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Chapter 1

Introduction

Many real-world optimization problems are subject to a wide range of uncertainties. In

scheduling a new job arrives unexpectedly, traveling time cannot be reliably forecasted by

a route planner, or manufacturing tolerances avoid that a solution can be implemented

according to design specifications. Formally, a deterministic optimization problem

minf(x, e) ,

where x represents decision variables and e environmental parameters, is transformed to

stochastic optimization problem with x 7→ x+ δ and/or e 7→ e+ δ, where δ is a stochastic

disturbance. In this case, the goal of the optimization is no longer to find a solution with

high performance, instead one is interested in solutions that perform well over a range of

disturbances. Such solutions are called robust. Disturbance is also often termed noise.

Different measures of robustness have been introduced in the last years. The most com-

mon approach is to make (at least implicitly) assumptions on the probability distribution

of the expected environments noise, measure the expected fitness of an individual, and

use this as single optimization criterion. Therefore, most of the evolutionary robustness

optimization methods fall into the category of single objective optimization algorithms.

We refer to this approach as SO robustness optimization. However, from decision theory
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2 CHAPTER 1. INTRODUCTION

we know that simply using the expected “outcome of a decision” (performance of a solu-

tion) as optimization criterion, implicitly assumes neutral risk preferences of the decision

maker. Risk preferences can be taken into account by including the fitness variance as

second objective to the optimization problem. Thus, multi objective optimization pro-

vides a means for robustness optimization. We refer to this approach as MO robustness

optimization. In order to distinguish the possible different objectives we define

• f (often denoted fraw) - deterministic fitness function or raw fitness

• fexp - expected fitness with respect to a probability distribution of the noise

• fvar - fitness variance with respect to a probability distribution of the noise .

If the fitness function is available in closed form and if the product of fitness function

and density functions of the probability distribution is integrable, fexp and fvar can be

calculated analytically and directly used as optimization criterion. Unfortunately, this

scenario is not realistic for most optimization problems. The next idea is to estimate

fexp and fvar empirically. This can for example be done by drawing sample points in

the neighborhood of an estimation point and evaluating these samples with the fitness

function. If the locations of the sample points are chosen with respect to the probability

distribution of the noise, the expected noise is simulated. However, for most real-world

problems, calls to the fitness function incur high computational cost and one should

carefully decide which possible solutions are to be evaluated with the fitness function.

Therefore, one assumption of our approach to robustness optimization is that fitness

function evaluations are very expensive.

The goal of this work is, thus, to develop new methods for efficient search for robust

solutions, i.e. methods that require only a small number of fitness function evaluations.

In particular, we investigate, how information about the fitness surface which is collected

throughout the run of an evolutionary algorithm can be exploited. This work is inspired
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by ideas from Response surface methodology because this framework provides effective

statistical methods for fitness surface approximation. Based on fitness function approxi-

mations, our new methods estimate fexp and fvar, and use these estimations for guiding

the evolutionary search for robust solutions. In particular, this work analyzes interpola-

tion and local regression as means for fitness function approximation in combination with

different robustness estimation techniques.

This work is organized as follows: Chapter 2 provides an overview of related work and

existing approaches to robustness optimization. In Chapter 3 we provide the foundations

of this work. Here we also introduce terminology that is used throughout this work. Al-

though most of Chapter 3 might not provide new insights to the experienced reader, we

recommend Section 3.2 where we discuss robustness. Chapter 4 presents the evolutionary

algorithms which we developed for robustness optimization. In Chapter 5, we describe

the fitness approximation methods and their specific features which are necessary in the

framework of an evolutionary algorithm. Based on fitness approximations, the estimation

techniques which are presented in Chapter 6 estimate the robustness indicators fexp and

fvar. Chapter 7 reports about preliminary simulation studies which we carried out for the

1-dimensional case. The motivation for these experiments was to gather a deeper under-

standing for the problem at hand without spending too much time on implementation.

Furthermore, the 1-dimensional case allowed us to analyze a wider range of approximation

methods. Single objective optimization with fexp as optimization criterion is still a com-

mon approach in robustness optimization. We therefore carried out extensive simulation

studies on SO robustness optimization which are presented in Chapter 8. The simulation

studies for MO robustness optimization are outlined in Chapter 9. We summarize this

work and give an outlook on future research in Chapter 10.
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Chapter 2

Related work

As described in the introduction, there exist two measures of robustness, the expected

fitness fexp and the variance of the fitness fvar . Only the combination of these objectives,

makes it possible to fully account for the risk preferences of the decision maker, e.g. the

engineer. However, in most of the literature, robustness optimization is treated as single

objective optimization problem, with fexp as objective. We refer to the single objective

optimization case as SO, and to the multi objective optimization case as MO.

Tsutsui and Gosh present in [1] the idea, to disturb the phenotypic features while

evaluating the functional value of individuals in the framework of a genetic algorithm.

They refer to this as GAs/RS3 (Genetic Algorithms with a robust solution searching

scheme). Note that the disturbance is only added for the evaluation process and does

not represent a mutation. They showed that this method works on simple test functions:

The genetic algorithm managed to converge to the global fexp optimum. In [1] Tsutsui

et al. also proof, that for infinitly large population size an evolutionary algorithm with

single disturbed evaluations (like in GAs/RS3) performs as if working directly on fexp. In

[1] and [2] GAs/RS3 is also applied to a two-dimensional test problem. However, there

are no simulation studies for higher dimensional problems available. The great advantage

5



6 CHAPTER 2. RELATED WORK

of GAs/RS3 is that it can be added to a standard genetic algorithm with almost no

additional cost.

In [3], a robust solution1 is found by searching for multiple local optima with a standard

evolutionary algorithm and evaluating these high performance regions more closely in

terms of robustness a posteriori. The advantage of this method is the comparably low

additional cost as only a small set of solutions is evaluated in terms of robustness. The

major drawback of this method is that we cannot assume that an optimal solution in

terms of robustness lies in a high performance region. To overcome this drawback, an

evolutionary algorithm must be guided in terms of robustness, thus individuals must be

evaluated according to fexp throughout the run. Several approaches have been made to

guide the search in this sense.

The most common approach is to estimate fexp for each individual by repeated sam-

pling with additive noise in the neighborhood. This method was used in several applica-

tions. In [4] it is succesfully applied to job shop scheduling to find robust schedules. The

authors point out the difficulty of defining a neighborhood in the discrete search space.

In [5], a genetic algorithm with a similar robustness searching scheme is used for wing-box

optimization and compared to a number of different optimization techniques, e.g. simu-

lated annealing, local search, alopex method. The authors find the genetic algorithm to

perform relatively well. Thomson [6] succesfully adds a similar robustness feature to a

genetic algorithm, which evolves a control system of an autonomous robot.

Several modifications of this method have been analyzed in order to improve the search

for a given constant number of fitness evaluations. Branke [7] shows that the performance

is increased by first evaluating all individuals only once, and then reevaluate the best indi-

viduals. The performance can further be improved by using more sophisticated sampling

techniques instead of simply drawing disturbances randomly. In [8] several sampling meth-

1robustness in terms of the single objective fexp
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ods are compared and it is empirically shown that Latin hypercube sampling improves

the solution quality significantly. A detailed description of Latin hypercube sampling can

be found in [9].

In [7], Branke presents a fexp estimation method which requires no additional fitness

evaluations, but exploits historical information, collected throughout the run of the EA.

Here fexp is estimated by building the weighted average of fitness values of individuals,

which are located within a certain neighborhood. Weights are assigned with respect to the

distance between the individuals. Ideally, the weight function w(y) reflects the probability

that x is turned into y by a disturbance. On one test function the performance was

significantly improved by storing a large number of individuals with corresponding fitness

values, instead of e.g. just use the data available from the current generation. In this

paper, it is also shown that this method performs better than a GAs/RS3-like approach2.

The field of fitness estimation is related to this work in two aspects:

First, the RSM approach of this work uses fitness function approximations at a large num-

ber of sample points in order to empirically estimate an individual’s expected fitness and

fitness variance. A survey of fitness approximation methods can be found in [10]. In [11],

one method, namely neural network approximation, is employed by Jin, Sendhoff and

Olhofer in the framework of an evolution strategy. In [12], neural network and kriging

approximation are compared in the framework of evolutionary optimization. The au-

thors find that neither the kriging model nor the neural network improve the opimization

compared to an EA without approximation models.

Secondly, when response surface methodology is used, the computation of fexp and fvar

is itself an estimation. Therefore, papers which deal with the behavior of evolutionary

algorithms, when using estimations instead of real fitness evaluations are related to this

work. The idea of a “controlled evolution” as analyzed in [11] might be transferable to

2it needs to be mentioned that in [7] the GAs/RS3-like approach in Branke’s work was run with

different EA settings than in Tsutsui’s work
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robustness optimization, where fexp is the function to be estimated. Two methods of

controlling evolution are proposed: In the “controlled individuals” approach, part of the

individuals in each population are evaluated with the real fitness, the remaining part is

evaluated with estimations. In “controlled generations”, generations are either entirely

evaluated with the real fitness or the fitness of all individuals of a generation is estimated.

The “controlled evolution” approach turned out to be very effective and was applied to

evolutionary optimization of turbine blades [13].

One of the only few approaches which deal with robustness optimization as multi

objective optimization problem is presented in [14]. Here, the trade-off between “opti-

mality” (fraw) and “robustness” (fvar) is evident. The estimation of fexp is done similarly

to Branke’s weighted average method [7], but Jin and Sendhoff use equal weights for all

neighboring individuals. The variance is estimated by computing the empirical fitness

variance of all neighboring individuals, again with equal weights. Furthermore, the sam-

ple set is restricted to individuals of the current population. Note that for SO robustness

optimization, Branke has shown for one test function, that extending the history data

base, improves the performance significantly [7]. An earlier work by Chen at al. [15]

considers both optimizing mean performance and minimizing performance variations as

goals. Similar to our work, they use response surface models. However, Chen et al. do

not use evolutionary optimization, but employ a method from decision theory instead.

In MO evolutionary optimization there exists an enormous amount of literature which is

related to this work. For our purposes, the most relevant one, is the work by Deb et al.

[16] which introduces NSGA2, as this is used in the MO part of our work.

Similarly, in the field of spatial statistics, geostatistics and approximation theory,

there exists a large amount of literature which is related to our work. One example is

the work of Giunta and Watson [17] which compares quadratic regression with kriging

interpolation in terms of model accuracy. They found that the quadratic regression models
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are more accurate on their test instances. Somewhat surprisingly this was true even for

test problems which are highly non-quadratic. A similar comparison was made for a real

world problem, aerospike nozzle optimization, by Simpson et al. [18]. They found, kriging

models to perform as well as quadratic regression in this application. Unfortunately,

most of the work in the field of spatial statistics and geostatistics is restricted to 2-d or

3-d problems. Worth mentioning is the work by Boissonnat and Cazals [19], which use

natural neighbor interpolation for smooth surface reconstruction. The proposed method

is generally applicable in any dimension. Unfortunately, the authors only present an

analysis of the computational overhead for the 3-d case.
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Chapter 3

Foundations

This chapter provides a collection of brief introductions to concepts which are the foun-

dations of this work. First, in Section 3.1, we introduce the main ideas of evolutionary

optimization and define basic terminology. Section 3.2 proceeds with a definition and

illustration of robustness. An understanding of the robustness concept as employed in

this work, prerequisites a basic understanding of multi-objective optimization (MOO).

Therefore a brief introduction to MOO is given in Section 3.3. In Section 3.4 we briefly

introduce the basic ideas response surface methodology.

3.1 Evolutionary optimization

Evolutionary algorithms (EA’s) are inspired by principles of biological evolution. EA’s

imitate the interaction between selection (“survival of the fittest”), reproduction and mu-

tation. Already in 1795, Charles Darwin was the first who built up an evolution theory

in this sense [20]. According to Darwin, living organisms fight a struggle for existence.

In this context organisms are termed individuals. Weak individuals die at an early age.

Thus, weak individuals do not produce offsprings. In contrast, strong individuals reach

an age at which they are able to reproduce. According to Darwin this strength is mainly

11
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attributed to the genetic material (genotype). Strong individuals recombine their genetic

material and the resulting offsprings are likely to be even stronger. Darwin also concluded

that the composition of the genetic code does not solely depend on the parents genetic

code, but that some alterations of the genetic code appear randomly. This aspect is known

as mutation. The process of improving strength from generation to generation is known

as evolution.

An evolutionary algorithm simulates this evolution process which aims at producing

individuals with good “fitness”. “Individuals” in EA’s represent solutions to a specific

optimization problem. An individual with good fitness is interpreted as the representation

of a solution with high performance with respect to the given problem. Solutions are

therefore “real world solutions”, whereas the term individuals is used in the domain of the

artificial simulation - the evolutionary algorithm. Solutions and individuals are related by

an encoding or, respectively, decoding function: An individual is translated to a “real world

solution” by applying the decoding function. Thus, each individual is a representation

of a real world solution. In analogy to biology, a representation of a solution is termed

genotype.

Algorithm 1 contains the basic operations of an EA:

• initialization : A pool of individuals (population) is created. This can be done

randomly or heuristically by using problem specific knowledge.

• evaluation : Each individual is assigned a fitness value, which represents a measure

for the performance with respect to the given optimization problem.

• selection : At this step it is decided, which individuals of the current population

P (t) produce offsprings. This can for example be done randomly or by taking into

account the fitness values.

• recombination : The actual “reproduction activity”. The genetic information of M
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BEGIN BASIC EA

t← 0

initialization : initialize population P (0)

evaluation : evaluate P (0)

REPEAT

selection : mating pool M(t)← select(P (t))

recombination : M ′(t)← recombine(M(t))

mutation : M ′′(t)← mutate(M ′(t))

evaluation : evaluate M ′′(t)

update-population : P (t + 1)← u(P (t) ∪M ′′(t))

t← t + 1

UNTIL(termination condition)

END BASIC EA

Algorithm 1: Basic evolutionary algorithm



14 CHAPTER 3. FOUNDATIONS

parents is recombined to generate L offsprings (usually M = 2). The resulting

offspring population is denoted M ′(t). This operation is also known as crossover.

• mutation : In order to introduce new genetic material and ensure a certain degree

of diversity, the genotype of an individual is altered by adding some randomly

distributed noise to it. M ′′(t) therefore represents the mutated offspring population.

• update-population : At this step, it is decided which individuals survive to the next

generation. The update method is commonly termed reproduction scheme. Here,

Darwins principle survival of the fittest is at work. Individuals with better fitness

are preferably chosen to survive. Note the difference from biological evolution. In

the artificial simulation, there exist reproduction schemes, in which the pool of

possible survivors is build from both groups parents and offsprings, thus, it may

happen that some individuals survive for a large number of generations.

t represents the generation count. In biological evolution there does not exist a termi-

nation condition. Computer simulations, however need to stop at some time and return

a result. Typical termination conditions are, a fixed number of generations or a low de-

gree of diversity within the population, e.g. the fitness of the best individual does not

differ significantly from the average fitness of the entire population. A comprehensive

introduction to evolutionary optimization is provided in [21].

Traditionally, it is being distinguished between genetic algorithms (GA’s) and evolu-

tion strategies (ES’s). However, Algorithm 1 merges GA and ES. GA’s were first used by

Holland and Goldberg and use a binary representation of an individual. This category of

evolutionary algorithms mainly focus on crossover, whereas mutation plays only a minor

role. In contrast, evolution strategies which were introduced by Rechenberg and Schwefel

usually work on real-valued representations. Here, the operator which mainly guides the

search is mutation. Often, strategy parameters are added. Strategy parameters are addi-
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tional alleles of the individual’s genotype. Their purpose is to guide the mutation, e.g.

recognize if a certain setting of mutation parameters works well. This “recognition” is

achieved by letting the strategy parameters itself be subject to evolution, e.g. mutation

and crossover. Today, many evolutionary algorithms, cannot clearly be categorized into

the GA or ES. As this categorization is not important for our purposes, and to avoid con-

fusion, we use the term evolutionary algorithm (EA) from now on. Therefore we define

an EA as a heuristic optimization algorithm which uses Darwin’s principle of survival of

the fittest to guide the search for good solutions.

3.2 Robustness

3.2.1 Definitions and Examples

In optimization robustness of a solution is defined as the property of being insensitive to

1. changes in the environment or

2. noise in the decision variables (see [22]).

An example for noise in the decision variables is the appearance of manufacturing tol-

erances. In many industrial manufacturing processes, a product can not be produced

exactly according to the design specifications, but slight differences between specification

and implemented solution are expected. In this example, a solution which is embodied by

a product specification is robust, if it’s implementation performs well despite slight devi-

ations to the specification. An example for changes in the environment can be observed

in scheduling. Here, we find many sources of disturbances: A machine breaks down, a

necessary input product is not available due to logistic problems1, or an important job

arrives unexpectedly.

1often appears in highly synchronized supply chains, with just in time production
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The fitness function f(x, e) of an individual x depends on environmental parameters

e, although these are not subject to optimization. To formalize the two cases: x 7→ x + δ

and e 7→ e + δ, where δ is a randomly distributed noise factor.

3.2.2 Robustness Measures

A widely used robustness measure is the expected fitness fexp over a range of possible

disturbances. This requires that a probability distribution of the disturbance is given. If

the distribution of δ is continuous, the expected fitness is calculated

fexp(x) = E(f(x + δ)) =

∫ ∞

−∞
p(δ) · f(x + δ) dδ (3.1)

Equation 3.1 must be interpreted as (theoretical) expression, because in most cases fexp

cannot be derived analytically, either because f is not available in closed form, or if f is

available in closed form it cannot be integrated. Furthermore p might not be integrable,

e.g. p is a normal distribution. Thus, fexp needs to be estimated. An example which

illustrates the difference between raw fitness optimization and robustness optimization

is depicted in Figure 3.1. The corresponding fitness function is defined in Equation 3.2.

Here, the objective is to minimize f1exp.

f1(x) =





−1 2.0 ≤ x ≤ 4.0

−2 6.9 ≤ x ≤ 7.1

0 otherwise

(3.2)

For this test problem, fexp can be calculated analytically, because we assume δ to

be uniformly distributed on [−1; +1]. The raw fitness optimum opt(f) is located in the

x-interval [6.9; 7.1], whereas the expected fitness optimum is at x = 3.

Note, that fexp depends on the probability distribution of δ. If, e.g., δ is uniformly

distributed on [−0.1; +0.1], we see that opt(f) equals opt(fexp). If, however, δ is uniformly
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Figure 3.1: Trade-off between raw fitness optimum and expected fitness optimum
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(a) δ uniformly distributed on [−0.1; +0.1]
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(b) δ uniformly distributed on [−0.2; +0.2]

Figure 3.2: Expected fitness optima opt(fexp) with different intervals of uniform noise

distributions

distributed on [−0.2; +0.2], fexp has global optima on the left plateau as well as on the

right peak (see Figure 3.2).

We see, that a decreasing variance of the noise distribution lets the shape of fexp

approach the shape of f . In contrast, the larger variance of the noise distribution the

stronger the fitness landscape is smoothened.

Using fexp as a single optimization criterion is the most prominent robustness measure.
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However, from the point of view of decision theory, this approach has an elementary

weakness, because it implicitly assumes neutral risk preferences of the decision maker.

For a risk neutral decision maker the expected benefit is the only decision criterion, in

particular, he does not care about the expected deviation, which is usually measured as

variance. If the distribution of δ is continuous, the variance of the fitness is calculated

fvar(x) = var(f(x + δ)) =

∫ ∞

−∞
p(δ) · (f(x + δ)− fexp(x))2 dδ (3.3)

In most real world problems fvar cannot be calculated analytically.

To illustrate the weakness of the single criterion approach, take a look at the following

fitness function (Equation 3.4, Figure 3.3):

f2(x) =





−1 2 ≤ x ≤ 4

6− x 6 ≤ x ≤ 8

0 otherwise

(3.4)

The graph on the left side of Figure 3.3, depicts the expected fitness of function f2.

