network N to the
input units of N. Figure 9.2 shows a blueprint of such a recurrent network.

9.3 The Core Method for Propositional Logic

In a nutshell, the idea behind the Core Method is to use feed-forward con-
nectionist networks — called core — to compute or approximate the meaning
function of logic programs. If the output layer of a core is connected to its in-
put layer then these recurrent connections allow for an iteration of the mean-
ing function leading to a stable state, corresponding to the least model of
the logic program provided that such a least model exists (see Figure 9.2).
Moreover, the core can be trained using standard methods from connectionist
systems. In other words, we are considering connectionist model generation
using recurrent networks with feed-forward core.

Fig. 9.2. The blueprint of a recurrent network used by the Core Method.

The ideas behind the Core Method for propositional logic programs were
first presented in [15] (see also [19]). Consider the logic program from Ex-
ample 1. A translation algorithm turns such a program into a core of logical
threshold units. Because the program contains the predicate letters p, ¢ and
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r only, it suffices to consider interpretations of these three letters. Such inter-
pretations can be represented by triples of logical threshold units. The input
and the output layer of the core consist exactly of such triples. For each rule
of the program a logical threshold unit is added to the hidden layer such that
the unit becomes active iff the preconditions of the rule are met by the current
activation pattern of the input layer; moreover this unit activates the output
layer unit corresponding to the postcondition of the rule. Figure 9.3 shows the
network obtained by the translation algorithm if applied to P;.

Fig. 9.3. The core corresponding to P1 = {p, r < pA—q, 7 — —p A q} . Solid
connections have weight 1.0, dashed connections have weight —1.0. The numbers
within the units denote the thresholds.

In [15] we proved — among other results — that for each propositional
logic program P there exists a core computing its meaning function T and
that for each acyclic propositional logic program P there exists a core with
recurrent connections such that the computation with an arbitrary initial
input converges and yields the unique fixed point of Tp.

The use of logical threshold units in [15] made it easy to prove these results.
However, it prevented the application of standard training methods like back-
propagation to the kernel. This problem was solved in [20] by showing that the
same results can be achieved if bipolar sigmoidal units are used instead (see
also [21]). [20] also overcomes a restriction of the KBANN method originally
presented in [14]: rules may now have arbitrarily many preconditions and
programs may have arbitrarily many rules with the same postcondition.

The propositional Core Method has been extended in many directions.
In [22] three-valued logic programs are discussed; This approach has been
extended in [23] (see also the chapter by Komendantskaya, Lane and Seda in
this volume) to finitely determined sets of truth values. Modal logic programs
have been considered in [24] (see also the chapter by Garcez in this volume).
Answer set programming and meta-level priorities are discussed in [21]. The
Core Method has been applied to intuitionistic logic programs in [25].

To summarize, the propositional Core Method allows for model generation
with respect to a variety of logics in a connectionist setting. Given logic pro-
grams are translated into recurrent connectionist networks with feed-forward
cores, such that the cores compute the meaning functions associated with the
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programs. The cores can be trained using standard learning methods lead-
ing to improved logic programs. These improved programs must be extracted
from the trained cores in order to complete the neural-symbolic cycle. The
extraction process is outside the scope of this chapter and interested readers
are referred to e.g. [26] or [21].

9.4 The Core Method and First-Order Logic

First- or higher-order logics are the primary choice if structured objects and
structure-sensitive processes are to be modeled in Artificial Intelligence. In
particular, first-order logic plays a prominent role because any computable
function can be expressed by first-order logic programs. The extension of the
Core Method to first-order logic poses a considerable problem because first-
order interpretations usually do not map a finite but a countably infinite set of
ground atoms to the set the truth values. Hence, they cannot be represented
by a finite vector of units, each of which represents the value assigned to a
particular ground atom.

We will first show in Section 9.4.1 that an extension of the core method
to first-order logic programs is feasible. However, the result will be purely
theoretical and thus the question remains how core-networks can be con-
structed for first-order programs. In Section 9.4.2, a first practical solution
is discussed, which approximates the meaning functions of logic programs by
means of piecewise constant functions. This approach is extended to a multi-
dimensional setting in Section 9.4.3 allowing for arbitrary precision, even if
implemented on a real computer. A novel training method, tailored for our
specific setting, is discussed in Section 9.4.4. Some preliminary experimental
data are presented in Section 9.5.

