
Zur Erlangung des akademischen Grades eines
Doktors der Wirtschaftswissenschaften (Dr. rer. pol.)
von der Fakultät für Wirtschaftswissenschaften
des Karlsruher Instituts für Technologie (KIT)
vorgelegte Dissertation von
Dipl.-Inform. Zdenko Vrandečić.

Ontology Evaluation

Denny Vrandečić

Tag der mündlichen Prüfung: 8. June 2010
Referent: Prof. Dr. Rudi Studer

Erster Koreferent: Prof. James A. Hendler, PhD.
Zweiter Koreferent: Prof. Dr. Christof Weinhardt

Vorsitzende der Prüfungskommission: Prof. Dr. Ute Werner

This document was created on June 10, 2010

Koji su dozvolili da sanjam,
koji su omogućili da krenem,
koji su virovali da ću stići,

Vama.

-2

Acknowledgements

Why does it take years to write a Ph.D.-Thesis?

Because of all the people who were at my side.
Tonči Vrandečić, my father, who, through the stories told about him, made me

dream that anything can be achieved.
Perica Vrandečić, my mother, who showed me the truth of this dream.
Rudi Studer, my Doktorvater, who is simply the best supervisor one can hope for.
Martina Nöth, for carefully watching that I actually write. Elena Simperl, for giving

the most valuable advises and for kicking ass. Anupriya Ankolekar, for reminding me
that it is just a thesis. Uta Lösch, for significant help. Miriam Fernandez, for trans-
lating obscure Spanish texts. Markus Krötzsch, for an intractable amount of reasons.
York Sure, for being a mentor who never restrained, but always helped. Sebastian
Rudolph and Aldo Gangemi, for conceptualizing my conceptualization of conceptual-
izations. Stephan Grimm for his autoepistemic understanding. Yaron Koren, for his
support for SMW while Markus and I spent more time on our theses.

Christoph Tempich, Peter Haase, Jim Hendler, Pascal Hitzler, Frank van Harmelen,
Enrico Motta, Sofia Pinto, Marta Sabou, and Gus Schreiber, for their advise.

All the people in the Rudiverse, past and present, for making me feel more like
being with friends than being at work. Especially I want to thank those, who became
friends over the years, and will remain so after our time in Semantic Karlsruhe ends.

All my co-authors – a thousand thanks! All the people I worked with in the research
projects and co-organizers of events that helped sharpening the ideas presented here.

The European Union for the projects SEKT and ACTIVE, and for creating a new
Europe. Vulcan Inc. for Project Halo. They funded my time in Karlsruhe.

All those giants which shoulders I am balancing on, for carrying my weight, which
surely is not the easiest of all tasks. All the anonymous reviewers, who made sharp
comments to our papers, that lead to improvements of the presented work

My sister and my other good friends, who inspired me, either with their work, their
ideas, their discussions, their presence, or most importantly with their friendship and
love, giving me encouragement and reality checks whenever I needed them most.

Because of them, it took years to write this thesis.
Without them, it would have taken decades – if not forever.

5

-2

Abstract

Ontologies are a pillar of the emerging Semantic Web. They capture background
knowledge by providing relevant terms and the formal relations between them, so that
they can be used in a machine-processable way, and thus enable automatic aggregation
and the proactive use and serendipitous reuse of distributed data sources. Ontologies
on the Semantic Web will come from a vast variety of different sources, spanning
institutions and persons aiming for different goals and quality criteria.

Ontology evaluation is the task of measuring the quality of an ontology. It enables
us to answer the following main question:

How to assess the quality of an ontology for the Web?
Ontology evaluation is essential for a wide adoption of ontologies, both in the Se-

mantic Web and in other semantically enabled technologies. We regard the three
following scenarios as relevant for ontology evaluation:

• Mistakes and omissions in ontologies can lead to the inability of applications to
achieve the full potential of exchanged data. Good ontologies lead directly to a
higher degree of reuse of data and a better cooperation over the boundaries of
applications and domains.