Considering this as single robustness criterion, a decision maker is indifferent between the

solutions x(1) = 3 and x(2) = 7. However, considering the variance as second robustness

criterion, as depicted on the right side of Figure 3.3, a decision maker who is risk averse

clearly favors solution x(1) because this has a lower expected fitness deviation. In this

example, the expected fitness deviation of x(1) is 0. In contrast, a risk-taking decision

maker chooses x(2), as he emphasizes the chance of receiving a higher benefit than the

expectation. As mentioned earlier, a risk neutral decision maker is indifferent between x(1)

and x(2). In most optimization problems, we can assume risk aversity. Examples include

design optimization, portfolio optimization, scheduling. In this cases, the objective is

to minimize the variance. Nevertheless, it is generally possible that a decision maker is
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Figure 3.3: f2 with δ uniformly distributed on [−1; +1])

risk-taking. From the perspective of decision theory, this is the reason why people play

lottery. In optimization, however, we have not found a similar example.

We conclude that, if a decision maker has non-neutral risk preferences, robustness

optimization requires two objectives, optimizing fexp as well as fvar. How we deal with

multiple objectives in optimization, will be introduced in Section 3.3.

Differing from the commonly used notation in robustness optimization, we do not

use the term effective fitness for the expected fitness. This term only makes sense, in

single objective robustness optimization. With non-neutral risk preferences, a robustness

measure must include (at least) 2 objectives. Although a large part of this work deals

with single objective robustness optimization, we use the terms fexp and fvar throughout

this work in order to avoid confusion.
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3.3 Multi objective optimization

In Section 3.2 we conclude that robustness optimization requires two objectives if the

decision maker has non-neutral risk preferences. This section describes the difficulties

when optimizing more than one objective, presents approaches to that and outlines an

example of a multi objective evolutionary algorithm (MOEA) (Sections 3.3.1 - 3.3.4).

Furthermore a brief introduction on how to interpret empirical results from MOEA runs

is outlined in Section 3.3.5.

3.3.1 Difficulties

Most optimization methods are designed to optimize a single objective f1. Thus, they

try search for a solution x∗, such that f1(x
∗) is minimal or maximal. A straight-forward

approach to use SOO methods for MOO problems, is to merge multiple objectives to a

single by building a weighted sum of the objectives. In this case the optimization problem

is transformed to

opt fsum(x) =
∑

1≤i≤n

wi fi(x), (3.5)

where x is a solution, n is the number of objectives, fi is objective function i and wi

the corresponding weight. The weight vector w reflects the preferences of the decision

maker regarding the relative importance of the n objectives. Once a good w is found,

this method works well. The major drawback of the weighted sum approach is that in

reality the preferences of the decision maker are either not known in advance, or they

cannot be quantified. For example, the decision maker has different weight vectors in

different domains of the solution space. The fact that a weight vector is not static, is not

a problem in general, because the set of different weight vectors could be made available

to the optimization algorithm. Still, the task of defining proper weight vectors for any
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possible scenario, might be a to complex and time consuming task for a decision maker.

However, a good solution to a problem, must take into account user preferences somehow.

3.3.2 Decision makers preferences

In order to account for the preferences of the decision maker, we distinguish between three

categories of optimization methods:

1. a priori

2. interactive

3. a posteriori

Methods that aggregate multiple objectives to a single one before running the opti-

mization procedure fall into the group of a priori methods. One example is given by

the weighted sum method in subsection 3.3.1. For robustness optimization another ag-

gregation method is mentioned in [15], where fexp and fvar are combined to the signal

to noise ration fexp

fvar
. For a risk averse decision maker (min fvar), this requires fexp to be

formulated, such that it needs to be maximized. However, this method implicitly assumes

a weighting, too.

In interactive methods, the decision maker improves the search for high performance

solutions by providing information on his preferences during the run of the optimization

algorithm. For example, the algorithm stops at a certain point and asks the decision maker

to sort a certain set of solutions with respect to his preferences. Based on this informa-

tion the algorithm modifies it’s parameters and continues searching. Interactive methods

reduce the drawbacks of a priori methods. However, the search might be misguided due

to interaction.

A posteriori methods do not make assumptions on the preferences of the decision

maker. Consequently, they do not produce a single optimal solution. Instead, the goal of
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a posteriori methods is to find a set of solutions which can be presented to the decision

maker. A desired property of such a solution set is a certain degree of diversity which

reflects a trade-off between the objectives.

Recalling the basic operations of an EA, we see that evolution requires an update of

the population: Individuals with good fitness survive to the next generation. If there

are multiple objectives (multiple fitness values) and if we do not make assumption on

the preferences to the objectives, a ranking of the individuals might not be possible. The

question arises: How is the population update done in MOEA’s?. Before further discussing

this question, we briefly introduce the concept of pareto dominance. A comprehensive

introduction to this concept and multi-objective evolutionary optimization in general can

be found in [23].

3.3.3 Pareto dominance

Assume an optimization problem consists of n objectives (criteria) fi, i = 1 . . . n, which

are all formulated such that each fi is to be minimized. Let x,y be solutions to the

optimization problem:

Definition 3.3.1 (Pareto dominance)

x is pareto-dominated by y if y is at least as good as x in all criteria and if y is strictly

better than x in at least one criterion:

x ≺ y (x is pareto-dominated by y), if ∀ i : fi(y) ≤ fi(x) and ∃ i : fi(y) < fi(x)

If x is pareto-dominated by y, y is preferred by a decision maker regardless of his pref-

erences. Consider a set of solutions P . Although with the concept of pareto dominance,

we might not be able to find a ranking of all solutions, we are now able to determine a

subset P ′ ⊆ P of which all elements are not pareto-dominated by any element of P . P ′

is the non-dominated set:
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Figure 3.4: Pareto-dominance: a) pareto-dominated area, b) non-dominated set

Definition 3.3.2 (Non-dominated set)

The non-dominated set is defined as the largest set P ′ for which the following statement

is true:

max |P ′| : P ′ ⊆ P : ∀x ∈ P ′ : (x 6≺ y) ∀y ∈ P

For illustration, see Figure 3.4. In this example the optimization problem has two objec-

tives minimize f1, minimize f2. In (a), the area which is dominated by a point x0, is

depicted. Members of the non-dominated set, as depicted in (b), are these points which

have a location that is not covered by the dominated regions of all other points.

The concept of pareto-dominance can now be used to set up an a posteriori multi-

objective evolutionary algorithm.

3.3.4 NSGA2: An a posteriori multi-objective EA

This subsection briefly introduces Non-dominated Sorting Genetic Algorithm 2 (NSGA2)

which was developed by Deb et al. in 2000. For details, we recommend [16]. NSGA2 is an

improved version of NSGA which was developed earlier. In principle, the structure of the
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basic evolutionary algorithm (Algorithm 1) does not change. However, some operations

are modified in order to adapt the algorithm to the requirements of MOO. Obviously,

each individual must be assigned multiple fitness values by the evaluation procedure. The

essential property of NSGA2 is the reproduction scheme which is the underlying concept

of the update-population operation. In NSGA2, this operation can be divided into two

operations:

1. non-dominated-sorting

2. crowding-distance-sorting

In non-dominated-sorting, we divide a population P into a set of pareto fronts Pi : In

a first iteration, we determine the non-dominated set of P which is assigned the name

P1. Then, we remove P1 from P , apply the same procedure for (P \ P1), and get the next

pareto front P2. We repeat this operation until P is empty. At this point, P is divided

into a set of pareto fronts, each with a rank i.

The next step is to apply a crowding-distance-sorting procedure which sorts the indi-

viduals within the paretofronts. In NSGA2, the crowding distance is the sorting criterion.

Recall that in MOO the goal is to find a set of solutions. A performance criterion for

such a set, is the degree of diversity within the set. Note that this diversity refers to

the fitness space2 which does not imply that the individuals have significantly different

genotypes. Diversity is obviously a reasonable criterion, because this a posteriori provides

a larger pool of solutions to the decision maker. Thus, it is desirable to embed this cri-

terion into the reproduction scheme. The diversity criterion in NSGA2 is the crowding

distance. The crowding-distance function assigns large values to individuals which are

located at the edge of a set of solutions in the fitness space, and/or which are located in

sparsely populated regions of the fitness space. For details, we again refer to [16]. In the

2Figure 3.4 is an example of a 2-dimensional fitness space
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update population step, the two sorting methods are combined to build the next parent

generation from the pool of offsprings (see Algorithm 2).

BEGIN NSGA2 UPDATE POPULATION

P ′ = P (t) ∪M ′′(t)

P (t + 1) := ∅ , i = 1

F = non-dominated-sorting (P ′)

WHILE (|P (t + 1)|+ |Fi| < N)

P (t + 1) = P (t + 1) ∪ Fi

i = i + 1

END WHILE

assign-crowding-distance Fi

sort(Fi,≺crowding dist)

P (t + 1) = P (t + 1) ∪ Fi[ 1 : (N − |P (t + 1)| ) ]

END NSGA2 UPDATE POPULATION

Algorithm 2: NSGA2 UPDATE POPULATION

Note that in Algorithm 2 the same notations are used as in Algorithm 1. F stores the

set of paretofronts Fi, N is the size of the parent population. In the last line, the parent

population P (t + 1) is filled up with those individuals of paretofront Fi which have the

largest crowding-distance value.

3.3.5 Performance metrics

The goal of this subsection is to enable the reader to interpret the results which will be

presented in Chapter 9. Particularly, we present guide lines on how to compare two sets

of solutions. As mentioned earlier, diversity is one criterion for the quality of a set which
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was e.g. returned by NSGA2. Many metrics for MOO have been developed in recent

years. A comprehensive survey can be found in [24]. For our purposes, it is sufficient to

emphasize two qualitative performance properties of a solution set:

1. diversity within the set

2. location of the set (in the fitness space)

For illustration, have a look at Figure 3.5. In this example, the solution set in (a) obviously

f2

f1

(a)

f2

f1

(b)

f2

f1

(c)

Figure 3.5: Comparison of different solution sets

has a higher diversity compared to solution set in (b). Although only qualitatively, we

conclude that (a) is preferred to (b) due to a higher diversity. Comparing (a) and (c), we

find that many solutions of (c) are dominated by solutions of (a). In this case, we conclude

that solution (a) is preferable to solution (c) due to a better location of the solutions.

Comparing (b) and (c), we do not get such a clear result. In this case, quantitative

performance metrics are required. We will, however, see that this case does not appear

in the results of this work. Therefore we believe that this brief illustration is sufficient.
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3.4 Response surface methodology

3.4.1 Definitions

Comparing different sources, we found that the term response surface methodology (RSM)

is not very well defined. A definition which covers most of the aspects is Def. 3.4.1.

Definition 3.4.1 (Response Surface Methodology)

RSM is a collection of mathematical and statistical techniques for empirical model building

A response is an output variable y of a system. This system also has a vector of input

variables x. Each possible x(i) is mapped to a response y(i) by the response function f .

The set of possible combinations (x(i), y(i)) represent a response surface.

The initial intention of RSM was to model experimental responses. In other words,

the goal of RSM is to find a functional relationship between input x and output y at

acceptable cost. Initially, these experiments were mainly done in the field of physics or

chemical processes. In recent years, RSM has been transfered to computer experiments,

for example in simulation systems. The two basic RSM concepts are approximate model

and design of experiments (DoE).

3.4.2 Approximate model

We assume the structure of the relationship between the input and the output variables of a

system to be unknown. Therefore, we first need to make an assumption on this structure.

In most cases, low order polynomials, e.g. linear or quadratic, are used. In principle,

arbitrary functions can be chosen. Taking into account problem specific knowledge for

the choice of the model improves the approximation. In this work, we use linear and

quadratic polynomials as approximate models.

We assume that some examples of input-output-data combinations are given or can

be experimentally discovered. The coefficient vector c of the approximate model f̂(c)
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are then chosen, such that f̂ explains the given input-output-data best. The resulting

approximation function f̂(c∗) is defined as best fit. Most commonly, the minimum square

distance criterion is used for this purpose: If n input-output-data points (x(i), y(i)), i =

1 . . . n are given, c is chosen by minimizing e(c) in Equation 3.6.

e(c) =
∑

1≤i≤n

w(x(i)) (f̂(c, x(i))− f(x(i)))
2

(3.6)

w(x(i)) assigns a weight x(i). Although this method is widely used, generally, any fitting

criterion can be used to determine the best fit.

3.4.3 Design of experiments (DoE)

A further important aspect of RSM is the design of experiments. The objective of DoE is

to find locations, where the response is evaluated, such that the approximate model can be

estimated sufficiently well at acceptable cost. The choice of the design of an experiment is

usually very problem specific. As we will see later in more detail, in our application DoE

is mainly left to the evolutionary algorithm3. The most prominent DoE methodologies are

full factorial design, central composite design, D-optimal design and Taguchi’s methods.

These methodologies are not used in our approach, therefore we refer to [25] for details.

3.4.4 Extensions

As mentioned earlier, the term RSM is not clearly defined in literature. In particular, it

is not solely used, when procedures as explained in Sections 3.4.2 and 3.4.3 are applied.

Instead, the term RSM is used whenever the surface of a response is to be estimated. This

does not necessarily implicate that the response is noisy, nor does it restrict the approxi-

mation methods to regression analysis. In view of our approach to fitness approximation,

3this issue is difficult to understand with the information provided so far, however, at this point it is

not essential to understand this detail



3.4. RESPONSE SURFACE METHODOLOGY 29

it needs to be mentioned that interpolation represents an approximation technique which

is covered by the term RSM. Furthermore, DoE does not necessarily have to be planned

by a human being, but can be left to a computer program, e.g. an evolutionary algorithm.

3.4.5 Illustration

For illustration, see Figure 3.6. In (a), a number of available 2-dimensional response data

points are depicted. This can either be chosen by a traditional RSM procedure, e.g. a

human, or is returned by an EA. In this illustration a quadratic polynomials is chosen

as approximation model. The resulting approximation of the response surface is depicted

in (b).
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Figure 3.6: Response data (a) and approximated response surface (b)
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Chapter 4

Evolutionary robustness

optimization

4.1 Introduction

In Chapter 3, we introduced a basic SO evolutionary algorithm (Section 3.1) and an

example of a MO evolutionary algorithm (Section 3.3). The evaluate operation which

assigns a fitness value to an individual, guides the search. If we want robustness to guide

the search, evaluate must assign the expected fitness fexp (SO), respectively (fexp, fvar)

(MO) to an individual. As discussed previously, fexp and fvar cannot be calculated exactly,

due to theoretical limitations and/or high cost of raw fitness evaluations. Thus, fexp and

fvar are estimated. Different estimation methods which are based on fitness function

approximations (Chapter 5) are described in Chapter 6. Thus, the evaluate function in

the robustness optimization EA returns estimations of either fexp or (fexp, fvar). A fitness

approximation (Chapter 5) is based on a set of known fitness function values which are

known as response data in RSM.

Section 4.2 describes which strategy we applied in this work to collect response data.
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Section 4.3 describes the EA operators for the SO approach, Section 4.4 for the MO

approach. Finally, in Section 4.5 we briefly discuss the challenges of constraint handling

in robustness optimization.

4.2 Collecting response data

Response data collection strategies can be categorized into

1. online collecting: response data are solely collected at runtime of the evolutionary

algorithm

2. offline collecting: response data are solely collected before running the evolutionary

algorithm

3. combination of online and offline collecting: response data are collected before and

throughout the run of the evolutionary algorithm1

The advantage of online collecting is that response data are likely to be evaluated at

locations where they are needed. The major drawback of pure online collecting is that

in the initial stages of the evolutionary algorithm only a small set of response data is

available. This might cause large estimation errors for fexp and fvar which could misguide

the search. Offline collecting overcomes the difficulties in the initial stages of the EA

but might waste computational power by evaluating the response at locations where it is

actually not necessary. The combination of both represents a means to benefit from the

respective advantages. However, such a method requires careful parameter settings which

causes difficulties in the scientific analysis.

In this work we employed a pure online collecting strategy. Throughout the run of

the EA, we evaluate the response (fitness function) at the points where individuals are

1online/offline collecting is often termed online/offline learning
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located. If for example, our EA runs with population size 100 for 50 generations, in

the final generation, the response data base has grown to a size of 5000. In analogy to

biology, the response data base contains the information of all individuals of the history.

We subsequently refer to this as History. For approximations solely History information

is used.

4.3 An EA for SO robustness optimization

Taking into account data collection, the basic EA (Algorithm 1), needs to be modified.

See Algorithm 3:

Algorithm 1 is extended by the History update operation which adds a population with

respective fraw values to the History. Furthermore, the evaluation operation is replaced by

raw fit evaluation and robustness estimation: robustness estimation calls the estimation

procedures for fexp. Our standard EA setting has the following properties (for details on

the genetic operators we refer to [26]):

• mutation: We employed a standard evolution strategy, i.e. mutation of the objective

variables ~x is carried out by adding a N(0, σ2
i ) distributed random number to each

component of xi. The“step-sizes” σi which are known as strategy parameters are

also subject to mutations (log-normal distributed).

• recombination: For the objective variables we use discrete recombination2, that is

for each allele one of the (two) parents is randomly selected for inheritance. For

the strategy parameters we used generalized intermediate recombination, that is for

each allele an uniformly distributed random number which lies between the parents

allele’s values is chosen for inheritance.

2also known as uniform crossover
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BEGIN ROBUSTNESS EA

t← 0

initialization : initialize population P (0)

raw fit evaluation : evaluate P (0) according to fraw

History update : add P (0) to the History

robustness evaluation : estimate fexp for all individuals of P (0)

REPEAT

selection : mating pool M(t)← select(P (t))

recombination : M ′(t)← recombine(M(t))

mutation : M ′′(t)← mutate(M ′(t))

raw fit evaluation : evaluate M ′′(t) according to fraw

History update : add M ′′(t) to the History

robustness evaluation : estimate fexp for all individuals of M ′′(t)

update-population : P (t + 1)← u(P (t) ∪M ′′(t))

t← t + 1

UNTIL(termination condition)

END ROBUSTNESS EA

Algorithm 3: Evolutionary algorithm for robustness optimization
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• selection: From the pool of parents, individuals are chosen randomly for recombi-

nation

• update-population: We employ a (µ, λ)-reproduction scheme, with µ = 15 and λ =

100, i.e. the best 15 offsprings out of 100 build the next parent generation.

• termination-condition: We set a fixed number of 50 generations.

4.4 An EA for MO robustness optimization

As MO robustness EA we use NSGA2 with robustness extensions. As the extensions

are exactly as in SO and NSGA2 has the same structure as Algorithm 3 we do not

present a pseudo code version of the MO robustness EA. One essential difference should

be mentioned. NSGA2 uses binary coded individuals3. Therefore the genetic operators

are different. Our standard setting for the MO robustness EA has the following properties

• mutation: Flip each bit with a certain probability (flip probability)

• selection: Two individuals of the parent generation at a time are grouped as parents

to produce offsprings.

• reproduction: A virtual coin toss which has the crossover probability as parameter

decides whether the genotype of the parents is simply copied to the offsprings or if

a 1-point-crossover of the parents chromosomes is performed.

• update-population: The population update of NSGA2 was described in in Algo-

rithm 2.

• termination-condition: We set a fixed number of 50 generations.

3in particular, we use gray code in our algorithm
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4.5 Constraint handling

In most optimization problems it is clearly defined if a solution is feasible, i.e. it does

not violate any constraint. Many different techniques to deal with infeasibility have been

developed, the most common are

• feasibility-preserving operators

• special representations

• delete infeasible solutions

• penalty functions

• repair infeasible solutions

• constraint violation as additional objective (MO)

Noise in the decision variable, however, causes difficulties. Even if an individual is feasible,

this does not guarantee that the actual implementation is feasible, too. An individual

which is located close to the infeasibility boundary has a certain probability that it’s

implementation becomes infeasible. This probability depends on the distribution of the

noise. The difficulties in the presence of noise can be summarized by a simply question

How do we assess a solution x that has probability of pinf(x) to become infeasible? A

straight-forward approach is to define a threshold, e.g. pinf,max = 0.05. If an individual

has a higher probability to become infeasible it is deleted or repaired. However, it is

difficult to find a good setting of pmax.

Ray [27] proposes a constraint-handling scheme for robustness optimization. This

method is based on the pareto concept and considers an individual’s self-feasibility and

neighborhood-feasibility. However, this method requires to evaluate the fitness function

for k neighbors of each individual.
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Further investigation of constraint-handling techniques is beyond the scope of this

work. We therefore decide to avoid most of the difficulties related to infeasibility. In our

algorithm we use a feasibility-preserving operator known as bounce-off-the-boundary to

ensure that no individual is infeasible. With this operator all individual are located in the

feasible region. If, however, samples are drawn from an infeasible region while estimating

robustness of an individual, the sample is assigned a constant penalty. If an individual

has high probability of becoming infeasible, a large faction of samples are drawn from the

infeasible region, thus, the penalty will be large.