9.4.1 Feasibility

It is well known that multilayer feed-forward networks are universal approxi-
mators [27, 28] for certain functions of the type R™ — R™. Hence, if we find a
way to represent interpretations of first-order logic programs by (finite vectors
of) real numbers, then feed-forward networks can be used to approximate the
meaning functions of such programs.

As proposed in [29], we use level mappings to bridge the gap between the
space of interpretations and the real numbers.

Definition 1. Let I € Zp be a Herbrand interpretation over Be, |-| be an in-
jective level mapping from Bz to NT and b > 2. Then we define the embedding
function v as follows:

LZI[/—>R

Iy AL

Ael
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We will use € to denote the set of all embedded interpretations:
C={I)| eI} CR

For b > 2, we find that ¢ is an injective mapping from Z, to R and a
bijection between Z, and €.> Hence, we have a sound and complete encoding
of interpretations.

Definition 2. Let P be a logic program and Tp its associated meaning oper-
ator. We define a sound and complete encoding fp : € — &€ of Tp as follows:

fr(r) = u(Tp(™(r))).

In [29] we proved — among other results — that for each logic program P
which is acyclic wrt. a bijective level mapping the function fp is contractive,®
hence continuous. Moreover, € is a compact subset of the real numbers. This
has various implications: (i) We can apply Funahashi’s result, viz. that every
continuous function on (a compact subset of) the reals can be uniformly ap-
proximated by feed-forward networks with sigmoidal units in the hidden layer
[28]. This shows that the meaning function of a logic program (of the kind dis-
cussed before) can be approximated by a core. (ii) Considering an appropriate
metric, which will be discussed in a moment, we can apply Banach’s contrac-
tion mapping theorem (see e.g. [30]) to conclude that the meaning function
has a unique fixed point, which is obtained from an arbitrary initial interpre-
tation by iterating the application of the meaning function. Using (i) and (ii)
we were able to prove in [29] that the least model of logic programs which are
acyclic wrt. a bijective level mapping can be approximated arbitrarily well by
recurrent networks with feed-forward core.

But what exactly is the approximation of an interpretation or a model in
this context? Let P be a logic program and [ a level mapping. We can define
a metric d on interpretations I and J as follows:

0 if I =J,
27" if n is the smallest level on which I and J disagree.

a(I,J) = {

As shown in [31] the set of all interpretations together with d is a complete
metric space. Moreover, an interpretation I approximates an interpretation
J to degree n € N iff d(I,J) < 27". In other words, if a recurrent network
approximates the least model I of an acyclic logic program to a degree n € N

and outputs r then for all ground atoms A whose level is equal or less than n
we find that I(A4) = c~1(r)(A).

Theorem 1. Let P be an acyclic logic program with respect to some bijective
level mapping v. Then there exists a 3-layer core-network with sigmoidal acti-
vation function in the hidden layer approzimating Tp up to a given accuracy
e>0.

5 For b= 2, ¢ is not injective, as 0.012 = 0.15.

5 This holds for b > 3 only. Therefore, we will use b = 4 throughout this article.
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Proof (sketch). This theorem follows directly from the following facts:

1. Tp for an acyclic logic program is contractive [31].
2. fp is a sound and complete embedding of Tp into the real numbers which
is contractive and hence continuous for acyclic logic programs [29].
. € C R is compact [29].
4. Every continuous function on a compact subset of R can be uniformly
approximated by feed-forward networks with sigmoidal units in the hidden
layer (Funahashi’s theorem [28]).

w

Theorem 1 shows the existence of an approximating core network. Similar
results for more general programs can also be obtained and are reported in
[19]. Moreover, in [29] it is also shown that a recurrent network with a core
network as stated in Theorem 1 approximates the least fixed point of T for
an acyclic logic program P. But as mentioned above, these results are purely
theoretical. Networks are known to exist, but we do not yet know how to
construct them given a logic program. We will address this next.

9.4.2 Embedding

In this section, we will show how to construct a core network approximating
the meaning operator of a given logic program. As above, we will consider logic
programs P which are acyclic wrt. a bijective level mapping. We will construct
sigmoidal networks and RBF networks with a raised cosine activation function.
All ideas presented here can be found in detail in [32]. To illustrate the ideas,
we will use the program P, given in Example 2 as a running example. The
construction consists of five steps:

1. Construct fp as a real embedding of Tp.

Approximate fp using a piecewise constant function fp.
Implement fp using (a) step and (b) triangular functions.
Implement fp using (a) sigmoidal and (b) raised cosine functions.
Construct the core network approximating fp.