• People constructing an ontology need a way to evaluate their results and possibly
to guide the construction process and any refinement steps. This will make the
ontology engineers feel more confident about their results, and thus encourage
them to share their results with the community and reuse the work of others for
their own purposes.

• Local changes in collaborative ontology engineering may effect the work of others.
Ontology evaluation technologies allow to automatically check if constraints and
requirements are fulfilled, in order to automatically reveal plausibility problems,
and thus to decrease maintenance costs of such ontologies dramatically.

In this thesis a theoretical framework and several methods breathing life into the
framework are presented. The application to the above scenarios is explored, and
the theoretical foundations are thoroughly grounded in the practical usage of the
emerging Semantic Web. We implemented and evaluated a number of the methods.
The results of these evaluations are presented, indicating the usefulness of the overall
framework.

7

-2

Short Table of Contents

Acknowledgements 5
Abstract 7

I Foundations 11
1 Introduction 13
2 Terminology and Preliminaries 23
3 Framework 37

II Aspects 63
4 Vocabulary 65
5 Syntax 83
6 Structure 99
7 Semantics 127
8 Representation 143
9 Context 151

III Application 165
10 Collaborative ontology evaluation in Semantic MediaWiki 167
11 Related work 185
12 Conclusions 197

IV Appendix 201
List of Methods 203
List of Tables 205
List of Figures 207
Bibliography 209
Full Table of Contents 230

9

Part I

Foundations

1 Introduction 13

2 Terminology and Preliminaries 23

3 Framework 37

1

Chapter 1

Introduction

What I mean (and everybody
else means) by the word
‘quality’ cannot be broken down
into subjects and predicates.
This is not because Quality is so
mysterious but because Quality
is so simple, immediate and
direct.

(Robert M. Pirsig, b. 1928,
Zen and the Art of

Motorcycle Maintenance
(Pirsig, 1984))

The Semantic Web (Berners-Lee et al., 2001), also known as the Web of Data, is
an extension of the hypertext Web. It enables the exchange and integration of data
over the Web, in order to achieve the cooperation of humans and machines on a novel,
world-wide scale.

Ontologies are used in order to specify the knowledge that is exchanged and shared
between the different systems, and within the systems by the various components.
Ontologies define the formal semantics of the terms used for describing data, and the
relations between these terms. They provide an “explicit specification of a concep-
tualization” (Gruber, 1995). Ontologies ensure that the meaning of the data that is
exchanged between and within systems is consistent and shared – both by comput-
ers (expressed by formal models) and humans (as given by their conceptualization).
Ontologies enable all participants ‘to speak a common language’.

Ontologies, like all engineering artifacts, need a thorough evaluation. But the
evaluation of ontologies poses a number of unique challenges: due to the declarative

13

Chapter 1 Introduction

nature of ontologies developers cannot just compile and run them like most other soft-
ware artifacts. They are data that has to be shared between different components and
used for potentially different tasks. Within the context of the Semantic Web, ontolo-
gies may often be used in ways not expected by the original creators of the ontology.
Ontologies rather enable a serendipitous reuse and integration of heterogeneous data
sources. Such goals are difficult to test in advance.

This thesis discusses the evaluation of Web ontologies, i.e. ontologies specified in one
of the standard Web ontology languages (RDF(S) (Klyne and Carroll, 2004) and the
different flavors of OWL (Smith et al., 2004; Grau et al., 2008)) and published on the
Web, so that they can be used and extended in ways not expected by the creators of
the ontology, outside of a central control mechanism. Some of the results of this thesis
will also apply to other ontology languages, and also for ontologies within a closed
environment. In turn, many problems discussed in earlier work on ontology evaluation
do not apply in the context of Web ontologies: since the properties of the ontology
language with regards to monotonicity, expressivity, and other features are known,
they need not to be evaluated for each ontology anymore. This thesis will focus on
domain- and task-independent automatic evaluations. That does not mean that the
ontology has to be domain-independent or generic, but rather the evaluation method
itself is. We will discuss other types of evaluations in Chapter 11.