We constructed the test problems such that robustness optima are not located close to

the border. Detailed information on the experimental set up can be found in Chapter 8.
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Chapter 5

Fitness approximation (RSM)

In Section 3.4, we briefly introduced RSM as a means for fitness approximation. This

chapter describes how RSM is actually employed in this work. In particular, we use

Nearest neighbor interpolation and Local regression for fitness surface reconstruction. In

Section 5.1 we first outline the underlying assumptions of this chapter. In Section 5.2 we

describe which approximation models are used and discuss some properties. The choice

of input to the approximation models is discussed in Section 5.3. The main reason to

describe our RSM approach in a separate chapter is that we are often faced with numeri-

cal difficulties when it comes to approximation in the context of evolutionary algorithms.

Reasons for these difficulties are outlined in Section 5.4. How we manage these diffi-

culties for Nearest neighbor interpolation and Local regression is described in detail in

sections 5.5 and 5.6. Remarks and comparisons regarding computational complexity are

given in Section 5.7.

5.1 Assumptions, Definitions

Throughout this chapter, we assume that a set of response data (the History) is available

in order to apply an approximation procedure. This issue will be discussed in more detail

39
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in Section 5.3. We further assume that the goal of an approximation procedure is to find

a setting of coefficients of an approximation function, such that it is most accurate at a

given location. We refer to this location as (model) fitting point from now on.

5.2 Approximation models

Generally, an arbitrary parametric function can be chosen as approximation model. In

this work however, we restrict our attention to polynomials for both Nearest neighbor

interpolation and Local regression. These are

1. linear polynomial (linear)

2. quadratic polynomial with independent variables (quadratic indp)

3. quadratic polynomial with cross products (quadratic)

f(x) =





β0 +
∑

1≤i≤n βi xi polynomial type = linear

β0 +
∑

1≤i≤n βi xi +
∑

n+1≤i≤2n βn+i xi
2 polynomial type = quadratic indp

β0 +
∑

1≤i≤n βi xi +
∑

1≤i≤j≤n βn−1+i+j xi xj polynomial type = quadratic

(5.1)

Here, n is the number of dimensions, β denote the polynomial coefficients. The number of

coefficients of a polynomial depends on the dimensionality and the type of the polynomial

(Equation 5.2).

numcoeff (n) =





n + 1 polynomial type = linear

2n + 1 polynomial type = quadratic indp

(n + 1)(n + 2) polynomial type = quadratic

(5.2)
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5.3 Choice of response data (DoE)

In classical RSM, data points are chosen for evaluation, such that the resulting set of

response data points has the best coverage of the region which is to be approximated.

We assume a response function evaluation to be very expensive. Therefore we do not use

any additional fitness evaluations but use response date which are stored in History (see

Section 4.2).

Which History data are used as input to an approximation model depends on the de-

sired model fitting point x(0). For both, Nearest neighbor interpolation and Local regression,

the nearest data points of the History with respect to the Euclidean distance ‖h(i) − x(0)‖2
are chosen. Here, h(i) represents the vector of objective parameters of a History entry i.

Thus, for each approximation, ‖h(i) − x(0)‖2 is computed for i = 1 . . .History size and

h(i)’s are sorted with respect to this criterion1.

How many data points k are used to build the model is different for interpolation

and regression. In interpolation, the goal is to find a polynomial which intersects the

given data points. Thus, the required number of data points kintpol equals the number

of coefficients numcoeff (n) of the polynomial. In regression, the number of data points

kregress which can be added to the model is infinite. Still, the minimum required number

of data points equals numcoeff .

numcoeff (n) = kintpol

numcoeff (n) ≤ kregress < ∞
(5.3)

In regression, we add a feature to reduce computational cost: If kregress is larger than a

1this procedure is computationally very expensive, especially if the History size is large and the

dimensionality is high. In [28] an approximate nearest neighbor searching algorithm is developed which

speeds up this process. However, we use a brute force algorithm for computing the distances and quicksort

as sorting algorithm
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certain fraction of the History size, e.g.

kregress >
1

10
· History size

we reduce kregress to ( 1
10
· History size). If, for example, the current History size is 5000

but the History data density around x(0) is such that kregress = 2000, we only add every

fourth input data point to the model. Thus, kregress is reduced to 500. We tested this

feature with the above defined parameter setting and found that the performance did not

degrade.

5.4 Numerical Difficulties in EA’s

Theoretically, interpolation in multiple dimensions is straightforward and requires basic

linear algebra operations. Whenever it comes to implementation, we are faced with nu-

merical problems which arise from the fact that real numbers are not truly continuous

on computers as they are stored in a certain bit format. If we choose data points which

are linearly dependent or, from the perspective of numerical analysis, close to linearly

dependent, the algebraic operations have a high probability to fail. As numerical linear

algebra is not the main focus of this work, we do not go into further details here and refer

to a standard book in numerical analysis, e.g. [29].

In the context of EA’s, these problems become even more serious: During the run of

the EA, several individuals are evaluated. All visited data points are stored in the History

which provides input data to approximation procedures. In later stages of the run, the

EA converges, thus many similar or equal data points are stored in the History. In this

situation, we build models at fitting points which are located in regions with high History

data density. If we choose the k nearest data points for approximation, the probability to

choose data points which are similar or equal increases with the number of iterations of

the EA. Similar data points have a high probability to be linearly dependent or close to



5.5. INTERPOLATION 43

linearly dependent. Due to this (desired) behavior of the EA, interpolation and regression

become numerically difficult.

It is worth mentioning that in real world applications equal data points should never

be stored in the History. In fact they should never be evaluated. On the other hand,

truly equal points in the sense that the floating numbers have equal bit representation,

are expected to be very rare. Of course one could improve the algorithms by adding some

“equal threshold”. However, this issue is beyond the scope of this work.

5.5 Interpolation

5.5.1 Standard method

Finding the polynomial coefficients, such that the resulting polynomial intersects the k

given data points requires to solve a linear equation system. In this equation system,

each row (equation) represents a data point. In matrix form, the equation system can be

written as

A β = b (5.4)

β represents the (solution) vector of coefficients, A is commonly termed design matrix,

b is the vector of fitness values (response values). Rows of the design matrix are specified

by applying the desired polynomial to the model input data, i.e. if for instance a data

point x = (x1, x2) is to be added to quadratic model, the following row will be added to

the matrix:

[1 x1 x2 x2
1 (x1x2) x2

2] .

We get the coefficient vector β∗ by multiplying the inverse of A with b.
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β∗ = A−1 b (5.5)

If A is regular, A−1 exists and is unique, if A is singular, A−1 does not exist or is not

unique. A common way to compute A−1b is to decompose matrix A into a product of

two matrices A1 and A2, with A1 and A2 having certain properties which make it easy to

compute A−1b. LU decomposition is a standard method for this purpose. Based on Gaus-

sian elimination, this method decomposes A into the product LU where L is unit lower

triangular and U is upper triangular. The product LU is called the LU factorization.

Using the LU factorization, Equation 5.5 is easy to solve by forward and backward sub-

stitution. The advantage of this method is the low computational cost of approximately

n3/3 multiplications and additions. See [30] for details.

5.5.2 Managing singularities

Simply applying LU decomposition and relying on the result does not work. Assume,

we pick some data points from the History which are linearly dependent. Although the

resulting matrix A is singular, LU decomposition returns a factorization of A which we

use for solving the equation system (Equation 5.5). Of course, it is possible to check,

whether β∗ solves the equation system. However, even if we find that β∗ perfectly solves

Equation 5.5 which means the resulting polynomial intersects all input data points, this

is not necessarily the desired result because it is not unique2. Theoretically, there exists

an unlimited number of different solutions β∗ to the underdetermined system. The β∗

returned might not be appropriate for approximation of the fitness function.

A proper interpolation method requires to produce unique solutions. Hence, it needs

to detect singularities if present. But, simply recognizing that A is singular is also not

2Citing Gentle, “it is neither necessary nor sufficient that a matrix be nonsingular for it to have an

LU factorization” ([30], page 92)
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sufficient. Our method must be able to identify which rows of A are linearly dependent, in

order to replace these by other History data. The method of choice is QR decomposition

with column pivoting. We refer to this as QRPT subsequently. QR decomposition (without

column pivoting) factorizes a matrix A into the product QR, where Q is an orthogonal

matrix and R is upper triangular. The QR factorization is obtained by either Householder

transformations, Givens transformations or the (modified) Gram-Schmidt procedure (see

[30] for details). In our implementation, we use Householder transformations. With col-

umn pivoting, A = QR is extended to PA = QR where P is a permutation matrix which

keeps track of which columns of the original matrix A were exchanged. Without going into

further details (see [31], algorithm 5.4.1), we present the procedure for detecting linearly

dependent rows of matrix A:

As QRPT detects linearly dependent columns, we first need to transpose matrix A. Ap-

plying QRPT to AT returns Q, R and P . The interesting values are now on the diagonal

of R, i.e. rii. If a rii is zero or close to zero3, we know that the corresponding column

of AT is linearly dependent or close to linearly dependent. We get the index of the cor-

responding row in A by applying the permutation P to the index i of rii. If we detect

no linearly dependent row (A is regular), we can now use LU decomposition to solve

Equation 5.5, because a regular matrix has a unique LU decomposition. If we identify

linearly dependent rows we replace these by the next data points of the sorted History.

In order to quantify what is close to zero as indicator for a row to be close to linearly

dependent, we define a threshold to which we refer as singular threshold. If a certain rii

is lower than singular threshold, we assume the corresponding row in A to be linearly

dependent. Two types of bad setting of singular threshold may appear:

1. singular threshold is too low

2. singular threshold is too high

3must be defined by a threshold
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The first pitfall is more serious: We do not detect any linearly dependent row, although

the matrix is singular. In this case, we wrongly assume the matrix to be regular and

compute the LU decomposition. As shown above, this will probably return an undesired

result. Even checking the result subsequently might not help. We can deal with this by

initializing singular threshold to a moderately low value, e.g. 10−12 which has shown to

work well.

However, with this strategy, the second pitfall might appear: We detect at least one

linear dependent row, although the matrix is actually regular. Relying on this, we would

continue replacing rows, perhaps without success. Although we do not get a false result,

we waste a lot of computation time. In the worst case, the algorithm continues replacing

data points until the History database is empty. In order to avoid this, we developed

an adaption mechanism for the singular threshold: When QRPT detects singularities

although we have repaired a certain number of times, we assume that this is due to a too

high singular threshold, and decrease it (by decrease factor).

There exists one additional case in which the singular threshold is adapted: When

we do not detect linearly dependent rows, we try to solve Equation system 5.5 with LU

decomposition. We test the result by applying it to Equation 5.5 and check if Aβ∗ = b

with respect to some threshold (equation solved threshold). If we find that the equation

system can not be solved appropriately, we assume that A was singular. As we did not

detect singularities we conclude that this was due to a too high singular threshold. We

increase singular threshold (by increase factor) iteratively until we detect at least one lin-

early dependent row which can then be replaced.

Theoretically, it is possible that the interpolation algorithm unsuccessfully proceeds re-

placing input data points until the History is empty. If this is the case, we try the same

procedure with a lower level polynom: The polynomial types are sorted and enumerated
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with respect to numcoeff. If for example quadratic interpolation fails, quadratic indp is

tried. If quadratic indp fails, too, linear is tried. Linear interpolation is the simplest

polynom. If interpolation fails even for this type, we perform unweighted constant regres-

sion, i.e. we choose a certain number of nearest data points and calculate the mean of

the corresponding fitness values. The first coefficient (β0) of the linear polynomial is set

to the mean fitness value, all other coefficients (βi, i ∈ 1 . . . n) are set to zero (constant

function)4.

5.6 Local regression

5.6.1 Background

Global or unweighted regression approximates a function by minimizing the vertical square

Euclidean distance between input data points and the function which is to be approx-

imated. This is known as least square fitting. Local regression tries to approximate a

function locally in the neighborhood of a fitting point x(0). To achieve a good local fit

we weight the distances which are to be minimized. Distances which correspond to data

points which are close to x(0) are assigned a larger weight. Here we assume that the

information provided by these data points is more important. The functional dependence

between distances and weights is a design parameter of Local regression which we denote

as weight function. The number of model input data points kregress is a design parame-

ter, too. Technically, interpolation is a special case of regression with kregress = kintpol.

However, in most cases kregress > kintpol, thus an equation system

A β = b (5.6)

needs to be solved which is overdetermined. Adding an error term e on the right hand

4this case did not appear in reality. The motivation for the implementation is to ensure the robustness

of the algorithm.
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side, we get

A β = b + e (5.7)

A least square solution to Equation 5.7 is such that the Euclidean norm of e is minimal.

We therefore need to find β∗ for which the Euclidean norm of (b − Aβ) is minimized.

Differentiating for β and setting the result to zero gives us

( b − A β )T ( b − A β ) = 0 (5.8)

There exist two methods to solve for β, via Normal equations or via Residual norm.

5.6.2 Normal equations method

Transforming Equation 5.8, we see that the least square solution β∗ satisfies

AT A β∗ = AT b (5.9)

Equation (system) 5.9 is called the Normal equations. If we assign weights to distances,

the Normal equations are defined as

AT W A β∗ = AT b (5.10)

where W is a diagonal matrix with weights on it’s diagonal. Note that A ∈ Rn×m,

W ∈ Rn×m and b ∈ Rm, where m = numcoeff and n = kregress. AT WA as well as AT b can

be computed by matrix multiplication. Thus, we need to solve a linear equation system

exactly as in interpolation. Here, AT A respectively AT WA is termed design matrix.

Analogous to interpolation, the solution to the linear equation system can be found by LU

decomposition. However, in this case there exists a method which works more efficiently by

taking advantage of the symmetry of AT A, respectively AT WA. This method is known as

Cholesky decomposition. Cholesky decomposition factorizes a quadratic, positive definite

matrix A into the product of two upper triangular matrices T,

A = T T T . (5.11)
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First, Cholesky decomposition is computationally very efficient. It requires only 1/6n3

operations on a (n×n)-matrix and is therefore twice as fast as LU decomposition. Sec-

ondly, it is extremely numerically stable. In fact, it is the preferred method, if one wants

to test, if a matrix is positive definite. We refer to [32] and [31] for details.

5.6.3 Residual norm method

If we want to compute an unweighted regression, we can use a different technique which

works directly on A rather than on the design matrix AT A. Consider again Equation 5.8.

The overdetermined matrix A has a QR decomposition such that A = QR. For n > m,

R is of the form

R =


R1

0




where R1 is upper triangular. Now, Equation 5.8 can be written as

(b− Aβ)T (b− Aβ) = (b−QRβ)T (b−QRβ)

= (QT b− Rβ)T (QT b− Rβ)

=

(
c1

c2


−


R1

0


 β

)T(
c1

c2


−


R1

0


 β

)

=

(
c1 −R1β

c2



)T(

c1 − R1β

c2



)

= (c1 −R1β)T (c1 − R1β) + c2
T c2

(5.12)

The transformation between the first and second row is allowed, because for orthogonal

Q, the euclidean norm has the property ‖ Qβ ‖2 = ‖ β ‖2. c1 is a vector of length m, c2

is a vector of length n−m, such that

QT b =


c1

c2


 (5.13)
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. The left hand side of Equation 5.12 is called the Residual norm. The residual norm is

minimal if (c1 − R1β)T (c1 − R1β) is minimal because quadratic forms are non-negative.

The quadratic term is minimal if (c1 − R1β) = 0. Solving for β we get,

β∗ = R1
−1c1. (5.14)

This is easy to solve, because R1 is triangular. Further details can be found in [30].

5.6.4 Normal equations vs. Residual norm method

Comparing the two methods, the numerical analysis is strongly in favor of the Residual

norm method. Here the concept of matrix condition is important. Citing Gentle [30],

”data are said to be ill-conditioned for a particular computation if the data were likely to

cause problems in the computations, such as severe loss of precision. More generally, the

term ill-conditioned is applied to a problem in which small changes to the input result

in large changes in the output”5. For specific problems such as solving equation systems,

the condition of a matrix can be quantified by a condition number. Condition numbers

are defined to be positive,, and a large condition number is associated with strong ill-

conditioning. We recommend [30] for a comprehensive introduction. It can be shown

that the condition number of a matrix AT A is the square of the condition number of

matrix A. Therefore it seems favorably to work directly on A.

For a comparison of the computational cost, let us assume that no singularities appear

and that for both methods the most efficient algorithms are employed. Again, we define

m = numcoeff , n = kregress. Equation 5.15 summarizes the computational cost for the

Normal equations method (NE): Matrix multiplication is the most expensive operation.

By taking advantage of the symmetry we reduce the cost to approximately 1/2. Com-

putation of the equation system’s right hand side is straight forward. As decomposition

5pages 75 ff.
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method we use Cholesky decomposition here. Finally, the equation system is solved by

forward and backward substitution.

cost(NE ) = 1/2 n m2

︸ ︷︷ ︸
matrix multiplication

+ m n︸︷︷︸
right hand side

+ 1/6 m3

︸ ︷︷ ︸
Cholesky decomp.

+ m2
︸︷︷︸

forw./backw. substitution

(5.15)

Equation 5.16 summarizes the computational cost for the Residual norm method (RN):

QR decomposition is the most expensive operation and requires 2/3 n3 multiplications and

additions. After Q and R have been computed, c1 is computed (compare Equation 5.13).

Equation 5.14 is solved by backward substitution.

cost(RN ) = 2/3 n3

︸ ︷︷ ︸
QR decomposition

+ m n︸︷︷︸
computing c1

+ 1/2 m2

︸ ︷︷ ︸
backw. substitution

(5.16)

Comparing equations 5.15 and 5.16, we see that for sufficiently large n, the computational

cost of the Residual norm method are higher than the cost of the Normal equations

method. Recall, that, if m = n, regression is equivalent to interpolation. The curves in

Figure 5.1 depict cost(RN )
cost(NE )

for different n’s. Here we set n = k ·m. Already for relatively
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Figure 5.1: computational cost: Residual norm as factor of Normal equations method

small k, RN incurs significantly higher computational cost than NE , e.g. for k = 2 and 10-

dimensional quadratic regression (m = 66), RN requires 4.4313 as many multiplications

and additions as NE . The major disadvantage of the Residual norm method is, however,
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that it can only be applied to unweighted regression. We fail to do the transformation

from equation 5.12 with a weight matrix W , because

(b−QRβ)TW (b−QRβ) 6= (QT b− Rβ)TW (QT b− Rβ)

For orthogonal Q, the property ‖ Qβ ‖2 = ‖ β ‖2 only holds for ”pure” L2 norm. Con-

sidering these aspects, we decide to use the Normal equations method with Cholesky

decomposition6.

5.6.5 Managing singularities

Successful application of the regression procedure requires that the input data matrix A

has full rank, or in other words: m out of the n input data points are linearly independent,

thus the problem is similar to the case of singularities in interpolation (Section 5.5.2). Here

we deal with singularities by identifying linear dependent matrix rows and replacing them.

However, in regression the number of matrix rows in A is not restricted. If A is singular

(has less than full column rank), we iteratively add data points until A is regular. Thus,

it is sufficient to detect that A is singular. Applying Cholesky decomposition on AT WA

represents a means to detect singularities in A, because the following statement is true

A regular ⇒ AT WA positive definite

As mentioned earlier, Cholesky decomposition is the preferred method if a matrix is

positive definite. If Cholesky decomposition detects AT WA to be not positive definite, we

conclude that A was not regular. We can add a data point to A and repeat the procedure

until Cholesky finds AT WA to be positive definite. This method works correct. However,

adding data points one by one and applying the decomposition methods many times,

is very time consuming. We developed a simple heuristics which estimates how many

6both decomposition methods, Cholesky and QR are implemented and can be chosen by the user
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data points are to be added to the model. In particular, we modified the Cholesky

routine. Recall the notation from Section 5.6.2. Additionally we define B := AT WA with

corresponding entries bii. Cholesky decomposition computes the diagonal entries tii of

matrix T as follows:

Tii =

(
bii −

∑

1≤ k≤ i−1

T 2
ik

)1/2

(5.17)

If the square root can not be taken because the inner term is negative, this indicates that

B is not positive definit. In our modification, we simply count how often this case appears,

and take this number as heuristic estimation for the required number of additional input

data points. We tested this heuristic empirically and found that in most cases the heuristic

performes as if an exact rank determining method, e.g. QRPT , was used.