U

In the sequel we will describe the ideas underlying the construction. A
rigorous development including all proofs can be found in [32, 33]. One should
observe that fp is a function on € and not on R. Although the functions
constructed below will be defined on intervals of R, we are concerned with
accuracy on ¢ only.

Construct fp as a real embedding of Tp:

We use fp(r) = «(Tp(:=1(r))) as a real-valued version for Tp. As mentioned
above, fp is a sound and complete encoding of the immediate consequence
operator. But first, we will have a closer look at its domain €. For readers
familiar with fractal geometry, we note that € is a variant of the classical
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Cantor set [34]. The interval [0, 1] is split into b equal parts, where b is the
natural number used in the definition of the embedding function ¢. All except
the left- and rightmost subintervals are removed. The remaining two parts are
split again and the subintervals except the first and the last are removed, etc.
This process is repeated ad infinitum and we find € to be its limit, i.e. it is the
intersection of all €,, where €,, denotes the result after n splits and removals.
The first four iterations (i.e. €y, €1, € and €3) are depicted in Figure 9.4.

Co: }
[ }
Co: -
Cs3: t
Fig. 9.4. The first four iterations (€o, €1, €2 and €3) of the construction of € for

b=4.

FEzample 5. Considering program Ps, and the level mapping from Example 3
(le(s™(0))] == 2n + 1, |o(s™(0))| := 2n + 2), we obtain fp, as depicted in
Figure 9.5 on the left.

Approximate fp using a piecewise constant function fp:

Under the assumption that P is acyclic, we find that all variables occurring in
the precondition of a rule are also contained in its postcondition. Hence, for
each level n and two interpretations I and J, we find that whenever d(I, J) <
27" holds, d(Tp(I), Tp(J)) < 27" follows. Therefore, we can approximate Tp
to degree n by some function Tp which considers ground atoms with a level
less or equal to n only. Due to the acyclicity of P, we can construct a finite
ground program P C G(P) containing those clauses of G(P) with literals
of level less or equal n only and find Tp = Tp. We will use fp to denote
the embedding of Tp and we find that fp := fp is a piecewise constant
function, being constant on each connected interval of &, ;. Furthermore, we
find that |fp(x) — fp(x)] < 27" for all x € €, i.e., fp is a constant piecewise
approximation of fp.

Example 6. For our running example Py and n = 3, we obtain

Py = { €(0).
e(s(0)) « 0(0).
0(0) «— —e(0). }

and fp, as depicted in Figure 9.5 on the right.
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UTp(1)) UTp(1))
03, =- 03 -

— (1) = u(1)
0.3 0.3

Fig. 9.5. On the left is the plot of fp,. On the right a piecewise constant approxi-
mation fp, (for level n = 3) of fp, (depicted in light gray) is shown.

UTp (D)) (Tp (D))
0.3 — 0.3

— () | L

0.3 0.3
Fig. 9.6. Two linear approximations of fp,. On the left, three step functions were
used; On the right, eight triangular functions (depicted in gray) add up to the
approximation, which is shown using thick lines.

Implement fp using (a) step and (b) triangular functions:

As a next step, we will show how to implement fp using step and triangular
functions. Those functions are the linear counterparts of the functions actually
used in the networks constructed below. If fp consists of k intervals, then we
can implement it using k — 1 step functions which are placed such that the
steps are between two neighboring intervals. This is depicted in Figure 9.6 on
the left.

Each constant piece of length \ := ﬁ . % could also be implemented using
two triangular functions with width A which are centered at the endpoints.
Those two triangles add up to the constant piece. For base b, we find that
the gaps between two intervals have a length of at least (b — 2)A. Therefore,
the triangular functions of two different intervals will never interfere. The
triangular implementation is depicted in Figure 9.6 on the right.

Implement fp using (a) sigmoidal and (b) raised cosine functions:

To obtain a sigmoidal approximation, we replace each step function with a sig-
moidal function. Unfortunately, those add some further approximation error,



216 Sebastian Bader, Pascal Hitzler, Steffen Holldobler and Andreas Witzel

which can be dealt with by increasing the accuracy in the constructions above.
By dividing the desired accuracy by two, we can use one half as accuracy for
the constructions so far and the other half as a margin to approximate the con-
stant pieces by sigmoidal functions. This is possible because we are concerned
with the approximation on € only.