This chapter contains introductory material by providing the motivation for this
thesis (Section 1.1), giving a short preview of the contributions (Section 1.2), and
offering a readers’ guide for the rest of the thesis (Section 1.3). It closes with an
overview of related previous work by the author (Section 1.4).

1.1 Motivation

Ontologies play a central role in the emerging Semantic Web. They capture back-
ground knowledge by providing relevant concepts and the relations between them.
Their role is to provide formal semantics to terms, so that they can be used in a ma-
chine processable way. Ontologies allow us to share and formalize conceptualizations,
and thus to enable humans and machines to readily understand the meaning of data
that is being exchanged. This enables the automatic aggregation and the proactive
use and serendipitous reuse of distributed data sources, thus creating an environment
where agents and applications can cooperate for the benefit of the user on a hitherto
unexperienced level (Berners-Lee et al., 2001).

This section provides three preliminary arguments for the importance of ontol-
ogy evaluation. The arguments are about (i) the advantages of better ontologies
(Section 1.1.1), (ii) increasing the availability and thus reusability of ontologies (Sec-
tion 1.1.2), and (iii) the lower maintenance costs of collaboratively created knowledge
bases (Section 1.1.3).

14

1

1.1 Motivation

1.1.1 Advantages of better ontologies

Ontologies are engineering artifacts, and as such they need to be evaluated like all
other engineering artifacts. The central role of ontologies in the Semantic Web makes
ontology evaluation an important and worthwhile task: mistakes and omissions in
ontologies can lead to applications not realizing the full potential of exchanging data.
Good ontologies lead directly to a higher degree of reuse and a better cooperation over
the boundaries of applications and domains.

To just name a few examples of disadvantages of low quality ontologies: readability
of an ontology may suffer if the vocabulary or the syntax contains errors. Reasoners
may be unable to infer answers in case of inconsistent semantics. Underspecified
ontologies hinder automatic mapping approaches. On the other hand, high quality
ontologies can be easier reused (since their semantics can be mapped with a higher
confidence to a known and grounded ontology within the reading system), can be
more readily featured in an existing application (since good user interface elements
can be automatically constructed in order to work with the ontology), and will easier
discover and also actively omit data errors (since the ontology constrains possible data
interpretations).

1.1.2 Increasing ontology availability

Ontologies on the Semantic Web are coming from a vast variety of different sources,
spanning institutions and persons aiming for different quality criteria. Ontology evalu-
ation techniques help to consolidate these quality criteria and make them explicit. This
encourages the publication of ontologies and thus increases the number of available
ontologies.

This argument has two sides: on the one hand, more ontologies will be published
because the ontology engineers are more confident with releasing their work. On the
other hand, ontologies can be automatically assessed about their quality and thus can
be reused easier, since the confidence of the reusers in the quality of these ontologies
increases. Even though this does not raise the actual number of ontologies accessible
by a user, it does raise the number of ontologies that will be reused. This fosters
cooperation and reuse on the Semantic Web and increases directly its impact and
lowers its costs.

For anectodal support we refer the reader to the SEKT case studies (Sure et al.,
2007): in one of the case studies, legal experts were trained to engineer an ontology
of their knowledge domain. They felt consistently that they were doing it wrong, but
since it all “looks a lot like common sense” making mistakes made them feel ignorant
and thus uncomfortable. Ontology evaluation tools are supposed to discover some of
these mistakes, and thus to raise the confidence of the engineers in their own work –
and thus to publish them more readily.

15

Chapter 1 Introduction

1.1.3 Lower maintenance costs

Decentralized collaborative ontology creation requires a high independence of tasks. If
local changes lead to wide-reaching effects, then the users should be able to understand
these effects. Otherwise they will invariably effect the work of many others, which will
need a complex system of measures and counter-measures. The prime example is the
world’s currently biggest knowledge base, Wikipedia.