Additionally, we modify the standard Cholesky procedure by adding a

positive definite threshold. Instead of checking whether Tii is non-negative, we check

whether Tii < positive definite threshold . This threshold is dynamic and adapts exactly

as singular threshold in Section 5.5.2.

In the theoretical case when all History data are added to the model and the regression

routine is still not able to solve the system, we follow the same strategy as in interpolation

and reduce the number of coefficients by using a lower order polynomial.

5.6.6 Design parameters

Although part of the information of this subsection was already provided in earlier section,

it is useful to present it in the context of regression design parameters. This subsection

therefore aims at summarizing the regression procedure. The following design parameters

should be mentioned

• fitting criterion : As mentioned in Section 5.6.1, we use least square estimate, which

is a standard fitting criterion. Generally, any criterion can be used.
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• bandwidth : The bandwidth defines the range (measured as Euclidean distance) in

the search space from which data points are added to the regression model. In our

application we set the bandwidth such that it covers the range of the noise. Possibly,

the number of data points is too small (smaller than numcoeff ). In this case, the

bandwidth is extended, such that a minimum number of data points kmin lie within

the bandwidth. kmin is specified by the user. In our application, we set

kmin = 2 · numcoeff

in order to have a clear differentiation to the interpolation method.

• weight function : As weight function we use the tricube function which is defined

W (x(i), x(0)) =

(
1−

(‖ x(i) − x(0) ‖2
bandwidth

)3)3

(5.18)

x(0) denotes the fitting point of the model. Figure 5.2 shows the tricube function

for bandwidth = 1.0. In addition, we define a minimum weight, in order to avoid

numerical problems7.

5.7 Computational complexity

This section briefly analyzes the computational complexity of the presented approximation

methods. For this analysis, we did not measure actual runtime but use the theoretically

known complexity. In order to make the different methods comparable, we assume that

no singularities appear. Nevertheless, the cost for checking for singularities are included.

We further assume that a matrix of input data A and a vector of corresponding fitness

values b is given.

7when we detect singularities, we deal with that by adding the necessary number of new History data

points to the regression model. If the data points are weighted with tricube function these values would

either be very low or zero, as their distance to approximation point exceeds the initial bandwidth.
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Figure 5.2: tricube function with bandwidth = 1.0

Interpolation requires to compute a matrix transpose, perform QRPT , check for sin-

gularities, perform a LU decomposition and solve the equation system by forward and

backward substitution. We assume the cost of computing the matrix transpose to be 0,

because in principle, the algorithms could be modified such that they work directly on

A rather than on AT . Further, the cost for checking for singularities after QRPT has

been computed are assumed to be negligible. In total, we get the cost of the interpolation

procedure. See Equation 5.19 where m is the number of polynomial coefficients.

cost(interpolation) = (2/3) m3

︸ ︷︷ ︸
QRPT

+ (1/3) m3

︸ ︷︷ ︸
LU decomposition

+ m2
︸︷︷︸

forw. + backw. substitution

= m3 + m2

(5.19)

The computational cost for regression, when using Cholesky decomposition are already

shown in Equation 5.15. As in Figure 5.1 of Section 5.6.4, we set the number of input

data points n = k ·m. We get the cost function for regression:

cost(regression) = ((1/2) k + (1/6)) m3 + ( k + 1 ) m2 (5.20)

Figure 5.3 depicts the cost functions for interpolation (a) and regression (b). In (c) the cost

of regression as a factor of the cost for interpolation are depicted. For large k, regression
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demands significantly more computational power than interpolation. For arbitrary k the

factor is asymptotically ((1/2)k + (1/6)).
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Figure 5.3: Number of required multiplications and additions:

(a) interpolation, (b) regression, (c) comparison: cost regression
cost interpolation

5.8 Illustration

The different techniques produce different fitness surface approximations. A qualitative

comparison can be derived from the example in Figure 5.4. The set of available History

data is depicted in Figure 5.4(a). Repeated application of the approximation methods

produce the fitness surface approximations which are depicted in Figure 5.4 (b-e). In

interpolation, all History data points are intersected by the approximation function. The

regression approximation is slightly smoother, specifically in the area where the true re-

sponse surface is very rugged. As smoothening underestimates the variance of a function,

we expect interpolation, to work better as fvar-estimator. On the other hand, interpola-

tion is more likely to produce extreme outliers and thus is expected to produce a small

number of extreme wrong estimations. What effect is dominating will be shown in the

simulation studies. Furthermore, we see that both Nearest neighbor interpolation and

Local regression produce discontinuous functions. The quadratic models seem to produce
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(b) linear interpolation
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(c) quadratic interpolation
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(d) linear regression
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(e) quadratic regression

Figure 5.4: 1-dimensional examples of fitness surface approximations
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smoother surfaces than the linear models.



Chapter 6

Robustness estimation

This chapter outlines how the function approximation methods from Chapter 5 are ac-

tually used to estimate fexp and fvar. Section 6.1 describes how we simulate noise dis-

tributions and approximate integrals. Section 6.2 introduces two different approaches to

approximation model distribution. In order to improve estimation quality further, we

developed a mechanism which detects extremely wrong estimations. See Section 6.3.

6.1 Integral approximation (sampling techniques)

The goal of robustness estimation is to estimate the two integrals in Equation 6.1 most

accurately based on approximation methods from Chapter 5.

fexp(x) =

∫ ∞

−∞
p(δ) · f(x + δ) dδ

fvar(x) =

∫ ∞

−∞
p(δ) · (f(x + δ)− fexp(x))2 dδ

(6.1)

As mentioned earlier, these integrals cannot be calculated analytically, because f is not

available in closed form in most applications. Even if f is available in closed form, it is

probably not integrable. Instead, we use approximate functions f̂ which are polynomials

and thus integrable. Still, even after replacing f by f̂ the integrals are not analytically

59
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Figure 6.1: Sampling techniques: (a) Stratified sampling with 3 quantiles per dimen-

sions, (b) Latin hypercube sampling with 9 quantiles per dimension, (c) Latin hypercube

sampling with 3 quantiles per dimension

solvable for a number of reasons. p(δ), the density function of the noise distribution

might not be integrable. One can argue, that for most density functions sufficiently

accurate polynomial approximations are available. However, the second factor f̂ is in some

scenarios partially defined and is composed of a large number of polynomials. We therefore

estimate the integral of Equation 6.1 by derandomized sampling in the neighborhood

taking into account probability distribution p(δ).

Assume estimation point ~x is 2-dimensional and the random disturbance δ (noise) is

uniformly distributed on [δmin; δmax]
2. We divide the space [δmin; δmax]

2 into regions of

equal probability with respect to the probability function of δ. For uniform distributions,

this means equal sizes. In the 2-dim case, we get a grid with squares of equal size. For

arbitrary density functions, this grid can be drawn by calculating the respective quantiles

of the distribution. We then use this grid to draw representative samples. In particular,

we use two different sampling techniques known as Stratified sampling and Latin hypercube

sampling.

In Stratified sampling, we draw one sample from each quantile randomly. A 2-

dimensional example is depicted in Figure 6.1(a). Here, the simulation of a uniform
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noise distribution around an estimation point which is marked with an unfilled circle

is shown. The filled circles depict locations where samples are drawn. The number of

quantiles per dimension is 3. One can see that the quantiles grid is well covered by sam-

ple points. However, with constant number of quantiles per dimensions, the number of

samples increases exponentially with the dimensionality of the problem. Even with small

number of quantiles, this method is not acceptable in higher dimensions. We therefore

use Latin hypercube (LHC) sampling in higher dimensions. For illustration, see Figure

6.1(b). LHC sampling is the method of choice if we want to sample a high-dimensional

space relatively sparsely and is carried out as follows: Again, we divide the space into re-

gions of equal probability (in 2 dimensions, this is a cell grid). Then, we randomly choose

one quantile and draw a sample from this. Now, we eliminate all cells that agree with

this point in any dimension. In the 2-dimensional case, that is crossing out the respective

row and column. Then, we randomly choose one of the remaining cells and repeat this

procedure until all cells are eliminated. As a result, we get a set of k samples where k is

the number of quantiles per dimension. Note, that this description illustrates the idea of

LHC. We use an implementation with computational complexity of O(n2), where n is the

number of quantiles.

We distinguish between two methods of drawing samples from a given quantile.

1. randomized sample drawing: the location of the sample point within the quantile is

randomly chosen (uniform distribution)

2. derandomized sample drawing: the location of the sample point is the center of the

quantile
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The sizes of the sample set for the two sampling techniques can be summarized to

num samples(num quants, dim) =





(num quants)dim : Stratified sampling

num quants : Latin hypercube sampling

(6.2)

where d is the number of dimensions, num samples is the number of samples and num quants

is the number of quantiles. We see that the number of samples in LHC sampling is con-

stant in the number of dimensions and solely dependent on the number of quantiles.

Therefore, LHC sampling represents a means to overcome the difficulties of Stratified

sampling which arise from the high computational complexity. The size of the sample set

is therefore easily scalable in Latin hypercube sampling. This can either be done by mod-

ifying the number of quantiles (example in Figure 6.1 (b),(c)) or by running the sampling

procedure multiple times. We refer to the latter parameter as number of sampling loops.

The samples are evaluated with an approximation function. The resulting set of fitness

approximations is then used to calculate the estimations of fexp and fvar empirically. Thus,

the integrals (Equation 6.1) are estimated:

f̂exp =
1

ns

∑

1≤i≤ns

f̂(x(i))

f̂var =
1

ns

∑

1≤i≤ns

(f̂(x(i)))
2 − (f̂exp)

2
(6.3)

Here, ns is the number of samples which was previously denoted num samples. A sample

point is denoted x(i).

An additional sampling parameter needs to be mentioned. Consider a noise distribu-

tion which is defined on [−∞; +∞], e.g. normal distribution. In this case the first and

the last quantile are infinitely large. Of course, in computer representation quantiles have

finite size. Still, the quantiles are expected to be very large. Drawing a sample randomly

from this quantile, e.g. from the center of this quantile, strongly biases the estimation,

especially if the number of quantiles is small. We therefore cut the distribution at the
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quantiles αcutoff and α(1−cutoff ) where cutoff represents an additional sampling parameter.

In the multi-dimensional simulation studies of this work we set cutoff = 0.05 for the nor-

mally distributed noise. Throughout all simulation studies of this work we use a normally

distributed noise N (0, σnoise). As the noise is solely dependend on the parameter σnoise,

we subsequently use σnoise as noise indicator.

6.2 Distribution of approximation models

As mentioned earlier, for evaluation of a sample point x we use an approximation of

the fitness function. Although the approximation is based on the models as described

in Chapter 5, we tested different methods of using approximation models for actually

approximating the fitness function at x. In particular, the methods can be categorized

into Individual based model distribution (IMD) and Population based model distribution

(PMD).

6.2.1 Individual based model distribution

The basic idea of the individual based model distribution (IMD) approach is to consider

all individuals of a population one by one and do the estimation of fexp and fvar for each

individual independent from the estimations of neighboring individuals. In particular,

we distinguish between the two methods Single model (IMD-SM) and Multiple models

(IMD-MM).

IMD-SM works as follows: For each estimation (f̂exp, f̂var) a single model is built.

All samples (compare filled circles in Figure 6.1) of an estimation are evaluated with the

approximation function of the single model. Note, that the single model covers the entire

noise range1.

1this means all quantiles of the noise distribution
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Figure 6.2: One-dimensional example of model distribution strategies with 3 quantiles

using a linear interpolation model: (a) Single model, (b) Multiple models

In IMD-MM, for each sample an own approximation model is built which is only eval-

uated once at the respective sample point. An illustration for the one-dimensional case is

depicted in Figure 6.2. The filled squares represent the History information which is used

for approximation. IMD-MM is expected to better approximate the fitness function over

the noise range. Of course the IMD-MM is significantly more expensive than IMD-SM.

Neglecting the cost of sampling and only taking into account the cost of model compu-

tation, the computational cost for IMD-MM is num samples times higher (see Equation

6.2). The drawback of IMD-SM is the often insufficient estimation quality, whereas the

major drawback of IMD-MM is the high computational cost. It is worth mentioning that

IMD-MM is not expected to perform significantly better if the density of History data is

low. Although many models would be built in this case, these models are likely be similar

because they are based on the same or similar input data. A drawback of both IMD-SM

and IMD-MM arises from the independent assignments of models to individuals. If, for

example, two individuals are located close to each other, and thus having similar History

data in their neighborhood, the models that are to be built for both individuals are likely
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to be equal. Computational power is wasted, thus, the IMD methods are inefficient.

6.2.2 Population based model distribution

To overcome the drawback of the IMD methods, “insufficient estimation quality in IMD-

SM”, “high computational cost in IMD-MM”, we investigate another approach. A better

method requires to exploit information more efficiently. A source of inefficiency in IMD

methods was found in the single use of the models, i.e. a model is expensively built,

evaluated for one estimation, and then thrown away. A more efficient method uses an

approximation model for multiple estimations. In particular, locations of models are

assigned with respect to the entire population (the set of estimation points). This method

is named Population based model distribution (PMD). The goal of PMD is to find a

distribution of approximation model locations which sufficiently covers the population.

We split up PMD methods into two steps. In step 1, a model distribution is chosen and

the models are built. In step 2, for each individual fexp and fvar is estimated by using the

available models.

Distributing models in PMD

In this work we use a simple model distribution in step 1: As in IMD-SM, one model is

built per individual, having it’s fitting point x(0) at the location of the individual. The

number of models equals the population size. In contrast to the Single model approach,

however, each models is made available to all estimations.

Use of models for estimations in PMD

Generally, a more accurate approximation at sample point x is expected if the nearest

available model chosen. In particular, when sampling in the neighborhood of an individual

(LHC or Stratified sampling) that model is chosen for evaluation which has the shortest
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Figure 6.3: Nearest model: Using model with shortest Euclidean distance. The squares

represent the fitting points of the available models, these are the locations of the individ-

uals of the current generation. The circles represent sample points for the blue individual.

The color of the circles shows which model is used for evaluation.

Euclidean distance between it’s fitting point and the sample point. We refer to this

technique as Nearest model. For illustration, see Figure 6.3.

An extension of the Nearest model approach is to build ensembles of models (PMD-

ENS). Instead of only using the nearest model for evaluation, an ensemble of the k nearest

models is used for evaluation. An ensemble of approximation models (f̂ens) is defined as

the weighted sum of approximation models (see Equation 6.4):

f̂ens(x
(0)) =

1∑
1≤i≤k wi

∑

1≤i≤k

wi f̂i(x
(0))

w(f̂i, x
(0)) =

1

‖fittingpoint(f̂i)− x(0)‖2

(6.4)

Here, x(0) denotes the sample point, k is the number of models in the ensemble (ensemble

size), w is a weighting function which assigns weights to models. The weighting function of

Equation 6.4 which is used throughout the simulation studies is a monotonously decreasing

function in the Euclidean distance between sample point ~x and the fitting point of f̂i.
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Figure 6.4: Overview of model distribution methods

Technically, the nearest model method is a special case of the ensemble method with

ensemble size 1. We therefore refer to both approaches as PMD-ENS-k where k is the

ensemble size.

6.2.3 Overview

Figure 6.4 summarizes the three different model distribution methods. The Single model

method (IMD-SM) and Multiple models method (IMD-MM) fall into the category of

individual based model distribution, the Ensemble method (PMD-ENS) falls into the

category of population based model distribution.

6.3 Extreme outliers

6.3.1 Estimation bias

In preliminary experiments, we found that estimations of fexp and fvar are sometimes

strongly biased by a small number of seriously over- or under- approximated fitness values

in the sampling procedure. We refer to these fitness values as outliers. Outliers appear
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specifically in interpolation, for illustration see Figure 6.5.
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Figure 6.5: Outlier caused by an unfavorable History data distribution and large fitness

function gradient

Although the existence of outliers is not due to numerical difficulties but has concep-

tual reasons, we detect extreme outliers and replace them by more reliable estimations.

Defining extreme requires to set thresholds. Setting a threshold for outliers detection and

replacement itself introduces a new bias. Therefore the goal of such a method must be to

reduce the bias caused by extreme outliers and at the same time keep the bias which is

introduced by this routine at a low level. We use the well known method boxplotting with

some modifications.

6.3.2 Boxplot

Details on boxplotting can be found in any standard statistics text book, therefore we

introduce boxplotting in brief. For illustration have a look at Figure 6.6. In boxplotting,

outliers of a set X of samples x(i) are detected as follows: After sorting the numbers,

a lower quantile (qleft) and an upper quantile (qright) are determined. Often qleft is the

(0.25)-quantile and qright is the (0.75)-quantile. The interquartile range (IQR) is defined

as (qright − qleft). An x(i) is defined as outlier, if it it does not lie within the acceptance
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Figure 6.6: Boxplot

interval:

xi /∈ [ qleft − k · IQR ; qright + k · IQR ] (6.5)

Here k is a factor which needs to be set by the user. We define factor k as whisker factor.

In Figure 6.6 whisker factor is 2.

6.3.3 Outliers detection routine

In classical boxplot applications, data which are detected as outliers are from the same

data source as the data which are actually used to compute the acceptance interval. In

our application, however, this is different: As input data to the boxplot (for computing

the acceptance interval), we use all History data. Recall that the History data are known

points of the fitness surface. We then use the resulting acceptance interval to decide if

the approximated fitness value of a sample point is treated as outlier. To summarize,

boxplot input data are History data, potential outliers are approximations. However, this

modification requires a careful setting of the boxplot parameters whisker factor, lower

quantile (qleft), upper quantile (qright). It is required that the parameters have a setting

such that no History data would be treated as outliers, because we already know that such
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fitness values are feasible and no outliers. This could for example be ensured by using the

0.0-quantile as qleft and the 1.0-quantile as qright. In any scenario, whisker factor must

be larger 0.0. In the case of whiskerfactor ≤ 0.0 any fitness improvement (even if the

approximation has no approximation error) would be treated as outlier. Let us assume

whisker factor is set to 3, qleft is the 0.0-quantile and qright is the 1.0-quantile: In the

initial stages of the EA, a small number of individuals with very high fitness values2 are

likely to appear, after some generations “interesting” regions (with low fitness values)

are discovered. If the fitness function has a large range of function values, this results

in a large IQR. With whisker factor = 3, even serious under estimations would not be

treated as outliers now. Thus, IQR must be reduced: A standard setting of IQR in

many applications is to use the 0.25-quantile as qleft and the 0.75-quantile as qright. In the

context of an EA a problem arises from such a setting: When the algorithm converges,

many similar data are added to the History. IQR shrinks to a small size which causes

the acceptance interval to shrink, too. Although the EA has converged, in the sampling

procedure some approximations might wrongly be treated as outliers.

A “effective” parameter setting must manage the trade-off between the drawback

caused by convergence and the drawback caused by the appearance of high fitness values

in the initial stages of the EA. We found that the following works good in this sense: We

set whisker factor = 5.0, qleft is the 0.01-quantile, qright is the 0.99-quantile.

6.3.4 Replacing outliers

Once an outlier has been detected, one needs to take further actions in order to proceed

with the estimation procedure. Generally, two methods are possible:

1. discard the outlier from the sample set

2. replace the outlier by a more reliable approximation

2assuming a minimization problem
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Method 1 is cheap and straight-forward. Method 2 requires to compute a more reliable

approximation and is therefore more expensive. Although computational cost is one of

the major concerns of this work, we decide to use method 2 but use an approximation

with low additional cost. If an outlier is detected, we replace the fitness value by the

average fitness of the current population which (at least in later stages of the EA) is a

sufficiently reliable approximation. As the same replacement approximation is chosen for

all outliers of the current population we expect the proposed method to work similar to

Method 1.