The triangular functions described above can simply be replaced by raised
cosine activation functions, as those add up exactly as the triangles do and
do not interfere with other intervals either.

(Tp (D)) (Tp(I))

(1) &)
0.3 **/—\/ 0.3 —

(1) ()
0.3 0.3

Fig. 9.7. Two non-linear approximations of fp,. On the left, sigmoidal functions
were used and on the right, raised cosines.

Construct the core network approximating fp:

A standard sigmoidal core network approximating the T’r-operator of a given
program P consists of:

e An input layer containing one input unit whose activation will represent
an interpretation I.

e A hidden layer containing a unit with sigmoidal activation function for
each sigmoidal function constructed above.

e An output layer containing one unit whose activation will represent the
approximation of Tp(I).

The weights from input to hidden layer together with the bias of the hidden
units define the positions of the sigmoidals. The weights from hidden to output
layer represent the heights of the single functions. An RBF network can be
constructed analogously, but will contain more hidden layer units, one for each
raised cosine functions. Detailed constructions can be found in [32].

A constructive proof for Theorem 1 is now possible. It follows directly
from the fact that the network constructed as above approximates a given
Tp-operator up to any given accuracy. As the proof of the correctness of the
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construction is rather straightforward but tedious, we omit it here and refer
the interested reader to [32, 33].

In this first approach we used a one-dimensional embedding to obtain
a unique real number ¢(I) for a given interpretation I. Unfortunately, the
precision of a real computer is limited, which implies that using e.g. a 32-bit
computer we could embed the first 16 atoms only. We address this problem
in the next section.

9.4.3 Multi-Dimensional Embedding

We have just seen how to construct a core network for a given program and
some desired level of accuracy. Due to the one-dimensional embedding, the
precision of a real implementation is very limited. This limitation can be
overcome by distributing an interpretation over more than one real number.
In our running example P2, we could embed all even-atoms into one real num-
ber and all odd-atoms into another one, thereby obtaining a two-dimensional
vector for each interpretation, hence doubling the accuracy. By embedding
interpretations into higher-dimensional vectors, we can approximate meaning
functions of logic programs arbitrarily well. For various reasons, spelled out
in [35, 36], we will use an RBF network approach, inspired by vector-based
networks as described in [37]. Analogously to the previous section, we will
proceed as follows:

1. Construct fp as a real embedding of Tp. -
2. Approximate fp using a piecewise constant functions fp.
3. Construct the core network approximating fp.

Le., after discussing a new embedding of interpretations into vectors of real
numbers, we will show how to approximate the embedded T’p-operator using a
piecewise constant function. This piecewise function will then be implemented
using a connectionist system.

Additionally, we will present a novel training method, tailored for our
specific setting. The system presented here is a fine blend of techniques from
the Supervised Growing Neural Gas (SGNG) [37] and our embedding.

Construct fp as a real embedding of T’p:

We will first extend level mappings to a multi-dimensional setting, and then
use them to represent interpretations as real vectors. This leads to a multi-
dimensional embedding of Tp.

Definition 3. An m-dimensional level mapping is a bijective function || - || :
B — (N, {1,...,m}). For A € Bz and ||A]| = (I,d), we call | and d the
level and dimension of A, respectively. Again, we define ||=A| := || A4]|.
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Ezxample 7. Reconsider the program from Example 2. A possible 2-dimensional
level mapping is given as:
H : ” 1 B — (N+’{172})
e(s"(0)) = (n+1,1)
o(s™(0)) — (n+1,2).
ILe., all even-atoms are mapped to the first dimension, whereas the odd-atoms
are mapped to the second.

Definition 4. Let b > 3 and let A € Bz be an atom with ||Al| = (I,d). The
m-dimensional embedding ¢ : By — R™ is defined as:

b=t ifj=d

0 otherwise

t(A) = (1(A),...,tm(A4) with j(A):= {

The extension ¢ : Ty — R™ is obtained as:

) =) u(A).

Ael

We will use €™ to denote the set of all embedded interpretations:
e ={(I) | I €I} CR™.