Changes within the knowledge contained by Wikipedia require to be constantly
tracked and checked. Currently, thousands of users constantly monitor and approve
these changes. This is inefficient, since many of these changes could be tracked auto-
matically using ontology evaluation technologies. They allow to automatically check if
certain constraints and requirements are fulfilled. This allows maintainers to quickly
and automatically reveal plausibility problems, and thus to decrease maintenance and
development costs of such ontologies dramatically.

1.2 Contribution

The contribution of this thesis is threefold: we (i) introduce a framework for ontology
evaluation, (ii) we organize existing work in ontology evaluation within this framework
and fill missing spots, and finally (iii) we implement the theoretical results in practical
systems to make the results of this thesis accessible to the user.

1.2.1 A framework for ontology evaluation

Terminology and content in ontology evaluation research has been fairly diverse. Chap-
ter 3 contains a survey of literature, and consolidates the terminology used. It identifies
and defines a concise set of eight ontology quality criteria and ontology aspects that
can be evaluated (Section 3.6):

• Accuracy

• Adaptability

• Clarity

• Completeness

• Computational efficiency

• Conciseness

• Consistency

• Organizational fitness

16

1

1.2 Contribution

We identify and describe in detail the following aspects of ontologies (Part II):

• Vocabulary

• Syntax

• Structure

• Semantics

• Representation

• Context

1.2.2 Methods for ontology evaluation

We surveyed the existing literature on ontology evaluation for evaluation methods and
organized them according to the introduced framework. For each method we describe
it within the context of its respective aspect.

Furthermore, with the help of the framework we identified blind spots and missing
methods. We introduce a number of novel evaluation methods to address these gaps.
Among them are:

• Schema validation (Section 5.3)

• Pattern discovery using SPARQL (Section 6.2)

• Normalization (Section 7.1)

• Metric stability (Section 7.2)

• Representational misfit (Section 8.1)

• Unit testing (Section 9.1)

1.2.3 Implementation

In order to allow the theoretical results of this thesis to be used, we implemented
a number of introduced methods within Semantic MediaWiki, an extension for the
popular MediaWiki wiki engine. Semantic MediaWiki has become the most popular
semantic wiki engine by far, used by several hundreds installations worldwide and
nurturing an active open source developer community. Semantic MediaWiki was ex-
tended to allow for the collaborative evaluation of the knowledge created within the
wiki, and thus lower the costs for maintaining such a knowledge base dramatically
(Chapter 10).

17

Chapter 1 Introduction

1.3 Readers’ guide

This thesis presents a conceptual framework and its implementations for defining and
assessing the quality of an ontology for the Web. In this section we will offer an
overview of the whole thesis so that readers may quickly navigate to pieces of partic-
ular interest to them. The whole thesis is written in such a way that it enables the
understanding of the topic in one pass.

In the examples in this thesis, whenever a QName is used (see Section 5.2), we as-
sume the standard namespace declarations given in Table 1.1. Often we omit names-
paces for brevity and legibility.

Prefix Namespace
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.org/2000/01/rdf-schema#
xsd or xs http://www.w3.org/2001/XMLSchema#
owl http://www.w3.org/2002/07/owl#
skos http://www.w3.org/2008/05/skos#
foaf http://xmlns.com/foaf/0.1/
dc http://purl.org/dc/elements/1.1/
swrc http://swrc.ontoware.org/ontology#
dbpedia http://dbpedia.org/resource/
dolce http://www.loa-cnr.it/ontologies/DOLCE-Lite.owl#
proton http://proton.semanticweb.org/2005/04/protont#
sw http://semanticweb.org/id/
swp http://semanticweb.org/id/Property-3A
swc http://semanticweb.org/id/Category-3A
swivt http://semantic-mediawiki.org/swivt/1.0#
aifb http://www.aifb.kit.edu/id/

Table 1.1: Namespace declaration in this thesis

The appendix contains further navigational help: a bibliography of referenced
works, lists of methods, tables and figures, an index of all relevant terms, and a full
table of contents.