6.3.5 Additional remarks

The target of an outliers detection and replacement mechanism is to reduce the effect of

serious outliers. In fact, when switching off this mechanism, the evolutionary algorithm

does not manage to converge in many cases, when using interpolation. However, an

inappropriate setting of the parameters might introduce a new bias. As one goal of

this work is to compare different approximation techniques (including their conceptual

difficulties) we chose a parameter setting such that only extreme outliers are detected.

In fact, the setting of boxplot parameters has a significant effect on the EA performance

when using interpolation. In the simulation studies for SO robustness (see Chapter 8) we

found that a setting such that a larger share of approximations is identified as outliers

has a positive effect on the EA performance. However, this effect is problem specific. We

therefore decided to use above described conservative parameter setting.
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Chapter 7

Preliminary 1-d simulation studies

7.1 Introduction and preceding remarks

This chapter reports about a number of preliminary experiments which were carried out

for the special case of 1-dimensional problems. The goal of these experiments was to

gather a deeper understanding for the problem at hand without spending too much time

on implementation. Another reason for choosing the 1-dimensional case as starting point

for further steps was that this allowes us to test a larger range of approximation tech-

niques: In addition to Nearest neighbor interpolation and Local regression, we analyzed

Natural neighbor interpolation. This technique is introduced in Section 7.2. However,

when setting up the 1-dimensional simulation studies, we had not implemented Local

quadratic regression. Table 7.1 summarizes the methods which were analyzed in 3 ex-

periments. Note that in the 1-dimensional case, we do not need to distinguish between

Stratified and Latin hypercube sampling. For a description of the approximation methods

(except Natural neighbor interpolation), we refer to Chapter 5.

The test functions of the simulation studies are presented in Section 7.3. Experiment 1

(Section 7.4) analyzes the quality of different approximation models as estimator for fexp

73
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Table 7.1: Tested methods in 1-dim simulation studies

Single model Multiple models

Nearest

neighbor

interpolation

Natural

neighbor

interpolation

Local

regres-

sion

Nearest

neighbor

interpolation

Natural

neighbor

interpolation

Local

regres-

sion

linear yes yes yes yes yes yes

quadratic yes yes no yes yes no

and fvar for different noise levels in a static environment. Experiment 2 (Section 7.5)

analyzed the estimator quality for fexp, fvar, too. Here, the measures are taken over a

range of fitness landscapes with different variances. Finally, Experiment 3 (Section 7.6),

tests the performance of the methods in an EA environment.

Following remarks are worth mentioning: After gaining experience in multiple dimen-

sion simulation studies, we found that some results of the 1-dimensional simulation studies

are not transferable to the multi-dimensional case. In particular, we found that the ex-

perimental setup is not representative for higher dimensions. However, some findings are

worth mentioning. In this report on the 1-d-simulation studies, we therefore only briefly

report on some spotlights of the experiments. A critical discussion on the findings is

presented in Section 7.7.

7.2 Natural neighbor interpolation

The difference between Nearest neighbor and Natural neighbor interpolation is the choice

of input data points to the model. In the case of linear 1-dimensional Natural neighbor

interpolation not necessarily the nearest data points but the left and right neighbor with

regard to model fitting point. The resulting interpolation is a “real” interpolation. In

contrast, if two data points from the same side are chosen the approximation point is
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Figure 7.1: Interpolation (a) linear Natural neighbors, (b) linear Nearest neighbors, (c)

quadratic Natural neighbors, (d) quadratic Nearest neighbors

extrapolated. The essential difference is that Natural neighbor produces a continuous

response surface approximation. For illustration, see Figures 7.1(a)(b).

The multi-dimensional equivalent to Natural neighbor interpolation is known as De-

launay triangulation. In multiple dimensions the resulting surface approximation is con-

tinuous, too. Another property of this triangulation method is that the resulting triangles

are relatively equal, that is, the variance of the edge lengths is low. For further informa-

tion we refer to [33] and [34]. Unfortunately the time to compute a Delaunay triangu-

lation in dimension n is of the order mdn
2
e, where m is the number of sample points. In

the n-dimensional space, Delaunay triangulation constructs a set of n-dimensional hyper
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planes. In this form Natural neighbor interpolation can only be used for linear interpo-

lation. However, we extended the Natural neighbor interpolation technique for quadratic

polynomials: Again, the only difference to quadratic Nearest neighbor interpolation is

the choice of input data to the model. If the dimensionality is n, the first n + 1 data

points are chosen equivalently to linear Natural neighbor interpolation. As additional

n(n+1)
2

data points the nearest remaining data points are chosen. With this extension, the

resulting surface approximation is not continuous anymore. Still, the Natural neighbor

interpolation is smoother than the Nearest neighbor interpolation. For illustration see

Figures 7.1(c)(d).

7.3 Test functions

In Experiments 1-3 we used the following test functions:

f1dim1(x) = 2.0 sin( 10 exp(−0.08x) x ) exp(−0.25x)

f2dim1(x) = sin( δx )

f3dim1(x) =
1

(x + 0.2)
+ 2.5

√
x + 0.2

(7.1)

Figure 7.2 depicts fraw, fexp and fvar for the three test functions with σnoise = 0.1. For

illustration of f2dim1 we set δ = 5.
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Figure 7.2: Test problems for the 1-dim simulation studies with σnoise = 0.1
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7.4 Experiment 1

In Experiment 1, we analyzed the quality of the ten proposed methods (see Table 7.1)

as estimator for fexp and fvar in a static environment. Particularly, we measure the

estimation accuracy for different noise levels σnoise. Here σnoise is the standard deviation

of the N (µnoise, σnoise) normally distributed noise.

7.4.1 Experimental setup

We randomly generate a set of n = 100 History data points xi ∈ [−2; 12] based on test

function f1dim1. We then compute the true fexp(xi) and fvar(xi) for all i = 1 . . . n based

on the known test function1. Here, we use Stratified sampling with 50 quantiles to ap-

proximate the integral (for details see Section 6.1). We then compute the approximations

f̂exp(xi),f̂var(xi) for all i = 1 . . . n based on the History data. Again we use 50 quantiles

for sampling. For each i we compute the estimation errors efexp
and efvar

. For convenience

we refer to these as eexp and evar (see Equation 7.2):

eexp(xi) = f̂exp(xi)− fexp(xi)

evar(xi) = f̂var(xi)− fvar(xi)
(7.2)

By running the experiment 50 times we get empirical distributions eexp, evar for each

approximation method we get 10 distributions eexp and evar of 5000 data points for each

setting. These distributions are the basis of our analysis. We evaluate mean µ and

standard deviation σ for all distributions and get four accuracy measures µeexp
, σeexp

,

µevar
, σevar

.

σnoise is varied over the domain [0.0; 1.0]. Throughout all 1-dimensional experiments we

cut the normal distribution to a finite domain by setting the parameter cutoff = 0.02 (see

Section 6.1).

1note that we use the terms “true fitness” and “real fitness” synonymously
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7.4.2 Brief remarks on estimator properties

In general, both mean µe and standard deviation σe of the estimation error are important

quality criteria for an estimator. However, the relative importance of both varies from

application to application. After we had gained experience in multi-dimensional simula-

tion studies we were able to demonstrate that in the context of evolutionary algorithms

the σe is the important criterion2. Nevertheless, we report on both µe and σe, because

this chapter represents a starting point of the analysis.

7.4.3 Results

As expected, the Multiple models approach performs significantly better. Considering

the single objective fexp, we see that the mean of the estimation error µeexp
is closer to

zero for the multiple model methods (Figures 7.3(a)(b)). We also see that the standard

deviation of the estimation error is closer to zero for the multiple model methods. Both

findings hold specifically for larger σnoise(Figures 7.3(c)(d)). The reasoning is straight-

forward: If σnoise is small, the number of History data points within the σnoise-range is

small. Although the Multiple models method computes an own model at each sample

point, this does not improve the estimation because the models are likely to be equal. We

will later see that application of the Multiple models method in this form is restricted to

low-dimensional problems. Therefore some attention should be spent on the Single model

methods. In Figure 7.3(b), we see that in the Single model application, the quadratic

interpolation methods perform relatively well for σnoise < 0.2. However, for larger σnoise

the linear interpolation methods are more stable.

Considering the Multiple models approach, we see that for large σnoise the linear methods

outperform the quadratic methods (Figure 7.3(d)).

Surprisingly, linear regression performs best for large σnoise (Figure 7.3(d)). The rea-

2this issue will extensively be discussed in Chapter 8
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son is easily found. A larger σnoise smoothens fexp. Thus the drawback of regression

(smoothening of the landscape) is less severe. A negative aspect of the smoothening ef-

fect of regression is the consistent underestimations of the variance. Figure 7.3(e) shows

that the extent of underestimation is increasing with increasing σnoise. However, at a

certain level, here σnoise = 0.2, the underestimation remains constant. This can be at-

tributed to the problem specific smoothening of fvar for large σnoise.

Comparing Natural and Nearest neighbor interpolation we do not find a significant perfor-

mance difference for the estimation of fexp (Figure 7.3(a)-(d)). As expected, we find that

linear Natural neighbor interpolation tends to underestimate the variance, whereas Near-

est neighbor interpolation slightly overestimates the variance (Figure 7.3(e)). Considering

σevar
(Figure 7.3(f)), we find that Natural neighbor interpolation performs slightly better.
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Figure 7.3: Performance of estimation methods. ’sm’- Single model, ’mm’- Multiple

models. (b) zooms into (a), (d) zooms into (c)
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7.5 Experiment 2

Experiment 2 aims at evaluating the quality of the ten proposed methods as estimator

for fexp and fvar in fitness landscapes with different variances. Thus question to answer

by this experiment is “How do the estimators perform if the fitness landscape is smooth,

and how do they perform if it is very rugged?”

7.5.1 Experimental Setup

The setup of Experiment 2 is identical to Experiment 1, except the following parameters:

We set σnoise = 0.1 constant for all runs. As test function we use f1d2 and run the

experiment for δ ∈ [1; 30] with stepsize 1. Figure 7.4 illustrates the effects of increasing δ.
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Figure 7.4: f1d2 = sin(δx), for different δ

7.5.2 Results

The effect of increasing δ in experiment 2 is similar to the effect of increasing σnoise in

experiment 1. We therefore do not repeat a detailed discussion on the results. However,

one spotlight should be taken from the results. Figure 7.5 depicts the standard deviation

of the estimation error for fexp. Again, Multiple models performs significantly better than

Single model (a). For low δ, linear and quadratic interpolation perform similar and both

better than linear Local regression. For larger δ, linear interpolation performs better than

quadratic interpolation. The reason is that in very rugged landscapes quadratic models
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are suspect to extreme outliers. Surprisingly, Local linear regression performs best for

large δ, because one would expect that regression works best on smooth surfaces. This

is of course true. Evidence is provided by Figure (b) where we see that the performance

of Local regression degrades with increasing δ on δ ∈ [1; 5]. However, Local regression

performs only relatively better than interpolation, because it does not produce severely

wrong estimations.
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Figure 7.5: σeexp
: (a) all methods on δ ∈ [1; 10], (b) Multiple models on δ ∈ [1; 10], (c)

Multiple models δ ∈ [1; 30], coloring as in Figure 7.3

7.6 Experiment 3

Experiment 3 aims at evaluating the quality of the ten proposed methods in the framework

of an evolutionary algorithm. Experiments 1 and 2 analyzed the quality of fexp- and fvar

estimators in a static environment. However, it is of essential interest for our work, how

the estimations actually guide the evolutionary search. Questions to be addressed are

concerned with convergence rates, whether the approximation finds the true optimum or

whether the approximation methods guides the search similarly as the true fitness function

would do. We treat robustness as single objective optimization problem, i.e. we use an

SOEA.



7.6. EXPERIMENT 3 83

7.6.1 Experimental setup

For Experiment 3, we use a modification of Algorithm 3 in Chapter 4. Instead of the

standard evolution strategy we used covariance matrix adaptation (cma)3. All other

genetic operators and EA parameters are set as described in Section 4.3. Constraint

handling is done as described in Section 4.5. The sampling procedure is configured as

in Experiments 1 and 2. As test problems we used functions f1dim1 on x ∈ [−2; 12] and

f3dim1 on x ∈ [0; 3] for different σnoise ∈ [0; 1]. For each of the 10 approximation methods

we run the algorithm 50 times with different random seeds. Additionally we run the

algorithm with the same random seed but use the true fitness function instead of the

approximations. As benchmark criterion we define truefit similarity: In each generation

of each run we measure if the best individual (of the approximation run) is located close

the best individual of the true fitness run. As maximal distance we set a threshold of

0.05. truefit similarity is the relative share of individuals which are close to true fit run

individuals.

7.6.2 Results

Figure 7.6 shows the truefit similarity performance for both test functions when employ-

ing the Multiple models method. We see that the performance of the approximation

methods is consistent. For low σnoise all approximation methods perform as if the true

fitness function is used for fexp estimation. For larger σnoise the quadratic interpolation

methods perform better than the linear methods. Linear Local regression performs worst.

Again, we see that there is no significant difference between Nearest neighbor and Natural

neighbor interpolation for both linear and quadratic models.

3for details we refer to [26]
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Figure 7.6: Performance of Multiple models in experiment 3: truefit similarity for test

function f1dim1 and f3dim1, coloring as in Figure 7.3

7.7 Discussion

The results of the three experiments are consistent in the following points: There is no

significant performance difference between Nearest neighbor and Natural neighbor inter-

polation methods. For low σnoise, quadratic interpolation performs better than linear

interpolation, on larger σnoise, however, linear interpolation methods perform better. We

conclude that with increasing σnoise, the probability of significantly wrong estimations

(outliers) increases. Quadratic methods seem to be more suspect to such outliers. This

reasoning is supported by the fact that linear Local regression works comparably well

on large σnoise. Here we assume regression to be less suspect to significantly wrong es-

timations. We found supporting evidence for a consistent fvar underestimation of linear

regression and Natural neighbor interpolation. An expected results was the better per-

formance of the Multiple models method compared to the Single model method.

With the experience gained in multi-dimensional simulation studies, some critical

points concerning the experimental set up need to be mentioned “a posteriori”. In Exper-
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iment 1 we used a History data base of size 100. For the 1-dimensional case this means

the Euclidean distance between two neighboring data points is only xmax−xmin

100
= 0.14 on

average. A 2-dimensional setting with this property already requires 1002 = 10000 History

data points, in n dimensions 100n data points are required. Although this comparison

is somewhat far-fetched, we see that the transfer of the findings to multi-dimensional

is questionable. For the multi-dimensional case, it is specifically interesting to see how

the methods perform in regions with low History data density. Another difficulty arises

from the computational overhead in multiple dimensions. The number of models to be

calculated in the Multiple models method increases exponentially in the number of dimen-

sions when Stratified model distribution is applied (for details we refer to Section 6.1),

i.e. even for a small number of quantiles this is not acceptable for dimensions larger than 5.

After all, the simulation studies served two goals: First, it brought difficulties to light

which we were better able to treat in the multi-dimensional simulation studies. Sec-

ondly, the results enabled us to reduce the number of methods to be tested in multiple

dimensions. Specifically, we discarded Natural neighbor interpolation. On the one hand,

because it did not improve the performance compared to Nearest neighbor interpolation,

on the other hand because the computational cost to perform Natural neighbor interpo-

lation in multiple dimensions is not acceptable. We conclude that linear Local regression

is less suspect to significant outliers. The drawback of linear Local regression is that

it strongly smoothens the surface. Therefore we will additionally implement quadratic

Local regression for the multi-dimensional simulation studies which might overcome this

drawback.
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Chapter 8

SO Simulation studies

This chapter is divided into three sections. Section 8.1 provides a discussion on estimator

properties in the context of an evolutionary algorithm and lays the theoretical founda-

tions for an analysis of the empirical results which are presented in Section 8.3. The

experimental setup is outlined in Section 8.2.

8.1 Theoretical analysis of estimator properties

Subsection 8.1.1 analyzes the influence of estimation error properties on the evolutionary

search and concludes that the standard deviation of the estimation error is the essential

property for guidance of the EA. Subsection 8.1.2, then takes a closer look on what

determines the standard deviation of the estimation error in our application.

8.1.1 Estimation error properties in an EA

An estimation f̂exp of the expected fitness fexp introduces an error term ef̂exp
, to which we

refer as eexp. eexp is defined

eexp = f̂exp − fexp .

87
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We assume that for a given approximation method, eexp has a probability distribution.

Generally, whenever fitness estimations fest are used instead of the real fitness, the stan-

dard deviation σeest
of the error distribution eest is the essential parameter which guides

the search of an EA. This is illustrated by the following example: Assume an estimation

method to have an estimation error distribution with expectation µeest
and standard de-

viation σeest
= 0. In this case, the estimation constantly over- or underestimates the real

fitness. Thus, we get

fest = f + µeest
.

Assume, we employ a (µ, λ)-reproduction scheme. As the rank of the fitness values deter-

mines, who survives to the next generation, a constant fitness increase for all individuals

has no effect on the composition of the next parent generation. The effect of such an

estimation method on the course of the run, solely depends on the selection strategy.

With uniform or rank based selection, the fitness differences have no influence on the

selection of individuals. In this case, the evolutionary algorithm performs as if the real

fitness is used instead of estimations. If fitness proportional selection is chosen, a constant

overestimation smoothens the fitness differences between individuals. However, we treat

the influence of µeest
as negligible 1.

To summarize: If σeest
= 0 , the algorithm performs as if the real fitness function is

used. An estimator is not required to be unbiased, i.e. we do not require

E (f̂(x)) = f(x) .

Instead, it is sufficient if the estimator has the property

E (f̂(x)) = f(x) + c ,

where c is an arbitrary constant. We conclude that the reduction of σeest
= 0 improves

the search.
1this discussion also shows that rank based or uniform selection are the preferred methods for our

purposes
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With rank-based selection we do not even require c to be a constant. An estimator is

expected to perform as if the real fitness is used if the following statement is true:

f̂(x(1)) < f̂(x(2))⇔ f(x(1)) < f(x(2)) .

However, the latter property is difficult to measure. We, thus, concentrate on the mini-

mization of the standard deviation.

8.1.2 Determinants of the estimation error’s standard deviation

The terminology is defined in Table 8.1. The estimation f̂exp(x
(0)) of fexp(x

(0)) is calculated

Table 8.1: Definition of terms

Term Meaning

f̂exp estimation function for the expected fitness

fexp real expected fitness

eexp estimation error f̂exp − fexp

µeexp
expectation of the eexp distribution

σeexp
standard deviation of the eexp distribution

by approximating the fitness function at ns sample points x(i), 1 ≤ i ≤ ns and taking the

empirical mean over the f̂(x(i)) (see Chapter 6). f̂(x(i)) itself is an approximation which

has an error distribution ef̂ . Analogous to the notation used so far, µe
f̂

and σe
f̂

denote

mean and standard deviation of the error distribution. For the sake of illustration, we

assume ef̂ to be normally distributed2.

ef̂ ∼ N (µe
f̂
, σe

f̂
)

2without loss of generality, because for sufficiently large ns arbitrary distributions can be used here
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Unfortunately, the ef̂ distribution is not explicitly given but it is implicitly defined by a

number of problem properties, including

• the fitness function,

• the approximation method,

• the sampling technique,

• the distribution of History (surface) points .

The error distribution of the mean eexp can be calculated by applying a convolution

of ns error distributions ef̂ i
. The resulting distribution must then be transformed by

multiplying it with 1
ns

.

eexp =
1

ns
ef̂ 1

+ . . . +
1

ns
ef̂ ns

=
1

ns

∑

1≤i≤ns

ef̂ i
(8.1)

Note that in equation 8.1 the ’+’- symbol represents the binary convolution operator.

The ’
∑

’- symbol represents the convolution operator for multiple distributions.

For now, we assume the ef̂ i
to be statistically independent. With this assumption, µeexp

and σeexp
are derived.

µeexp
=

1

ns
ns µe

f̂
= µe

f̂

σeexp
=

√

(
1

ns

)
2

ns σe
f̂

2 =
σe

f̂√
ns

(8.2)

A convolution of normal distributions returns a normal distribution3. We get the estima-

tion error distribution of the expected fitness:

eexp ∼ N (µeexp
, σeexp

) ∼ N (µe
f̂
,

σe
f̂√
ns

)

3a convolution of arbitrary equal distributions can be approximated by a normal distribution for

sufficiently large ns
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If we want to compare different approximation techniques with respect to their perfor-

mance in an EA environment, we need to compare
σe

f̂√
ns

or just σe
f̂
, if the number of

samples ns is constant for all estimations.