As mentioned above, ¢! is the classical Cantor set and €2 the 2-dimensional
variant of it [34]. Obviously, ¢ is injective for a bijective level mapping and it is
bijective on €. Without going into detail, Figure 9.8 shows the first 4 steps
in the construction of 2. The big square is first replaced by 2™ shrunken
copies of itself, the result is again replaced by 2™ smaller copies and so on.
The limit of this iterative replacement is €2. Again, we will use €7 to denote
the result of the i-th replacement, i.e. Figure 9.8 depicts €3,¢? ¢3 and ¢3.
For readers with background in fractal geometry we note, that these are the
first 4 applications of an appropriately set up iterated function system [34].

Exzample 8. Using the 1-dimensional level mapping from Example 3, we obtain
¢! as depicted in Figure 9.8 at the top. Using the 2-dimensional from above,
we obtain €2 and ¢(Mz) = (0.10104,0.01014) =~ (0.2666667, 0.0666667) for the
embedding of the intended model Ms.

Using the m-dimensional embedding, the T’p-operator can be embedded
into the real vectors to obtain a real-valued function fp.

Definition 5. Let ¢ be an m-dimensional embedding as introduced in Defini-
tion 4. The m-dimensional embedding fp of a given T'p-operator is defined
as:

fp: @™ —gm
x— ¢ (Tp (¢ 1(x))).

This embedding of Tp is preferable to the one presented above, because it
allows for better approximation precision on real computers.
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Fig. 9.8. The first four iterations of the construction of ¢* are depicted on the top.
The construction of €2 is depicted below containing ¢(M2) from Example 8. Both
are constructed using b = 4.

Approximate fp using a piecewise constant function fp:

As above and under the assumption that P is acyclic, we can approximate Tp
up to some level n by some Tp. After embedding T into R™, we find that
it is constant on certain regions, namely on all connected intervals in &€ ;.
Those intervals will be referred to as hyper-squares in the sequel. We will use
H; to denote a hyper-square of level [, i.e. one of the squares occurring in
¢;*. An approximation of T’ up to some level n will yield a function which is
constant on all hyper-squares of level n — 1.

Ezample 9. Considering program Pz, and the level mapping from Example 7,
we obtain fp for n = 3 as depicted in Figure 9.9.

a(T) o w2(1)

- 11 (1) v ()
Fig. 9.9. fp for Ps, the 2-dimensional level mapping from Example 7 and n = 3. The

outputs for dimension 1 and 2 are shown on the left and on the right, respectively.

To simplify the notations later, we introduce the largest exclusive hyper-
square and the smallest inclusive hyper-square as follows.
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Definition 6. The largest exclusive hyper-square of a vector u € €F* and
a set of vectors V.= {vy,...,vip} C €, denoted by Hey(u,V), either does
not exist or is the hyper-square H of least level for which uw € H and V N
H = (). The smallest inclusive hyper-square of a non-empty set of vectors
U={u,...,ux} CCF, denoted by H;,(U), is the hyper-square H of greatest
level for which U C H.

Ezample 10. Let v; = (0.07,0.07), v2 = (0.27,0.03), v3 = (0.13,0.27) and
vg = (0.27,0.13) as depicted in Figure 9.10. The largest exclusive hyper-square
of v1 with respect to {va, v3,v4} is shown in light gray on the left. That of vs
with respect to {v1,v2,v4} does not exists, because there is no hyper-square
which contains only v3. The smallest inclusive hyper-square of all four vectors
is shown on the right, and is in this case €.

U3 U3

V4

/ /
V1 —_| U1 —_|
| .o () i ] V9
/ /
. e .. .‘ <

0.3 0.3
Fig. 9.10. The largest exclusive hyper-square of vi with respect to the set
{v2,v3,v4} is shown on the left and the smallest inclusive hyper-square of the set

{v1,v2,v3,v4} is shown on the right. Both are depicted in light gray together with
¢? in black.

Construct the core network approximating fp:

We will use a 3-layered network with a winner-take-all hidden layer. For each
hyper-square H of level n— 1, we add a unit to the hidden layer, such that the
input weights encode the position of the center of H. The unit shall output
1 if it is selected as winner, and 0 otherwise. The weight associated with the
output connections of this unit is the value of fp on that hyper-square. Thus,
we obtain a connectionist network approximating the semantic operator Tp
up to the given accuracy €.