The content of this thesis is divided in three parts.

1.3.1 Foundations

The foundations describe necessary preliminaries for understanding the rest of the
thesis and offers a framework for the whole field of ontology evaluation that is later
filled with more details in the following chapters. This first chapter introduces the

18

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/2002/07/owl#
http://www.w3.org/2008/05/skos#
http://xmlns.com/foaf/0.1/
http://purl.org/dc/elements/1.1/
http://swrc.ontoware.org/ontology#
http://dbpedia.org/resource/
http://www.loa-cnr.it/ontologies/DOLCE-Lite.owl#
http://proton.semanticweb.org/2005/04/protont#
http://semanticweb.org/id/
http://semanticweb.org/id/Property-3A
http://semanticweb.org/id/Category-3A
http://semantic-mediawiki.org/swivt/1.0#
http://www.aifb.kit.edu/id/

1

1.3 Readers’ guide

topic of the thesis and gives a rough overview of the contribution and how the whole
thesis is structured.

Chapter 2 gives the terminology and preliminaries needed to understand the
rest of the work. Whereas most of the terms may be familiar to a user knowledgeable
about Semantic Web technology, this chapter offers a concise definition of these terms
within this thesis. Readers may skip this chapter first, and decide to use it for reference
as needed. The index in the appendix can help with finding relevant sections.

Chapter 3 introduces the theoretical framework for ontology evaluation that is
the main theoretical contribution of this thesis. It describes criteria for ontology
evaluation, aspects that can be evaluated, and how the criteria, aspects, and measures
can be used in order to achieve defined goals by the user.

1.3.2 Aspects

Part II of this thesis describe the six different aspects of ontology evaluation as defined
by the evaluation framework. Each chapter in this part is dedicated to one of the
aspects.

Chapter 4 deals with the vocabulary of an ontology. The vocabulary of an ontology
is the set of all names in that ontology, be it URI references or literals, i.e. a value
with a datatype or a language identifier. This aspect deals with the different choices
with regards to the used URIs or literals.

Chapter 5 is about the ontology syntax. Web ontologies can be described in a
number of different surface syntaxes such as RDF/XML, N-Triples, OWL Abstract
Syntax, the Manchester Syntax, or many else. Often the syntactic description within
a certain syntax can differ widely. This aspect is about the different serializations in
the various syntaxes.

Chapter 6 evaluates the structure of an ontology. A Web ontology describes an
RDF graph. The structure of an ontology is this graph. The structure can vary highly
even when describing the same meaning.

Chapter 7 examines how the semantics of an ontology can be evaluated. A con-
sistent ontology describes a non-empty, usually infinite set of possible models. The
semantics of an ontology are the common characteristics of all these models.

Chapter 8 takes a look at the aspect of representation. This aspect captures
the relation between the structure and the semantics. Representational aspects regard
how the explicit structure captures and defines the intended meaning, being the formal
semantics of a description logics theory or some other specification of meaning.

Chapter 9 finally regards how the context of an ontology can be used for evaluation.
This aspect is about the features of the ontology when compared with other artifacts
in its environment, which may be, e.g. an application using the ontology, a data
source about the domain, or formalized requirements towards the ontology in form of
competency questions.

19

Chapter 1 Introduction

1.3.3 Application

The last part describes practical implications and implementations of the work given
in the previous part, compares it to other work in the area, and offers conclusions on
the results.

Chapter 10 describes Semantic MediaWiki, an extension to the MediaWiki wiki
engine, that allows for the massive collaborative creation and maintenance of on-
tologies. It discusses how collaborative approaches towards ontology evaluation are
implemented within Semantic MediaWiki.