However, the assumption of statistically independent ef̂ i
might not be realistic. If

we apply the Single model method (IMD-SM), all samples are evaluated with the same

model. Thus, the estimation errors are expected to be correlated. But also with Multiple

models (IMD-MM) independence is not guaranteed. Consider the case when only a small

set of History data is available in the neighborhood of x(0). Although at each sample point

x(i) a separate model is built, these models are likely to be identical. We expect the error

distributions to be correlated. Thus, σeexp
of Equation 8.2 is increased by the sum of the

covariances between all models and we get

σeexp
=

1

ns

√
(
∑

1≤i≤ns

σe
f̂ i

+ 2
∑

1≤i<j≤ns

cov(ef̂ i
, ef̂ j

) ) . (8.3)

8.2 Experimental setup

8.2.1 Requirements

In general, results of simulation studies are subject to a wide range of biases which arise

from the fact that most problems have many parameters which need to be set by the

researcher. In order to reduce side effects a minimal number of parameters is desired.

Furthermore, test problems should be neutral, i.e. a test problem should not favor a

certain method.

A test problem for SO robustness optimization is required to provide a clear trade-off

between fraw and fexp, i.e. the fraw optimum should be different from the fexp optimum.
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Figure 8.1: 1-dimensional test function f1 with fraw, fexp and fvar with σnoise = 0.5

8.2.2 Test problem

The test function of this chapter is defined

f1(x) =
∑

1≤i≤n

2.0 sin( 10 exp(−0.2xi) xi ) exp(−0.25xi) (8.4)

where x ∈ [0; 10]n. The optimization for raw fitness would be defined

min f1(x) s.t. x ∈ [0; 10]n (8.5)

However, for optimization of fexp, the constraint is difficult to define. Here, we use a

penalty as described in Section 4.5. The test problem is chosen such that constraint

handling is not expected to have an influence on the search. Throughout all runs the

noise that is added to the problem is N (0, σnoise) distributed with σnoise = 0.5 for each

dimension. For the 1-dimensional case, f1 is depicted in Figure 8.1. We see a clear trade-

off between fraw and fexp, i.e. the fraw optimum is located at x(opt raw) = 0.5 whereas

the fexp optimum is located at x(opt exp) = 3.5. fvar has no meaning in this chapter but

is shown for illustration. An EA that uses fraw as optimization criterion is expected to

converge to x(opt raw) whereas an EA that uses fexp as optimization criterion is expected to

converge to x(opt exp). However, if fexp is poorly estimated the EA might have problems to
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(a) fraw (b) fraw

(c) fexp (d) fexp

Figure 8.2: 2-dimensional test function f1 with σnoise = 0.5 for each dimension: (a) fraw,

(b) fraw projection on (x1, x2)-plane, (a) fexp, (b) fexp projection on (x1, x2)-plane

converge to x(opt exp). The optimization is becoming more difficult in higher dimensions.

Figure 8.2 compares fexp and fraw of test function f1 for the 2-dimensional case. We see

that the fexp -surface is smoother is smoother than the fraw -surface. In the projection

on the (x1, x2)-plane (Figure 8.2(b)), we see that fraw has 9 local optima including one

global optimum. Three of the local optima have similar (raw) fitness values as the global

optimum. fexp, however, has a clear global optimum (Figure 8.2(d)). Of course fexp is

not available to the EA.
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8.2.3 Analyzed methods

In the SO simulation studies, we analyzed a wide range of methods. Table 8.2 summarizes

the analyzed methods and shows in which dimensions each method was tested.

Table 8.2: Tested methods in SO simulation studies

Single model Nearest model Ensemble Multiple models

Tested dimension
LHC Strat LHC Strat LHC Strat LHC Strat

lin. interpolation 2, 5, 10 2, 5, 10 2, 5, 10 2, 5, 10 2, 5, 10 2, 5, 10 2, 5, 10 2, 5

quad. interpolation 2, 5, 10 2, 5, 10 2, 5, 10 2, 5, 10 2, 5, 10 2, 5, 10 2, 5, 10 2, 5

lin. regression 2, 5, 10 2, 5, 10 2, 5, 10 2, 5, 10 2, 5, 10 2, 5, 10 2, 5, 10 2, 5

quad. regression 2, 5, 10 2, 5, 10 2, 5, 10 2, 5, 10 2, 5, 10 2, 5, 10 2, 5, 10 2, 5

For the remainder of this chapter we will also use the abbreviations, IMD-SM (Single

model), PMD-ENS-1 (Ensemble with ensemble size 1 - Nearest model), PMD-ENS-k

(Ensemble with ensemble size k), IMD-MM (Multiple models). For the most important

parameters, e.g. number of quantiles, ensemble size, number of sampling loops, outliers

detection parameters, we tested various settings.

8.2.4 Performance criteria

For each approximation method, we run an EA 20 times with different random seeds for

each setting. In each run we take two measures in the final generation.

1. We choose the best individual according to the estimation f̂exp and reevaluate fexp

using the real fitness. We refer to this criterion as best real fitness according to the

approximation (BRA). BRA is averaged over 20 runs.

2. For each of the 20 runs, we measure whether the best individual according to

f̂exp is located within the neighborhood of the known global optimum. For the
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n-dimensional test problem we define [3; 4]n as neighborhood. By counting how

often the best individual is located within the neighborhood, we get the relative

share of successful runs. We refer to this criterion as Global Optimum Neighborhood

(GON).

For evaluation of the best individual with the real fexp, we use Stratified sampling with

5 quantiles per dimension for 2- and 5-dimensional test problems and 3 quantiles per

dimension for the 10 dimensional test problem.

Additionally we run the EA with the same setting but use the real fitness function

instead of approximations for estimation of fexp. This, on the one hand represents a

means to check whether the EA is generally able to converge to the global optimum with

the respective parameter setting, on the other hand the results from this run represent

an upper performance bound4.

8.2.5 Benchmark methods

With above described performance criteria we are able to analyze which estimation meth-

ods work best when using fitness approximations. We further compare our approach to

other robustness optimization methods. In particular, we implemented two methods to

which we refer as

1. Tsutsui method

2. Neighbors evaluation method

Both approaches are briefly described in Chapter 2. Recall that the idea of Tsutsui5

is to add disturbances to the decision variables while an individual is being evaluated.

4however, theoretically it is possible that approximations perform better than the real fitness. If for

example the EA converges too early, approximations errors implicitly introduce exploration
5which was denoted GAs/RS3 in [1]
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As the EA is revisiting promising regions of the search space, it implicitly averages over

a set of disturbed solutions. We refer to [1] for details. In our implementation, we

run a standard evolutionary algorithm but add a normally distributed disturbance to

the genotype of an individual before evaluating it. Note, that noise is only added for

evaluation, the individual’s genotype is not modified. In fact, this is exactly what Tsutsui

et al. describe in their work. However, there are some differences between Tsutui’s and

our implementation: Besides a different setting of the genetic operators, Tsutsui et al.

choose a binary representation, whereas we use real valued representation. In order to

avoid the results to be biased by the choice of EA parameters, we compare our approach

to Tsutsui’s for 6 different EA parameters settings.

The Neighbors evaluation method runs an EA and evaluates all individuals with the

real fitness fraw. In contrast to our method the Neighbors evaluation approach does

not store fitness evaluations in a History. Instead, only the individuals of the current

population are available to estimation procedures. The estimator for fexp(x
(0)) is the

average fitness of individuals of the current population within a certain neighborhood of

x(0) . The neighborhood is chosen with respect to σnoise. In particular, an individual

x(k) is a neighbor of x(0) if ‖x(k) − x(0)‖2 < q(1−α), where q(1−α) is the (1− α)-quantile

of the N (0, σnoise)-distributed noise. In our experiments we set α = cutoff = 0.05 (see

Section 6.1). Note, that the neighborhood is not congruent to the space covered by the

sampling procedure of estimation methods. In the 2-dimensional case the sampling covers

a square (see Figure 6.1 for illustration). In contrast, the neighborhood in the Neighbors

evaluation method is a circle with the same diameter as the edge length of the square.

Often the number of History data points which lie within the neighborhood bor-

ders is very small. We therefore introduce the parameter numpoints min. If less than

numpoints min History data points are in the neighborhood of the estimation point we

continue adding nearest data points to the estimation model such that the estimation is
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based on numpoints min data points. The Neighbors evaluation estimator was also used

in [14] for MO robustness optimization. Branke [7] uses a similar estimator but addition-

ally assigns weights to individuals. We allow both benchmark method the same number

of fitness evaluations as used for the approximation methods: With population size 100

and 50 generations, this means 5000 evaluations are allowed.

8.2.6 Parameter setting

The parameters for the algorithm of the SO simulation studies are summarized in Ta-

ble 8.3. Parameters can be categorized in EA parameters (Chapter 4), approximation

parameters (Chapter 5) and sampling parameters (Chapter 6). Details on the parameters

are described in the respective chapters. This parameter setting was used for all experi-

ments throughout this chapter if not stated otherwise. The small number of parameters

which need to be set for the Tsutsui and the neighbors evaluation approach are outlined

in Section 8.3.7.
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Table 8.3: Standard parameter setting for the SO simulation studies

EA parameters

(µ, λ) - reproduction scheme (15, 100)

standard evolution strategy (mutation) σinit ∈ [0.01; 1.0] (randomly)

discrete recombination (objective variables) no parameters

generalized intermediate recomb. (strategy var.) no parameters

selection randomly (uniform distribution)

termination condition 50 generations (fixed)

infeasibility penalty 2.0 · dimensions

Approximation parameters

History size (max) 5000 (stores all individuals)

interpolation: singular threshold (init) 10−12

interpolation: increase (decrease) factor 10 ( 1
10

)

regression: singular threshold (init) 10−20

regression: increase (decrease) factor 10 ( 1
10

)

regression: bandwidth σnoise-range [αcutoff ; α(1−cutoff )]

regression: kmin (min. number of data points) 2 · numcoeff

regression: weight function tricube function

equation solved threshold 10−2

Sampling parameters

cutoff 0.05

sample drawing derandomized

outliers (boxplot): whisker factor 5

outliers (boxplot): quantiles (α0.01, α0.99)
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8.3 Results

8.3.1 Overview

As a starting point, have a look at Figures 8.3 and 8.4. Here the performance of different

approximation models and when using the real fitness is shown for different estimation

methods for both Latin hypercube and Stratified sampling. The estimation methods are

enumerated as follows (Table 8.4). As ensemble sizes we choose k = 3 (dim 2), k = 10

(dim 5), k = 10/30 (dim 10, linear/quadratic).

Table 8.4: Enumeration of the estimation methods

num samples

LHC Stratified

No. description
dim 2 dim5 dim10 dim 2 dim5 dim10

1 Single model (IMD-SM) 5 50 100 25 243 −

2 Nearest model (PMD-ENS-1) 5 50 100 25 243 −
3 Ensemble (PMD-ENS-k) 5 50 100 25 243 −

4 Multiple models (IMD-MM) 5 50 100 25 243 −

We see that the EA is generally able to converge to the global optimum. In all settings

(in all dimensions) the EA converges to the global optimum when using the real fitness

instead of approximations: This can be seen from Figure 8.3(b,d,e) where the GON

criterion is 1.0 for the real fitness, and similar in Figure 8.4.
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Figure 8.3: Comparison of approximation models for different estimation methods in

dimensions 2,5,10 with Latin hypercube sampling. Method 1 - IMD-SM, Method 2 -

PMD-ENS-1, Method 3 - PMD-ENS-k, Method 4 - IMD-MM
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Figure 8.4: Comparison of approximation models for different estimation methods in

dimensions 2,5 with Stratified sampling. Method 1 - IMD-SM, Method 2 - PMD-ENS-1,

Method 3 - PMD-ENS-k, Method 4 - IMD-MM

8.3.2 Hypotheses

We draw up the following hypotheses:

1. Local Regression is more effective than Nearest neighbor interpolation
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2. A quadratic approximation model is more effective than a linear model

3. Multiple models is more effective than Single model

4. Nearest model is more effective than Single model

5. There exist scenarios in which Ensemble is more effective than Multiple models

Hypotheses 1 and 2 are discussed in Section 8.3.3. Hypotheses 3-5 are discussed in Sec-

tion 8.3.4.

8.3.3 Approximation models

Hypothesis 1 - Local Regression is more effective than Nearest neighbor in-

terpolation

The results clearly support Hypothesis 1. Already in dimension 2 the local regression

methods perform better than the interpolation models. Only in IMD-MM, interpolation

shows comparable performance. In Dimension 5, regression works better than interpola-

tion also when using Multiple models. This at least holds when using Latin hypercube

model distribution (Figure 8.3). One-sided T-tests provide significance up to a signif-

icance level of 0.99 (see Tests 3-6 in Table A.3). In dimension 10, all methods show

poor performance. However, quadratic regression works significantly better than all other

models.

If the argumentation of Section 8.1 is correct, we expect σeexp
to be lower for regression

than for interpolation. In order to test this, we set up the following experiment: For the

5-dimensional case, we randomly generate a set of History data. Out of these, we choose

100 data points x(i) for which f̂exp(x
(i)) is computed with different estimation methods.

The estimation error is computed f̂exp(x
(i))−fexp(x

(i)), where fexp(x
(i)) is based on the real

fitness. By repeating this experiment 50 times we get a distribution of 5000 eexp-values
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Table 8.5: Standard deviation of the estimation error (Dimension 5, PMD-MM)

History data lin. interpol. quad. interpol. lin. regress. quad. regress.

1000 0.38 0.47 0.22 0.30

10000 0.25 0.28 0.18 0.13

for which we compute mean and standard deviation. As we will see later, we run this

experiment to provide evidence for other hypotheses, too. Therefore we refer to this

experiment as σ measure experiment. Table 8.5 presents the results. Here, we use PMD-

MM in 5 dimensions. Statistical Fisher tests show that the σeexp
of regression is smaller

than the σeexp
of interpolation for a significance level of 0.99 (see Fisher Tests 13-16 in

Table A.6).

How can the high standard deviation be explained? We found that interpolation is

likely to produce extreme outliers (recall Section 6.3). We further show that the bias

introduced by outliers significantly degrades the performance. Evidence is provided by

the following experiment: We vary the size of the acceptance interval in the outliers

detection routine (see Section 6.3.2). Setting whisker factor to a small number, i.e. setting

a small acceptance interval, will cause many estimations to be treated as outliers. In

Figure 8.5 the relative number of outliers and the GON performance is shown for different

whisker factor settings for linear interpolation and linear local regression (PMD-MM,

Dimension 5). As expected, the number of outliers decreases with increasing size of

acceptance interval. Local regression is significantly less suspect to outliers (a). Therefore

the performance is stable for different acceptance intervals(b). However, the performance

of linear interpolation decreases with increasing size of the acceptance interval.

We conclude that Hypothesis 1 can be accepted.
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Figure 8.5: Varying parameters for outliers detection (Boxplot whisker factor)

Hypothesis 2 - A quadratic approximation model is more effective than a

linear model

Hypothesis 2 focuses on the order of the approximation polynomials. Here we consider

local regression as this has shown to be the preferred method. One would expect that a

quadratic model better guides the evolutionary search than a linear model. However, it

is important in which scenario the models are employed.

In IMD-MM, the model is only evaluated at the fitting point ~x0. If the History

data density is low, a linear model might perform better, because a quadratic model

requires dim+1
2

as many input data points as a linear model (see Chapter 5.2). With low

History data density, data points with large distances to the model fitting point ~x0 need

to be added to the model. Thus, the local fit becomes worse. Considering Table 8.5

we find empirical evidence. For low History data density (1000 data points) the linear

regression model performs significantly better whereas for a large History data base (10000

data points) the quadratic regression model performs better (see Fisher Tests 17-18 in

Table A.6).

In IMD-SM the approximation model needs to approximate the fitness function over

a certain range. Therefore we expect a quadratic model to perform better in this case.
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Table 8.6: Standard deviation of the estimation error (dimension 5, IMD-SM)

History data lin. regress. quad. regress.

1000 0.24 0.29

10000 0.26 0.23

Figure 8.3 shows for the 5-dimensional IMD-SM case (c,d) that quadratic local regression

performs best. Somewhat surprising, this does not hold for the 10-dimensional case.

However, as in IMD-SM, this can be attributed to the History data density which is very

low in dimension 10. Empirical evidence is provided by the data from Table 8.6. Here,

the sigma measure experiment from Table 8.5 is run in IMD-SM mode. We see that for

low History data density the linear model performs better whereas for large History data

base the quadratic model performs better6.

Significance is shown by Fisher Tests 19-20 in Table A.6. However, we can not accept

Hypothesis 2 in general.

8.3.4 Sampling and model distribution

Hypothesis 3 - IMD-MM is more effective than IMD-SM

Evidence for Hypothesis 3 is again provided by Figures 8.3 and 8.4: For dimensions 2

and 5 IMD-MM clearly performs better (Methods outperforms method 1). Significance

can also be shown statistically (T-Tests 1,9 in Tables A.2,A.3). The reasoning is straight-

forward and was already outlined in Section 6.2. However, in Dimension 10 IMD-SM and

IMD-MM show similar performance. This can again be attributed to the low History

data density in Dimension 10. If only a small number of data points are available in

the neighborhood of estimation point x(0), building a large number of models around

6somewhat surprising the standard deviation is slightly larger for a larger History data base when

using linear regression
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x(0) does not improve the estimation quality, because the models are likely to be similar.

Technically spoken, the covariance from Equation 8.3 increases the standard deviation

σeexp
. Evidence for the existence of correlation is provided by the fact that the EA does

not improve further by increasing the number of models over a certain level.

However, if a sufficiently large History data base is available, Hypothesis 3 can be

accepted.

Hypothesis 4 - PMD-ENS-1 is more effective than IMD-SM

One would expect the performance to be increased if the nearest available approximation

model is chosen for evaluation (PMD-ENS-1) instead of applying IMD-SM, where the same

model is used for all samples of an estimation point. However, the performance is only

slightly improved by PMD-ENS-1 as Figures 8.3 and 8.4 show. T-Tests (2,10 Tables A.2 -

A.3) fail to show significantly higher performance of PMD-ENS-1. A possible reason for

this surprising result may be the definition of the model location. This is defined as the

location of the individual for which the model is built. The drawback of this definition is

that it does not account for the location of the input data of the models. A method that

overcomes this drawback is to use the center of mass of model input data as location.

Figure 8.6 shows an example for the 1-dimensional case in which the center of mass method

works better. With our method the sample point (“sample point of individual 1”) chooses

model 1 for evaluation, because individual 1 is the nearest individual. With the center of

mass method, model 2 is chosen for evaluation of the sample point. We did not implement

this feature, but believe that it should be analyzed in future research.

We conclude that Hypothesis 4 cannot be accepted.
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Hypothesis 5 - There exist scenarios in which PMD-ENS-k is more effective

than IMD-MM

As a starting point for Hypothesis 5, again, consider Figure 8.3. For the regression

methods in Dimension 2 and 5, PMD-ENS-k performs only slightly worse than IMD-MM.

In dimension 10, PMD-ENS-k shows significantly higher performance than IMD-MM (see

T-Tests 11-12 in Table A.4). This result is most surprising. IMD-MM is significantly more

expensive because for each sample point an own model is built. PMD-ENS-k requires only

one model to be built per individual and some additional computation time for calculation

of the ensemble. The key reason for the observed behavior is again the standard deviation

of the estimation error. Table 8.7 shows results from the σ measure experiment which are

consistent with our expectation: As the PMD-ENS-k estimator has lower σeexp
it better

guides the search. For quadratic regression, we show that the standard deviation of the

estimation error is significantly lower (see Fisher-tests 21-22 in Table A.6).

Questions to be addressed to this result are “How can the low σeexp
be explained despite

the significantly smaller number of models per generation of PMD-ENS-k?” and “What

influences σeexp
in PMD-ENS-k?”.
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Table 8.7: Standard deviation of the estimation error: PMD-ENS-10 vs. IMD-MM

(quadratic regression, 1000 History data)

PMD-ENS-k Multiple models

Dimension 5 0.21 0.30

Dimension 10 0.39 0.73

In Section 8.1, we showed that σeexp
depends on the σe

f̂ i
and on the covariance between

error distributions at sample points x(i). Let us for a first analysis of σeexp
assume the

covariance to be zero. In this case only the σe
f̂ i

matter. To avoid confusion we redefine

some variables for this section (see Table 8.8). The distribution of eens can theoretically be

calculated by applying a convolution of the error distribution ef̂i
of all ensemble members.