To determine the winner for a given input, we designed an activation
function such that its outcome is greatest for the closest “responsible” unit.
Responsible units are defined as follows: Given some hyper-square H, units
which are positioned in H but not in any of its sub-hyper-squares are called



9 The Core Method for First-Order Logic Programs 221

Input: x,y € €
Output: Activation de (x,y) € (N, {1, 2,3}, R)

if x =y then return (0,0, 0)
l:= level of Hiyn({x,¥})
Compute k according to the following 3 cases:

3 if Hin({x}) and Hin({y}) are of level greater than [
k=42 if Hin({x}) or H;n({y}) is of level greater than [

1 otherwise

m = rly‘, i.e., m is the inverse of the Euclidean distance

return (I, k,m)

Fig. 9.11. Algorithm for the activation function for the Fine Blend

default units of H, and they are responsible for inputs from H except for
inputs from sub-hyper-squares containing other units. If H does not have any
default units, the units positioned in its sub-hyper-squares are responsible for
all inputs from H as well. After all units’ activations have been computed,
the unit with the greatest value is selected as the winner. The details of
this function d¢ are given in Algorithm 9.11. Please note that the algorithm
outputs a 3-tuple, which is compared component wise, i.e. the first component
is most important. If for two activations this first component is equal, the
second component is used and the third, if the first two are equal.

Example 11. Let v1,v2,v3 and vy from Example 10 be the incoming connec-
tions for the units uy,us,u3 and uy respectively. The different input regions
for which each of the units are responsible are depicted in Figure 9.12. For
the vector ¢ = (0.05,0.02) (also shown in Figure 9.12), we obtain the following
activations:

de(vy,4) = (1,2,20.18)
de(va,1) = (0,1,4.61)
de(vs,i) = (0,2,3.84)
de(v4,7) = (0,2,4.09)

Le., we find de(vi,4) > de(va,i) > de(vs,i) > de(ve,i). Even though, v,
is euclidically closer to ¢ than vz and vy it is further away according to our
?distance” function. This is due to the fact, that it is considered to be the
default unit for the south-east hyper-square, whereas v3 and v4 are responsible
for parts of the big square.

9.4.4 Training

In this section, we will describe the adaptation of the system during train-
ing, i.e. how the weights and the structure of a network are changed, given
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U3

/’U4

V2

3

Fig. 9.12. The areas of responsibility for vi, v2, vs and v4. For each of the four
regions one of the units is responsible.

training samples with input and desired output. This process can be used to
refine a network resulting from an incorrect program, or to train a network
from scratch.” The training samples in our case come from the original (non-
approximated) program, but might also be observed in the real world or given
by experts. First we discuss the adaptation of the weights and then the adap-
tation of the structure by adding and removing hidden-layer units. Some of
the methods used here are adaptations of ideas described in [37]. For a more
detailed discussion of the training algorithms and modifications we refer to
[35, 36].

Adapting the weights

Let x be the input, y be the desired output and u be the winner-unit from
the hidden layer. Let w;,, denote the weights of the incoming connections of
u and W, be the weights of the outgoing connections. To adapt the system,
we move u towards the center ¢ of Hy, ({x,u}), i.e.:

Win — p-c+ (1 —p) wip.
Furthermore, we change the output weights for u towards the desired output:
Wout — 1Y + (1 =1) Wour-

1 and p are predefined learning rates. Note that (in contrast to the methods
described in [37]) the winner unit is not moved towards the input, but towards
the center of the smallest hyper-square including the unit and the input.
The intention is that units should be positioned in the center of the hyper-
square for which they are responsible. Figure 9.13 depicts the adaptation of
the incoming connections.

" E.g., using an initial network with a single hidden layer unit.
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U3

U3

Y
0.3

Fig. 9.13. The adaptation of the input weights for a given input ¢. The first row
shows the result of adapting vi. The second row shows the result if v1 would not
be there and therefore va would be selected as winner. To emphasize the effect, we
used a learning rate u = 1.0, i.e., the winning unit is moved directly into the center
of the hyper-square.

Adding new units

The adjustment described above enables a certain kind of expansion of the
network by allowing units to move to positions where they are responsible for
larger areas of the input space. A refinement now should take care of densifying
the network in areas where a great error is caused. Every unit will accumulate
the error for those training samples it is winner for. If this accumulated error
exceeds a given threshold, the unit will be selected for refinement. Le., we try
to figure out the area it is responsible for and a suitable position to add a new
unit.