Chapter 11 surveys related approaches and how they relate to the presented
framework. Whereas most of the related approaches have been already included in
the description of their respective aspect, some of them do not fit into the overall
framework presented in this thesis. In this chapter we analyze the reasons for that.

Chapter 12 finally summarizes the results and compares them to the motivation
presented in this chapter. We collect and comment on research questions that remain
open, and outline the expected future work and impact of the research topic.

1.4 Relation to previous publications

Most of the content in this thesis has been published previously. Here we present
the relation to other publications of the author, in order to show which parts of the
content have been already peer-reviewed. Most of the publications add further details
to the given topic that has not been repeated in this thesis, either because of space
constraints or because that part of the work has been performed by one of the co-
authors. On the other hand, all the content in this thesis has been updated to adhere
to a common framework and to OWL2, which has been released only recently.

The outline of this thesis was previously published in a much shorter form in
(Vrandečić, 2009b). This includes the framework in Chapter 3, especially the criteria
selection in Section 3.6 and the definition of aspects in Section 3.8, which provides
a structure for the whole thesis. The meta-model presented in Section 3.2 has been
previously published in (Vrandečić et al., 2006c).

A number of publications present experiences and thoughts which have informed the
whole thesis. In (Cregan et al., 2005) and (Mochol et al., 2008) we present experiences
from ontology engineering, issues with then current tools, and problems with the
OWL semantics (which in turn have informed the methods presented in Section 7.2 on
stable metrics, Section 7.3 on completeness, and Section 9.2 on using ontologies with
higher expressivity for consistency checking and query answering). Also experiences
with distributed ontology engineering especially using the DILIGENT methodology
has been gained in the EU project SEKT and published in (Vrandečić et al., 2005),
(Vrandečić et al., 2006b), (Sure et al., 2007), (Casanovas et al., 2007), and (Casanovas
et al., 2005). These experiences had guided us in the the development of Semantic

20

1

1.4 Relation to previous publications

MediaWiki (Chapter 10), unit testing for ontologies (Section 9.1) and the overall need
to develop automatic evaluation methods that also care about the seemingly simpler
aspects such as vocabulary (Chapter 4) or syntax (Chapter 5).

We also have organized two workshops on the topic of ontology evaluation (EON2006
at WWW2006 in Banff, Canada, and EON2007 at ISWC2007 in Seoul, South Korea)
that have contributed heavily to an understanding of the topic of the thesis. The
proceedings are available in (Vrandečić et al., 2006a) and (Vrandečić et al., 2007a),
respectively.

An earlier version of Chapter 4 was published in (Vrandečić, 2009a).
The idea of RDF syntax normalization in order to enable XML validation in Sec-

tion 5.3 has been previously published in (Vrandečić et al., 2009).
The criticism of existing metrics presented in Section 6.1 was first raised in (Vrandečić

and Sure, 2007). The idea of explicating and detecting patterns with macros described
in Section 6.2 was introduced in (Vrandečić, 2005) and extended in (Vrandečić and
Gangemi, 2006). In this thesis we have further expanded the idea considerably and
added some evaluation based on a significant ontology corpus. Section 6.3 on AEON
has been previously presented in (Völker et al., 2005) and (Völker et al., 2008). There
the machine learning aspects of AEON and its evaluation is also described.

The notions of normalization as presented in Section 7.1 and of stable metrics pre-
sented in Section 7.2 have both been previously published in (Vrandečić and Sure,
2007). The description of normalization in (Vrandečić and Sure, 2007) contained some
formal errors though. They have been corrected in (Vrandečić et al., 2007b). Sec-
tion 7.1 presents the corrected version.

Ontological metrics as described in Section 8.1 have been first published in (Vrandečić
and Sure, 2007).