If nens is sufficiently large, or if the ef̂i
are normally distributed we derive

Table 8.8: Redefinition of terms

Term Meaning

f̂i an approximation model, i = 1 . . . population size

ef̂ approximation error f̂ − f

µe
f̂

mean of the ef̂ - distribution

σe
f̂

standard deviation of the ef̂ - distribution

f̂ens weighted sum of a number of approximation models f̂i (Ensemble)

eens approximation error f̂ens − f

µeens
mean of the eens distribution

σeens
standard deviation of the eens distribution

nens number of models in an ensemble (ensemble size)
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eens ∼ N (µeens
, σeens

) ∼ N (µe
f̂
,

σe
f̂√

nens
)

Under the assumptions made so far, we conclude that a maximum nens performs best.

This implicitly assumes σe
f̂

to be equal for all ensemble members. In reality, we expect

σe
f̂

to increase if the distance d between the fitting point of f̂ and the location where f̂

is evaluated increases. Larger nens requires to add models with larger d.

To summarize, there exist two counteracting effects of increasing the ensemble size nens:

1. the reduction of σeens
caused by the convolution

2. the increase σeens
caused by the increasing distances between models fitting points

and their location of evaluation

Both effects are weakened. In our implementation, we use a weighting of the ensemble

members which takes into account distances (see Section 6.2.2). Models with large d are

assigned a low weight. Thus, Effect 2 is reduced. Effect 1 is reduced, because some models

of the ensemble might be correlated.

For the actual estimation of fexp another negative effect is expected: The estimation of

fexp averages over ns ensembles (f̂ens)
(i)

.The σexp -reducing convolution effect is strongly

weakened because all ensembles are a composition of the same n approximation models,

where n is the population size. Thus, the ensembles, respectively their error distribution,

are likely to be correlated. Nevertheless, we find empirical evidence for the existence of

the counteracting effects. In Figure 8.7 the results from the σ measure experiment are

depicted for quadratic regression, when varying the ensemble size. For the 5 dimensional

case, the History data base contains 1000 data points, in Dimension 10, 10000 History

data points are available. We see that there exists an optimal ensemble size, i.e. effect 1

is stronger for smaller ensemble sizes, effect 2 is dominating for larger ensemble sizes.

Further evidence is provided by measuring the EA performance for different ensemble

sizes. In Figure 8.8 the performance criteria BRA and GON are depicted for linear and
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Figure 8.7: Estimation error standard deviation of PMD-ENS-k for different k

(quadratic regression in dimensions 5 and 10)

quadratic local regression. Despite some deviations it seems that there exists an optimal

ensemble size. Particularly for Stratified sampling, where the sampling bias is expected

to be low, we find an optimal ensemble size for both linear and quadratic local regression.

For illustration, the performance of IMD-MM is depicted: In some cases PMD-ENS-k

performs better than IMD-MM if optimal k is chosen.

We now better understand why PMD-ENS-k works better in some scenarios: The

neighborhood of an individual for which fexp needs to be estimated contains a certain

number of data points. In both methods IMD-MM and PMD-ENS-k the neighborhood

information is most likely used multiple times, either by adding the same data point to

a large number of models, or by building a comparably small number of models, and use

these models multiple times for evaluation. If, in PMD-ENS-k the neighboring models

have an advantageous distribution, the PMD-ENS-k estimation of fexp takes more infor-

mation into account than IMD-MM. As a result σeexp is lower in PMD-ENS-k. This was

denoted Effect 1. However, the model accuracy is expected to be better in IMD-MM.

The decrease of estimation accuracy with larger number of models was denoted Effect 2.

Whether IMD-MM or PMD-ENS-k works better depends on which of the effects is dom-

inating. Taking into account computational cost, PMD-ENS-k is the preferred method.
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Figure 8.8: PMD-ENS-k performance for different ensemble sizes compared to IMD-MM

(Dimension 5). All subfigures use the legend in (a).

Some remarks should be made on ensembles of interpolation models. In Section 8.3.3

we showed that interpolation is likely to produce extreme wrong estimations (see for

example Figure 8.5) which arise from approximation models with very large gradients (il-

lustrated by Figure 6.5). With large distances between evaluation point and model fitting

point the wrong estimation becomes even more severe. Therefore we expect interpolation

to be a poor estimator in PMD-ENS-k with k > 1. The results from Figures 8.3 and 8.4

provide evidence. Both, linear and quadratic interpolation perform poor in PMD-ENS-k
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Table 8.9: Standard deviation of the estimation error (Interpolation in PMD-ENS-10)

IMD-SM PMD-ENS-10

lin. interpol 0.31 8.85
dim 5

quad. interpol. 0.66 9.53

lin. interpol 0.68 31.57
dim 10

quad. interpol. 1.11 21.98

in dimensions higher 2. Quadratic interpolation produces severe outliers already in Di-

mension 2 and is therefore a poor estimator in combination with PMD-ENS-k. Additional

evidence is provided by the σ measure experiment. We see in Table 8.9 that interpolation

produces large estimation errors in PMD-ENS-10. From this analysis, we conclude that

Hypothesis 5 can be accepted.

8.3.5 Selected regression parameters

As local regression turned out to be the method of choice, we take a closer look at a selected

set of regression parameters which are expected to have an influence on the performance.

See Section 5.6 for a detailed description. In particular, we vary the minimum number

of input data points, bandwidth and run some experiments with a weight function which

assigns equal weights to input data.

Minimum number of input data points

In our standard setting the number of input data points is not fixed. Instead, we choose

all data points which are located within the range of the noise distributions (σnoise-range).

However, the number of data points within the σnoise-range might be smaller than the

required minimum number of data points (equals numcoeff). In this case, the number of

input data points must be increased to a number larger or equal numcoeff. In order to
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Figure 8.9: Regression performance for different numbers of input data (IMD-MM, Latin

hypercube sampling, dimension 5)

have a clear distinction between interpolation and local regression we set the minimum

number of input data kmin to a number larger than numcoeff, in particular

kmin = NumPointsFactor · numcoeff

with NumPointsFactor > 1.0. In the standard setting NumPointsFactor was set to 2.0.

For the empirical analysis on the influence of this parameter we run IMD-MM in dimension

5 with Latin hypercube sampling (50 samples) and varied NumPointsFactor in [1.0; 3.0]

with step size 0.2. Figure 8.9 presents the results. We see that the performance is not

constant for different settings of NumPointsFactor. We conclude that the History provides

less than kmin data points in the σnoise-range. Thus, NumPointsFactor has an influence

on the performance. For NumPointsFactor = 1.0, both linear and quadratic regression

perform poor: If less than numcoeff data points lie within the σ-range, local regression

works exactly as interpolation regardless of the weight function. In fact, for this setting we

find local regression to perform similar to interpolation (compare Figure 8.3 (c,d), Method

4). For larger NumPointsFactor the performance is more stable. One could expect to find

a clear optimum, because adding more data points to the model is expected to have a
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negative influence on the local fit of the model. However, by using the tricube weight

function, input data points with large distances to the model fitting point are assigned a

low weight. Furthermore, adding more data to the model reduces the standard deviation

of the estimation error.

Bandwidth

In this experiment the bandwidth does not depend on the availability of input data points,

except there are less than numcoeff data points within the bandwidth. In this case, the

bandwidth is extended such that numcoeff data points lie within the bandwidth. We varied

bandwidth in the interval [0.1; 1.5]. Figure 8.10 presents the results. In fact, we see that for

low bandwidth settings the algorithm has constant performance. Here, the bandwidth is

extended such that numcoeff data points lie within the bandwidth. This holds particularly

for quadratic regression because a quadratic polynomial has larger numcoeff. For different

bandwidth the performance has a high variance and does not allow reliable conclusions

on an optimal bandwidth.
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Figure 8.10: Regression performance for different bandwidth (IMD-MM, Latin hypercube

sampling, dimension 5)
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However, compared to the previous experiment (compare Figures 8.9 and 8.10), we

find that it might be better to set the bandwidth via kmin rather than setting a fixed

bandwidth. From a theoretical point of view, this can be explained as follows: The “kmin-

adjustment” adapts to different History data density around a model’s fitting point. For

high History data density “kmin-adjustment” chooses a small bandwidth. This works

well, because the small bandwidth provides a sufficiently large number of input data to

achieve a good local fit. If the History data density is low, “kmin-adjustment” chooses

a larger bandwidth such that a sufficiently large number of input data are added to the

model. In contrast, setting a fixed bandwidth does not account for different History data

density. This performs poor, because throughout the run of an evolutionary algorithm

the availability of History data changes.

Assigning equal weights

In an additional experiment we use a weight function which assigns equal weights to all

input data instead of using the tricube weight function. This is equivalent to unweighted

or global regression. We run this setting for Dimension 5 and got surprising results, see

Figure 8.3.5

Comparing Tricube weight function and equal weights (compare Figure 8.3 (c,d) with

Figure 8.3.5 (a,b) ), we find that assigning equal weights works better. For Methods

1-3, that is, when only one model is built per individual, this is plausible. Tricube weight

function produces a good local fit. If, however, the model is evaluated at different locations,

a global model works better. Surprisingly, we find unweighted regression to perform

better when using IMD-MM, too. Although the performance difference is less significant

than in Methods 1-3 this is an open question. One possible reason is, that unweighted

regression produces a smaller standard deviation of the estimation error σeexp
because

even data points with large distance to the model fitting point significantly contribute to
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a reduction of σeexp
, although at the same time the local fit in terms of expected estimation

error becomes worse.

8.3.6 General observations

Influence of sampling technique

Comparing the two different sampling techniques we find that Stratified sampling (Fig-

ure 8.4) does not improve the performance compared to Latin hypercube sampling (Fig-

ure 8.3). In fact, in Dimension 5 Latin hypercube sampling works even slightly better.

This is at first sight surprising because Stratified sampling is expected to have a better

coverage of the neighboring search space and the number of samples is approximately

5 times higher than in Latin hypercube sampling7. However, increasing the number of

samples does not necessarily improve the estimation quality. An estimation error has two

sources: First, the estimation error introduced by the approximation models. Secondly,

the estimation error which results from sampling8. The effect from the second source

7Dimension 5: Latin hypercube sampling: 50 samples, Stratified sampling: 35 = 243 samples
8the sample set must have finite size
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Figure 8.11: Regression performance when assigning equal weights

(Latin hypercube sampling, dimension 5, method numbering as in Table 8.4)
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can be reduced, by more expensive sampling methods. The effect from the first source,

however, is not reduced by increasing the number of samples. Latin hypercube sampling

perhaps works better because it uses more quantiles (see illustration in Figure 6.1). One

might argue, that Latin hypercube sampling works specifically well, if the dimensions

are independent which is the case in our test function. However in our application, the

sampling is done based on the approximation models which do not have independent

dimensions.

Performance loss in higher dimensions

Figure 8.12 shows the performance loss in higher dimensions. This is measured by divid-

ing the BAR criterion of the best PMD-ENS-k setting and the best IMD-MM setting by

the BAR of the real fitness. As the number of evaluations is held constant over all dimen-

sions this observation is expected. The performance loss can be attributed to theoretical

limitations. Interestingly, the performance loss is weaker in PMD-ENS-k. Theoretical

evidence is provided in Section 8.3.4 (Hypothesis 5).
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8.3.7 Comparison with other methods

Neighbors evaluation method

The Neighbors evaluation method is described in Section 8.2.5. In order to have a fair

comparison we run the Neighbors evaluation for different settings, i.e. we vary the mini-

mum number of data points (num minpts) that are to be added to the estimation model.

As described in Section 8.2.5 the neighborhood size is set to the range of σnoise and held

constant for all runs. We compare the performance (BRA) for different parameter set-

tings with the performance achieved by the estimation method. Additionally we add the

performance achieved when using the real fitness. Figure 8.13 shows the results. We

clearly see that the approximation models perform better. In Figure 8.13(a) the green

and the red line overlap. We also see that the performance of the Neighbors evaluation

significantly degrades in higher dimension: If the number of fitness evaluations (History

size) is held constant for arbitrary dimension the number of data points which are in the

neighborhood of an estimation point decreases with increasing dimension.
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Figure 8.13: Comparing Neighbors evaluation method with different parameter settings

to the best approximation method and to the performance when using the real fitness



8.3. RESULTS 119

Tsutsui method

The Tsutsui method is described in Section 8.2.5. In preliminary tests with the Tsutsui

method we found this method to be highly sensitive to parameter settings of the EA. In

order to have a fair comparison, we run the Tsutsui method as well as selected estimation

methods with 6 different parameter settings. These parameter settings are modifications

of our standard setting which is described in Table 8.3. The 6 settings are different from

the standard setting in the following parameters.

Setting 1 uses normal distribution mutation with σ = 0.05 instead of a standard evolu-

tion strategy (no strategy parameters)

Setting 2 as Setting 1 but uses (50, 100) (µ, λ)-reproduction scheme

Setting 3 as Setting 1 but uses generalized intermediate recombination for the objective

variables (no strategy parameters)

Setting 4 as Setting 3 but uses (50, 100) (µ, λ)-reproduction scheme

Setting 5 standard setting (Table 8.3)

Setting 6 as Setting 5 but uses (50, 100) (µ, λ)-reproduction scheme

Figure 8.14 summarizes the results. We see that for dimension 2 Tsutsui performs well

for some parameter settings. For example in Setting 4, the Tsutsui method converges near

to the global optimum in 85 percent of the runs (Figure 8.14 (b)). However, this finding

is problem specific. In fact, all approximation methods converge to the global optimum

in 100 percent of the runs. Therefore this can be attributed to the EA parameter setting:

In particular, generalized intermediate recombination tends to converge to the center of

the search space. In our test problem, the global optimum is located close to the center

of the search space and therefore favorizes generalized intermediate recombination.
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Figure 8.14: Tsutsui method compared to PMD-ENS-k (k=5 in dim 2, k=10 in dim 5)

and IMD-MM in combination with quadratic regression - BRA criterion

In both dimensionality’s 2 and 5 we find the Tsutsui method to be outperformed

by PMD-ENS-k and quadratic regression in all EA parameter settings. In the standard

setting of this chapter (Setting 5) Tsutsui achieves a poor BRA. We also see a performance

loss for Tsutsui in higher dimensions. This is expected because holding the number

of evaluations constant and increasing the dimensionality reduces the relative number

of evaluations. In particular, the neighborhood size increases exponentially with the

number of dimensions. We conclude that the approximation models in combination with

a proper estimation method work better than Tsutsui. Obviously, Tsutsui incurs less

computational cost.



Chapter 9

MO simulation studies

An introduction to multi objective optimization is given in Section 3.3. There, we also

introduce NSGA2, the multi objective evolutionary algorithm (MOEA) which we use in

the simulation studies of this chapter. Section 9.1 outlines the experimental setup of the

simulation studies. Section 9.2 presents the results.

9.1 Experimental setup

9.1.1 Requirements

In SO robustness optimization the test problem is required to provide a clear trade-off

between fraw and fexp. In the MO case we want to analyze if an algorithm method finds a

non-dominated set of solutions. In other words, we test whether the algorithm recognizes

the trade-off between the objectives. In order to analyze this issue, a test problem must

be chosen which provides a trade-off between the objectives. In our case this is a test

problem which provides a trade-off between fexp and fvar.

121
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9.1.2 Test problems

We run experiments on two test problems. Both of which use the same test function f2

which is defined

f2(~x) =
∑

1≤i≤n

2.0 sin( 10 exp(−0.08xi) xi ) exp(−0.25xi) (9.1)

where ~x ∈ [xmin; xmax]
n. This test function is taken from [14] where it was used for MO ro-

bustness optimization using the Neighbors evaluation method. In raw fitness optimization

the optimization problem is defined:

min f2(x) s.t. x ∈ [xmin; xmax]
n (9.2)

However, for optimization of fexp and fvar the constraint is difficult to define. As in

the SO simulation studies we use a penalty which is described in Section 4.5. The test

problem is chosen such that the constraint handling technique is not expected to have a

significant influence on the search. For both test problems we set σnoise = 0.1 (normally

distributed) and cutoff = 0.05 for each dimension. We get a σnoise-range of approximately

[−0.165; 0.165]n.

If the individuals are uniformly distributed over the search space, the expected number

of individuals (nearneighborsexp) which are located within the σnoise-range of an individual

x(0) can be calculated. We define pnear as the probability that an individual (of the current

population) is located within the σnoise-range of x(0).

pnear =
σnoise-range

(xmax − xmin)n , (9.3)

and derive,

nearneighborsexp =
∑

1≤i≤m

i ·


m

i


 pnear

i (1− pnear)
(m−i) , (9.4)
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where m = populationsize − 1.

As Test problem 1 we choose [xmin; xmax] = [0.0; 10.0]. With this setting,

nearneighborsexp = 0.11 for dimension 2. In order to increase nearneighborsexp, we reduce

interval [xmin, xmax] in test problem 2. In particular, we choose [xmin; xmax] = [0.2; 1.6]

and get nearneighborsexp = 5.5 for dimension 2.
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Figure 9.1: 1-dimensional Test function f2 (Test problem 1 and 2)

For the 1-dimensional case, f2 is depicted in Figure 9.1. We see a trade-off between

fexp and fvar. For illustration, consider an arbitrary local minimum: The nearest local

minimum to the left has lower fexp but larger fvar. The set of non-dominated solutions is

given by the local minima. In Figure 9.2, fexp and fvar of the 2-dimensional test function

f2 is depicted. We see that in regions where fvar is large, fexp is very rugged.

9.1.3 Analyzed methods

We analyze the same methods as in the SO simulation studies (compare Section 8.2.3).

Again, we use the term Nearest model for the special case of Ensemble with ensemble

size 1 (PMD-ENS-1).
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Figure 9.2: fexp and fvar of the 2-dimensional test function for the MO simulation studies

9.1.4 Performance criteria

In Section 3.3 we introduced the Non-dominated set as a qualitative performance mea-

sure of MOEA’s. Based on the data from the non-dominated set, we use an illustration

method known as attainment surface. The concept of attainment surface is introduced

by Fonseca and Fleming in [35]. Citing Fonseca and Fleming “the attainment surface is

the boundary in the objective space separating those points which are dominated by or

equal to at least one of the data points, from those which no data point dominates or

equals”1. For an empirical analysis, an algorithm needs to be run multiple times with dif-

ferent random seeds to reduce the effect of randomness. Drawing all resulting attainment

surfaces does not allow to compare the performance achieved by a number of different

methods. Therefore we need to find a “typical” attainment surface of a number of runs.

This allows to compare different methods in one figure. For this purpose, we compute the

50% attainment surface of a number of runs which is interpreted as median attainment

surface. We refer to [35] for an illustrative introduction. In our simulation studies we

1[35] page 586
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build the median attainment surface based on 11 runs with different random seeds.

In SO robustness optimization we select the final solution based on the estimation f̂exp

and evaluate this with the real fitness. In the MO case we need to determine the final

set of solutions. An analogous method for MO would be to find the non-dominated set

of solutions based on the estimated fitness values of the final generation, and evaluate

this set of solutions with the real fitness. With real fitness values the set might not be

non-dominated anymore. Of course, one could again get the non-dominated front out of

this set of solutions. However, the resulting sets are often very small. An analysis on

“How to select the final set of solutions” is beyond the scope of this work. Therefore we

use a simple method for determining the final set of solutions: All individuals of the final

generation of each run are evaluated with the real fitness. Based on these fitness values

the non-dominated front is computed.

9.1.5 Benchmark methods

As benchmark method we use Neighbors evaluation from Chapter 8 which was also used by

Jin and Sendhoff [14] for MO robustness optimization. Additionally, we run the algorithm

with the real fitness instead of approximations.

9.1.6 Parameter setting

For approximation and sampling we use an identical parameter setting as for the SO simu-

lation studies (see Table 8.3). The setting of the NSGA2 parameters is given in Table 9.1.