Let u be a unit selected for refinement. If it occupies a hyper-square on its
own, then the largest such hyper-square is considered to be u’s responsibility
area. Otherwise, we take the smallest hyper-square containing u. Now w is
moved to the center of this area. Information gathered by u during the training
process is used to determine a sub-hyper-square into whose center a new
unit is placed, and to set up the output weights for the new unit. All units
collect statistics to guide the refinement process. E.g., the error per sub-hyper-
square or the average direction between the center of the hyper-square and
the training samples contributing to the error could be used (weighted by the
error). This process is depicted in Figure 9.14.

Removing inutile units

Each unit maintains a utility value, initially set to 1, which decreases over
time and increases only if the unit contributes to the network’s output. The
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Fig. 9.14. Adding a new unit to support v4. First, v4 is moved to the center of
the hyper-square it is responsible for. There are four possible sub-hyper-squares to
add a new unit. Because v4 is neither responsible for the north-western, nor for the
south-eastern sub-hyper-square, there are two cases left. If most error was caused in
the south western sub-hyper-square (a), a new unit (vs) is added there. If most error
was caused in the north-eastern area (b), a new unit (vs) would be added there.

contribution of a unit is the expected increase of error if the unit would be
removed [37]. If a unit’s utility drops below a threshold, the unit will be
removed as depicted in Figure 9.15.

Fig. 9.15. Removing an inutile unit. Let us assume that the outgoing weights of
v1 and vg are equal. In this case we would find that the over-all error would not
increase if we remove v;. Therefore its utility would decrease over time until it drops
below the threshold and the unit is removed.

The methods described above, i.e. the adaptation of the weights, the ad-
dition of new units and the removal of inutile ones, allows the network to
learn from examples. While the idea of growing and shrinking the network
using utility values was taken from vector-based networks [37], the adapta-
tion of the weights and the positioning of new units are specifically tailored
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for the type of function we like to represent, namely functions on €. The
preliminary experiments described in the following section, will show that our
method actually works.

9.5 Evaluation

In this section we will discuss some preliminary experiments. Those are not
meant to be exhaustive, but rather to provide a proof of concept. An in-depth
anaylsis of all required parameters will be done in the future. In the diagrams,
we use a logarithmic scale for the error axis, and the error values are relative
to €, i.e. a value of 1 designates an absolute error of €.

To initialize the network we used the following wrong program:

e(s(X)) « —o(X).
o(X) « e(X).

Training samples were created randomly using the semantic operator of the
correct program given in Example 2, viz.:

(0).
(s(X)) — o(X).
o(X) « —e(X).

e
e

Variants of Fine Blend

To illustrate the effects of varying the parameters, we use two setups: One with
softer utility criteria (FineBlend 1) and one with stricter ones (FineBlend 2).
Figure 9.16 shows that, starting from the incorrect initialization, the former
decreases the initial error, paying with an increasing number of units, while the
latter significantly decreases the number of units, paying with an increasing
error. Hence, the performance of the network critically depends on the choice
of the parameters. The optimal parameters obviously depend on the concrete
setting, e.g. the kind and amount of noise present in the training data, and
methods for finding them will be investigated in the future. For our further
experiments we will use the FineBlend 1 parameters, which resulted from a
mixture of intuition and (non-exhaustive) comparative simulations.

Fine Blend versus SGNG

Figure 9.17 compares FineBlend 1 with SGNG [37]. Both start off similarly,
but soon SGNG fails to improve further. The increasing number of units is
partly due to the fact that no error threshold is used to inhibit refinement, but
this should not be the cause for the constantly high error level. The choice of
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Fig. 9.16. FineBlend 1 versus FineBlend 2.

SGNG parameters is rather subjective, and even though some testing was done
to find them, they might be far from optimal. Finding the optimal parameters
for SGNG is beyond the scope of this paper; however, it should be clear that
it is not perfectly suited for our specific application. This comparison to an es-
tablished generic architecture shows that our specialized architecture actually
works, i.e. it is able to learn, and that it achieves the goal of specialization,
i.e. it outperforms the generic architecture in our specific setting.