Unit testing as presented in Section 9.1 was introduced in (Vrandečić and Gangemi,
2006). The idea of extending ontologies with stronger axiomatizations as presented in
Section 9.2 was exemplified in (Lösch et al., 2009) and (Völker et al., 2007). The idea
of extending ontologies with logic program rules builds on the line of work of (Grosof
et al., 2003) and especially (Motik, 2006) and was implemented as tools in (Motik et
al., 2005) and evaluated in (Hitzler and Vrandečić, 2005) and (Krötzsch et al., 2006a),
especially for efficiency.

Semantic MediaWikia (SMW) has been first presented in (Krötzsch et al., 2005) and
then in (Völkel et al., 2006). The further development of SMW has been documented
in (Krötzsch et al., 2006b) and (Krötzsch et al., 2007c). Chapter 10 provides an
updated introduction to the whole system. The ideas expanded and implemented
in Section 10.4 have been first published in (Vrandečić, 2009c). Introducing further
reasoning expressivity to SMW in order to evaluate the content was published in
(Vrandečić and Krötzsch, 2006) and (Krötzsch et al., 2007b).

21

2

Chapter 2

Terminology and Preliminaries

All good counsel begins in the
same way; a man should know
what he is advising about, or his
counsel will all come to nought.

(Socrates, 469 BC–399 BC,
Phaedrus

(Plato, 370 BC))

This chapter defines the terminology used in this thesis. Unlike a glossary, the terms
will be given in a logical, or pedagogical order, meant to be read in order of presen-
tation. Some of the following terms have a wider meaning outside of this thesis, and
sometimes that wider meaning is mentioned. But in order to enable a succinct discus-
sion we will widely disregard these additional meanings. Within this chapter, words
written in bold are the words defined in that paragraph. Words written in small
capitals are references to the given definitions.

2.1 Ontologies

An ontology is a (possibly named) set of axioms. Axioms are stated in an ontol-
ogy language. If all axioms of an ontology are stated in the same ontology language,
then the ontology as a whole is in that ontology language.

An ontology language defines which language constructs (i.e. which types of
axioms) can be used in an ontology in that language. The ontology language also
defines the formal semantics of that language. A big number of ontology languages
have been suggested in the last twenty years, such as Ontolingua (Farquhar et al.,
1996), F-logic (Kifer et al., 1995), or plain first order logic.

23

Chapter 2 Terminology and Preliminaries

Web ontologies are ontologies that are written in one of the standardized Se-
mantic Web ontology languages. Within this thesis we regard only Web ontolo-
gies, i.e. other ontologies using ontology languages do not necessarily have the same
properties and thus may not be evaluable with the methods presented here.

As of writing of this thesis, the Semantic Web ontology languages are RDF,
RDFS (jointly called RDF(S)),and OWL. OWL is available in a number of profiles
with specific properties (Grau et al., 2008). All these languages are standardized by the
World Wide Web Consortium (W3C), a public standards body overseeing standards
relevant to the development of the Web.

According to the Semantic Web ontology languages, ontologies do not include only
terminological knowledge – definitions of the terms used to describe data, and the
formal relations between these terms – but may also include the knowledge bases
themselves, i.e. terms describing individuals and ground facts asserting the state of
affairs between these individuals. Even though such knowledge bases are often not
regarded as being ontologies (see (Obrst et al., 2007) for an example), for the re-
mainder of this thesis we follow the OWL standard and regard ontologies as artifacts
encompassing both the terminological as well as the assertional knowledge.

An ontology document is a particular serialization of an ontology. As such, it
is an information resource, usually a file, and thus an artifact that can be processed by
a machine. Web ontologies may be serialized in one of the many W3C standards
for ontology serialization, i.e. RDF/XML (Beckett, 2004), OWL Abstract Syntax
(Patel-Schneider et al., 2004), OWL XML presentation syntax (Hori et al., 2003), N3
(Berners-Lee, 2006), or OWL Functional Syntax (Motik et al., 2009b). There are
several further serializations, which can be translated from and to the other set of
serializations, for example the KAON2 ontology serialization, the Manchester Syntax
(Horridge et al., 2006), or a memory only JAVA internal presentation. In Chapter 5
we will discuss the aspect of serializations and syntax more deeply. An infinite number
of different ontology documents can describe the same ontology.