Note that instead of the SBX crossover in the original algorithm [16], conventional 1-point

crossover and mutation have been adopted.
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Table 9.1: Parameter setting for MO simulation studies

NSGA2 parameters

representation gray code

number of bits (representation) 30

crossover probability 0.9

number of cross points 1

flip probability (mutation) 0.01

population size 100

termination condition 50 generations (fixed)

infeasibility penalty 2.0 · dimensions

9.2 Results

9.2.1 Analysis of Neighbors evaluation method

Before comparing Neighbors evaluation to the approximation methods some properties are

worth mentioning. In Figure 9.3 we see the median attainment surface for different settings

of numpoints min 2. First of all, we see a significant difference between numpoints min = 1

and numpoints min = 5. This shows that only a small number of individuals are located

in the neighborhood of an estimation point, otherwise increasing numpoints min would

not be effective.

In Section 9.1.2 we showed that the expected number of individuals which are located

within the σ-range of an individual x0 is very small in Test problem 1 if we assume uniform

distribution of individuals. This assumptions holds in the initial generations of an EA.

We calculate the expected number of individuals which are located in the neighborhood

2the minimum number of neighbors independent of the neighborhood size, see Section 8.2.5
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Figure 9.3: Test problem 1, dimension 5: Neighbors evaluation method for different

numpoints min

(nearneighborsexp) similarly as in Section 9.1.2 by using

pnear =

(
neighborhood size

xmax − xmin

)n

, (9.5)

instead of Equation 9.3. Recall that the borders of the neighborhood in the Neighbors

evaluation method is represented by a n-dimensional sphere. Thus, the neighborhood size

is the volume of a n-dimensional sphere.

By setting numpoints min = 1 the estimation of fexp and fvar is often based on a

very small number of data points, or on just a single data point. In this case fvar would

be estimated zero. From this perspective the poor performance with respect to fvar can

be explained. Surprisingly, with numpoints min = 1 Neighbors evaluation has high per-

formance with respect to fexp. This can be attributed to the test problem properties.

In particular, the fraw local optima equal the fexp local optima. By using only a sin-

gle individual for sampling which is located at a local optimum, fexp is overestimated.

However, on this test function this does not matter because at local minima fexp is con-

sistently underestimated. In order to deal with this side effect we set numpoints min = 5

for all experiments. In Test problem 2 this effect is reduced due to a higher density of
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(b) IMD-MM

Figure 9.4: Test problem 1, dimension 1: Approximation methods, real fitness, Neighbors

evaluation

individuals.

9.2.2 Performance of the approximation methods

Test problem 1

In Figure 9.4 we see the median attainment surfaces for all approximation methods for

Single model (IMD-SM) and Multiple models (IMD-MM) compared to the performance

achieved when using the real fitness and Neighbors evaluation in the 1-dimensional case.

Many curves overlap and can not be distinguished visually. In IMD-MM all approximation

methods achieve the same median attainment surface as the real fitness. Only Neighbors

evaluation does not achieve the attainment surface of the real fitness. Although the 1-

dimensional case seems to be a too simple test scenario, we already see that the Neighbors

evaluation performs worse than the approximation methods. We also see that IMD-MM

works better than IMD-SM. In particular, when using IMD-SM only quadratic regression

draws an equal median attainment surface as the real fitness. This would be visible

when removing the real fitness attainment surface from Figure 9.4(a). Figure 9.5 presents
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(a) approximation models (IMD-MM)
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Figure 9.5: Test problem 1, dimension 5

results from the simulation studies on the 5-dimensional Test problem 1. The results

do not allow to draw conclusions on what is the preferred method in MO robustness

optimization. None of the methods performs similar to the real fitness. Particularly,

the estimations have difficulties in detecting individuals with low fvar. Surprisingly, the

regression methods find solutions with larger fexp than the real fitness. This can be

explained as follows: As an estimation produces an error, some exploration is implicitly

introduced. It is expected that the real fitness finds individuals with large fexp, too, if the

parameters of NSGA2 are modified such that it better explores the search space. From

this observation we draw the conclusion that the parameters of an evolutionary algorithm

should have different settings when using estimations compared to the case when using

the real fitness.

In Figure 9.5a we see that all approximation models, except quadratic interpolation

detect individuals with larger fexp. The regression methods fail to find solutions with low

fvar. In (b) we get a similar picture. Those methods which find good individuals with

respect to fexp fail to find individuals with low fexp. As we see in Figure 9.2, the surface

of Test problem 1 is very rugged already in dimension 2. All approximation models and
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Figure 9.6: Test problem 1, dimension 2, IMD-MM: approximation models, real fitness,

Neighbors evaluation

estimation methods have difficulties in higher dimensions on Test problem 1.

In order to derive conclusions for the relative performance of the approximation models

and Neighbors evaluation, we analyze another low-dimensional case: In Figure 9.6 the

results for dimension 2 when using IMD-MM are depicted. Compared to the 1-dimensional

case (Figure 9.4), we find the gap between the median attainment surfaces of the real

fitness and the estimations to be widened. We further see that all approximation models

perform better than the Neighbors evaluation method. However, the results of Test

problem 1 do not allow to draw conclusions for higher dimensions. Test problem 1 does

not seem to be useful for comparison of different methods in higher dimensions.

Test problem 2

Compared to Test problem 1, Test problem 2 is easier to solve. Unfortunately, the trade-

off between fexp and fvar is less clear than for Test problem 1. Although Test problem 2

provides a set of only 2 non-dominated solutions in dimension 1, in higher dimensions the

set of non-dominated solutions has sufficiently large size. The results are shown in Fig-

ure 9.7. Here we draw median attainment surfaces for the 5-dimensional Test problem 2.
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(a) approximation models (IMD-MM)
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Figure 9.7: Test problem 2, dimension 5

In (a) we compare the different approximation models to Neighbors evaluation and the

real fitness when using IMD-MM. Without using quantitative metrics one can conclude

from the figures that regression is the method of choice. Although worse than regression,

the interpolation methods work better than the Neighbors evaluation method. In (b) we

compare different estimation methods for quadratic regression. We have difficulties to

clearly conclude which estimation method works best. It seems that IMD-MM performs

slightly better than IMD-MM and PMD-ENS-1. Somewhat consistently to the findings

on Test problem 1, we conclude that PMD-ENS-10 is no good estimation method for MO

robustness optimization.

9.2.3 Selecting the final set of solutions

When using estimations in a SOEA, the question ”How to select the final solution?” is

highly important. A discussion on this question can be found in [22]. When using estima-

tions in a MOEA, the question is “How to select the final set of solutions?”. This topic is

even more interesting under the assumption that fitness evaluations are very expensive.

An analysis on these issues is beyond the scope of this work. However, we show with an
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(a) real fitness of final generation
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Figure 9.8: Final set of solutions (Test problem 2, dimension 5, IMD-MM): Final gener-

ation (a) vs. all generations (b)

example how the selection of the final set of solutions influences the results. In Figure 9.8,

we show the median attainment surfaces based on two different collections of data for the

5-dimensional Test problem 2. In (a), we store the individuals of the final generation,

evaluate them with the real fitness and compute the median attainment surface based on

the real fitness evaluations. In (b) we store the individuals of all generations throughout

the run, evaluate them with the real fitness and compute the median attainment surface.

As the final generation is a subset of all generations the median attainment surfaces in (b)

are located south-east from those in (a). Of course the scenario in (b) is not realistic for

real world applications, otherwise the real fitness could be used instead of approximations

to guide the search. A large discrepancy between fronts in Figures 9.8(a) and 9.8(b) is

an indicator for a high sensitivity to the choice of the final set of solutions. One can see

that the regression methods are insensitive, whereas interpolation as well as Neighbors

evaluation are more sensitive to the choice of the final set of solutions. In interpolation,

this can be attributed to a higher probability of significant wrong estimation. However,

the performance ranking remains equal, i.e. regression performs better than interpolation.
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Interpolation, still performs better than Neighbors evaluation. Further investigation of

this issue is reserved for future research.
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Chapter 10

Summary and Outlook

10.1 Summary

The goal of this work was to investigate fitness surface approximation techniques (RSM)

which can be used to improve evolutionary search for robust solutions.

For this purpose we developed approximation methods, namely nearest neighbor inter-

polation and local regression for different polynomials within the framework of an evolu-

tionary algorithm. In preliminary experiments in the 1-dimensional case, we additionally

analyzed natural neighbor interpolation and concluded that this interpolation technique

does not improve the estimation quality compared to the standard nearest neighbor in-

terpolation. The transfer of this conclusion to higher-dimensional cases is questionable.

However, even if natural neighbor interpolation improves the estimation quality in higher

dimensions, the high computational complexity is not acceptable. As input data to the ap-

proximation models we used the solutions that were visited by the evolutionary algorithm.

This data collection strategy represents a challenge to the approximation methods, as nu-

merical difficulties are likely. Thus, additional features to the standard approximation

algorithms were necessary, in order to make the approximations reliable in the framework
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of an evolutionary algorithm. Based on fitness approximations, we developed several esti-

mators for the expected fitness fexp and the fitness variance fvar which both can be used as

objectives in robustness optimization. The estimators use the models which are provided

by the approximation methods in various ways and can be categorized into individual

based and population based model distribution estimation methods. Depending on the

number of models which need to built per generation, the estimators incur different levels

of computational cost. In order to reduce the computational cost and to be able to carry

out estimations in higher dimensions we used Latin hypercube sampling.

In most of the literature, robustness optimization is treated as single objective opti-

mization problem, with fexp as optimization criterion. This implicitly assumes that the

decision maker is risk-neutral. If, however, the decision maker is risk-averse which is

realistic in most real world applications, fvar is an additional objective which is to be

optimized. We therefore carried out simulation studies for both, single objective opti-

mization (fexp) and multi objective optimization (fexp and fvar).

One of the most important findings was that the essential property of an estimator is

the standard deviation σ of the estimation error. We found empirical as well as theoretical

evidence for a positive correlation between a low σ of the estimation error and a high

performance of the evolutionary algorithm. Especially in an EA environment, σ of the

estimation error, is influenced by correlations between input data, respectively between

input models, of the estimators.

In the SO simulation studies we found the regression methods to clearly outperform in-

terpolation. This is at first sight surprising because the goal of regression is the smoothen-

ing of a set of fitness values which are assumed to be stochastic. In robustness optimiza-

tion, however, the fitness function is not stochastic, but the decision variables. Thus, there

exists no noise that could be taken out by regression. The reason, why regression per-
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forms better than nearest neighbor interpolation was found by analyzing the respective

estimation error properties: Nearest neighbor interpolation is likely to produce severe

wrong estimation if the distribution of possible model input data is unfavorable. This

was particularly observable in higher dimensions. The quadratic regression model never

performed worse than the linear regression model, and seems to work better in higher

dimensions. However, the quadratic model incurs significantly higher computational cost.

Comparing the different estimation methods, we found the individual based approach

Multiple models to perform best in most scenarios. Somewhat surprising, the simple

population based approach which we denoted Ensemble performs well when applied in

combination with regression. Although in most cases the individual based Multiple mod-

els approach performed slightly better, there exist scenarios in which Ensemble achieves

better results than Multiple models. We conclude that this is due to the low σ of the

estimation error in the Ensemble method which is achieved by weighted averaging over a

set of approximation models. We further conclude that the idea of sharing models (popu-

lation based model distribution) has the potential to improve the performance. In the SO

simulation studies, we finally compared our new techniques to Neighbors evaluation (used

similarly in [14] and [7]) and a Tsutsui-like method [1]. On our test problem the new

techniques clearly outperform Neighbors evaluation and Tsutsui, particularly in higher

dimensions.

The conclusions we draw from the experiments in the MO case are not as clear as

in the SO case. One difficulty was to find a test function which allows to draw reliable

conclusions from comparisons of different estimation methods in higher dimensions. In

particular, such a test function must provide a clear trade-off between fexp and fvar but

the best fexp local optima should be different from the best fraw local optima. However,

in the test problems we used, quadratic regression in combination with Multiple models

performed best. This is consistent with the results from SO experiments. Furthermore,
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we saw that estimations implicitly introduce exploration and conclude that parameters of

an evolutionary algorithm (both SO and MO) must be set carefully when using estima-

tions instead of the real fitness. Our new methods outperform the Neighbors evaluation

method in MO, too.

10.2 General remarks

Some thoughts regarding the assumptions for research on robustness optimization are

worth mentioning. With regard to many real world problems, fitness evaluations are

assumed to be very expensive. In this scenario the number of available input data to

approximation models is very limited. At the same thime, the noise level is often assumed

to be relatively low compared to the size of the search space. When using approximations,

it is desirable that the resulting models approximate the surface sufficiently accurate in

the noise range of the individuals. If, however, the search space is only sparsely filled

with known surface points, the accuracy has strong theoretical limitations. This of course

also holds if the noise level is high. However, if this is the case, noise ranges of different

local optima might overlap. Thus, data points can be used for estimations at different

local optima. Of course estimation accuracy strongly depends on how rugged the fitness

landscape is. In order to achieve reliable results on real world problems, we believe that

a substantially larger amount of fitness evaluations is necessary.

However, in many high dimensional real world problems, noise is not present in all

dimensions, but only a small number of dimensions are noisy. Accounting for this, the

problem complexity is reduced. We tested problems with noise in up to 10 dimensions.

This might cover a large fraction of real world problems.
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10.3 Outlook

In future research the potential of population based model distribution needs to be ex-

ploited. Based on an improved (population based) distribution of approximation models,

the Ensemble method might work even better. Clustering is a candidate for further

improvements: In densely populated regions the number of approximation models per

individual could be reduced, at the same time in sparsely populated regions the number

of models per individual could be increased.

If the computational cost of computing approximation models are negligible, the in-

dividual based model distribution technique Multiple models can be improved by using

elements of the Ensemble idea. In particular, at each approximation point, a set of ap-

proximation models is built, each using different input data, if available.

Another way of improving the exploitation of available information, is to use the

set of known surface points more directly: If in the neighborhood of an approximation

point, a true surface point x(true) is available from previous evaluations, the estimation

procedure can be improved by using x(true) instead of an approximation. In a next step,

the estimation technique could adapt to the availability of known surface points.

Another interesting issue for future research is related to strategies for collecting fitness

surface points. In our work we used a rather straight-forward technique. In a first step

our method could be improved by defining a maximum distance between data that are to

be evaluated. In a second step the time savings could be used to do additional evaluations

in interesting regions.

Finally, the question on “how to select the final set of solutions?” in MO robustness

optimization is highly interesting for future work. One related aspect is the prediction of

estimation errors. This information can then be used to decide whether extra evaluations

for the final generation are necessary in order to get a more reliable set of non-dominated

solutions.
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This work has shown the potential of fitness surface approximation in evolutionary

search for robust solutions and has found ideas for improvement. Further development of

the presented ideas seems to be very promising.
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Statistical significance tests

Tables A.2- A.4 show the significance tests which were done for the EA runs in Chapter 8.

The hypothesis test whether the BRA difference of two methods is significant. Throughout

all experiments we set the number of runs per parameter setting to 20. Therefore a one-

sided t-test is the method of choice. With 20 runs per setting, the number of degrees of

freedom is 20 + 20− 2 = 38. The important quantiles of the t-distribution are shown in

Table A.1.

In Tables A.2- A.4 the “No” column assigns numbers to the tests. The “(X,Y)”

column denotes the properties that are common to both estimation methods that are to

be compared. The “X” and the “Y” column denote the distinctive properties. “H0” is

the null hypothesis, H1 the alternative hypothesis. X̄, Ȳ , s2
X , s2

Y denote empirical mean

and empirical variance. T shows the resulting T-score.

Table A.1: Quantiles of the t-distribution (38 DoF)

α 0.05 0.025 0.01

t38;1−α 1.6860 2.0244 2.4286
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Table A.2: Student-T significance tests dimension 2

No (X,Y) X Y H0 H1 X̄ Ȳ s2
X s2

Y T

1 LHC best

Sing

best

Mult

µX ≤ µY µX > µY −1.05 −1.38 0.31 0.001 4.85

2 LHC best

Sing

best

Near

µX ≤ µY µX > µY −1.05 −0.99 0.31 0.46 −0.48

Table A.3: Student-T significance tests dimension 5

No (X,Y) X Y H0 H1 X̄ Ȳ s2
X s2

Y T

3 Strat,

Ens(10)

best

intp

best

regr

µX ≤ µY µX > µY −0.74 −2.70 1.06 0.774 6.68

4 LHC,

Ens(10)

best

intp

best

regr

µX ≤ µY µX > µY −0.97 −3.11 0.23 0.73 12.52

5 Strat,

Mult

intp regr µX ≤ µY µX > µY −2.71 −3.25 0.80 0.53 2.53

6 LHC,

Mult

intp regr µX ≤ µY µX > µY −2.47 −3.29 0.88 0.37 3.84

7 LHC,

Ens

best

lin

best

quad

µX ≤ µY µX > µY −2.97 −3.1 0.37 0.23 1.49

8 LHC,

Mult

intp regr µX ≤ µY µX > µY −3.25 −3.06 0.53 0.88 −0.81

9 LHC best

Sing

best

Mult

µX ≤ µY µX > µY −2.16 −3.25 1.30 0.53 3.48

10 LHC best

Sing

best

Near

µX ≤ µY µX > µY −2.16 −2.27 1.30 1.07 0.30
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Table A.4: Student-T significance tests dimension 10

No (X,Y) X Y H0 H1 X̄ Ȳ s2
X s2

Y T

11 LHC,

best lin

best

Mult

best

Ens

µX ≤ µY µX > µY −3.31 −5.14 0.72 1.14 6.07

12 LHC,

best quad

best

Mult

best

Ens

µX ≤ µY µX > µY −3.55 −5.86 1.00 0.73 8.35

Table A.6 shows the significance tests for the results of the σ measure experiment in

Chapter 8. The hypothesis test whether the difference in σeexp
(the standard deviation

of the estimation error) is significant. The method of choice is a one-sided Fisher test.

As the estimation is based on 5000 samples for each setting, each random variable has

5000 − 1 = 4999 degrees of freedom. The important quantiles of the f-distribution are

shown in Table A.1.

Table A.6 uses the same notations as Tables A.2 - A.4. Additionally, “dim” denotes the

problem dimension and “hist” the number of history data points on which the σ measure

experiment is based. Instead of the variance s2
X , s2

Y , the standard deviation sX , sY is

depicted in Table A.6. The last coloumn shows the resulting F-score for each test.

Table A.5: Quantiles of the f-distribution (both variables with 4999 DoF)

α 0.05 0.025 0.01

F4999,4999;1−α 1.05 1.06 1.07
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Table A.6: Fisher significance tests

No dim hist (X,Y) X Y H0 H1 sX sY F

13 5 1000 LHC, mult,

lin

intpol regr σX ≤ σY σX > σY 0.376 0.217 2.99

14 5 1000 LHC, mult,

quad

intpol regr σX ≤ σY σX > σY 0.474 0.300 2.49

15 5 10000 LHC, mult,

lin

intpol regr σX ≤ σY σX > σY 0.251 0.181 1.93

16 5 10000 LHC, mult,

quad

intpol regr σX ≤ σY σX > σY 0.277 0.126 4.80

17 5 1000 LHC, mult,

regr

quad lin σX ≤ σY σX > σY 0.300 0.217 1.908

18 5 10000 LHC, mult,

regr

lin regr σX ≤ σY σX > σY 0.181 0.126 2.041

19 5 1000 LHC,

single, regr

quad lin σX ≤ σY σX > σY 0.285 0.238 1.438

20 5 10000 LHC,

single, regr

lin quad σX ≤ σY σX > σY 0.255 0.229 1.245

21 5 1000 LHC, quad,

regr

mult ens σX ≤ σY σX > σY 0.300 0.209 2.060

22 10 1000 LHC, quad,

regr

mult ens σX ≤ σY σX > σY 0.728 0.388 3.516
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Implementation

The simulation studies are based on a C++ implementation. Whenever possible we used

well known programming libraries. In particular, for linear algebra methods we used GNU

Scientific Library which is an open source project and therefore freely available. For most

of the functionalities in the evolutionary optimization part we used EALib, an open source

project from the Institut für Neuroinformatik at the Ruhr-Universität Bochum. For the

multi-objective EA part we used an extension of EALib, MOOEALib. MOOEALib was

developed at the Honda Research Institute Europe by Tatsuya Okabe and is also freely

available. The author wishes to thank the developers of the libraries.
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