Robustness

The described system is able to handle noisy data and to cope with damage.
Indeed, the effects of damage to the system are quite obvious: If a hidden unit
u fails, the receptive area is taken over by other units, thus only the specific
results learned for u’s receptive area are lost. While a corruption of the input
weights may cause no changes at all in the network function, generally it can
alter the unit’s receptive area. If the output weights are corrupted, only certain
inputs are effected. If the damage to the system occurs during training, it will
be repaired very quickly as indicated by the following experiment. Noise is
generally handled gracefully, because wrong or unnecessary adjustments or
refinements can be undone in the further training process.

Unit Failure

Figure 9.18 shows the effects of unit failure. A FineBlend 1 network is ini-
tialized and refined through training with 5000 samples, then one third of its
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Fig. 9.17. FineBlend 1 versus SGNG.

hidden units are removed randomly, and then training is continued as if noth-
ing had happened. The network proves to handle the damage gracefully and
to recover quickly. The relative error exceeds 1 only slightly and drops back
very soon; the number of units continues to increase to the previous level,
recreating the redundancy necessary for robustness.

Iterating Random Inputs

One of the original aims of the Core Method is to obtain connectionist systems
for logic programs which, when iteratively feeding their output back as input,
settle to a stable state corresponding to an approximation of a desired model
of the program, or more precisely to a fixed point of the program’s single-step
operator. In this sense, the Core Method allows to reason with the acquired
knowledge. For our system, this model generation also serves as a sanity check:
if the model can be reproduced successfully in the connectionist setting then
this shows that the network was indeed able to acquire symbolic knowledge
during training.

In our running example program, a unique fixed point is known to exist.
To check whether our system reflects this, we proceed as follows:

1. Train a network from scratch until the relative error caused by the network
is below 1, i.e. network outputs are in the e-neighborhood of the desired
outputs.
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Fig. 9.18. The effects of unit failure.

2. Transform the obtained network into a recurrent one by connecting the
outputs to the corresponding inputs.

3. Choose a random input vector € €' (which is not necessarily a valid
embedded interpretation) and use it as initial input to the network.

4. Tterate the network until it reaches a stable state, i.e. until the outputs
stay inside an e-neighborhood.

For our example program, the unique fixed point of T'p, is My as given
in Example 4. Figure 9.19 shows the input space and the e-neighborhood of
M, along with all intermediate results of the iteration for 5 random initial
inputs. The example computations converge, because the underlying program
is acyclic [35, 36, 29]. After at most 6 steps, the network is stable in all cases,
in fact it is completely stable in the sense that all outputs stay exactly the
same and not only within an e-neighborhood. This corresponds roughly to
the number of applications of our program’s T’p, operator required to fix the
significant atoms, which confirms that the training method really implements
our intention of learning T’p,. The fact that even a network obtained through
training from scratch converges in this sense further underlines the efficiency
of our training method.
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Fig. 9.19. Iterating random inputs. The two dimensions of the input vectors are
plotted against each other. The e-neighborhood of the fixed point M is shown as a
small box.

9.6 Conclusion

After reviewing the connection between the Tp-operator associated with
propositional logic programs and simple three-layer feed-forward neural net-
works, we reported on extensions to first order logic programs. By restating
results from [29], we showed that a representation of semantic operators is
possible. Afterwards, we described a first approach [32] to actually construct
approximating networks. This approach was extended to a multi-dimensional
setting allowing for arbitrary precision, even if implemented on a real com-
puter [35, 36]. Finally, we reported on some prelimenary experiments which
show that our approach actually works.

Our system realises part of the neural-symbolic cycle in that it is able to
learn first-order logic programs, and to outperform other approaches in this
specific learning task. The trained network is also able to generate the model of
the target program which shows that it has acquired the desired declarative
knowledge. At the same time, the network is robust in that it can recover
from substantial unit failure. Summarising, our system combines the power
of connectionist learning and robustness with the processing of declarative
knowledge, and thus retains the best of both worlds. It is fair to say that
this system provides a major step in the overcoming what McCarthy called
propositional fization.

We are currently re-implementing the first-order Core Method in order to
further evaluate and test it using real world examples. An in-depth analysis
of the system shall provide heuristics to determine optimal values for the
parameters of the system. Furthermore, we intend to compare our approach
with other methods. Concerning a complete neural-symbolic cycle we note
that whereas the extraction of propositional rules from trained networks is
well understood, the extraction of first-order rules is still an open question,
which will be addressed in the future.
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