Web ontologies are often represented with an RDF graph (Klyne and Carroll,
2004), and in turn the RDF graph is serialized in an RDF document. This is the case
when using the RDF/XML or the N3 serializations. The RDF graph in turn has to be
interpreted to arrive at the actual ontology. This additional step was introduced by
the W3C standards in order to achieve a form of interoperability between the different
layers in the so called Semantic Web Layer Cake (first introduced in (Berners-Lee et al.,
2001) and updated several times since then, see e.g. (Berners-Lee et al., 2006b)). Every
ontology can be represented by an RDF graph, but not every ontology is necessarily
represented by an RDF graph. Whereas the interpretation of an RDF graph as an
ontology always yields the same ontology, there is no canonical representation of an
ontology as an RDF graph, i.e. there can be many RDF graphs representing the same
ontology. This stems from the fact that the normative translation of ontologies to RDF
graphs is not injective, as described in Section 4.1 of the OWL Language Semantics

24

2

2.2 Axioms

and Abstract Syntax document (Patel-Schneider et al., 2004).
Web ontologies are also often serialized as XML files (Bray et al., 2008) or

else given by an XML infoset (Cowan and Tobin, 2004). An XML file is a particular
serialization of an XML infoset, but XML infosets could also be serialized in other ways
(e.g. as binary XML (ISO 24824, 2007)). XML infosets in turn may either express the
ontology directly (as, for example, in the OWL/XML presentation syntax (Hori et al.,
2003)) or express the RDF graph that in turn expresses the ontology. This shows
that ontologies can be expressed in a big number of ways. They can be expressed via
RDF or XML or both or neither.

Ontology elements are both axioms and ontology entities. In Section 2.2 we
describe the available types of axioms, followed by the types of entities in Section 2.3.

2.2 Axioms

An axiom is the smallest unit of knowledge within an ontology. It can be either a
terminological axiom, a fact, or an annotation. Terminological axioms are ei-
ther class axioms or property axioms. An axiom defines formal relations between
ontology entities or their names.

2.2.1 Facts

A fact or individual axiom is either an instantiation, a relation, an attribute,
or an individual (in)equality.

An instantiation or class instantiation has the form1

ClassAssertion(C a)
with C being a class expression and a being an individual name. This is the
same as stating that a has the type C. Semantically that means that the individual
that has the name a is in the extension of the set described by C.

A (positive) relation or object property instance has the form
PropertyAssertion(R a b)

with a and b being individual names and R being an object property expres-
sion. Informally it means that the property R pointing from a to b holds – e.g. saying
that Germany has the capital Berlin. In the example, Germany and Berlin are indi-
vidual names, and capital is the name of the property that holds between them. The
actual instantiation of this property is thus called the relation. Semantically it means
that the tuple (a, b) is in the extension of the set R.

OWL2 introduces negative relations, i.e. the direct possibility to state that a
certain relation is not the case. This uses the following form:

1For more on the syntax and semantics of the axioms throughout this thesis, see Section 2.4.

25

Chapter 2 Terminology and Preliminaries

NegativePropertyAssertion(R a b)
This means that the tuple (a, b) is not in the extension of the set R. Semantically,
this was already possible to be indirectly stated in OWL DL by using the following
statement:
SubClassOf(OneOf(a) AllValuesFrom(R ComplementOf(OneOf(b))))

It is easy to see that the new syntax is far easier to understand.
An attribute or datatype property instance uses almost the same form as a

relation:
PropertyAssertion(R a v)

with a being an individual name, R being a datatype property expression and
v being a literal. A negative attribute uses the following form respectively:
NegativePropertyAssertion(R a v)
Individual equality is an axiom stating that two (or more) names refer to the same

individual, i.e. that the names are synonyms. An individual inequality on the other
hand makes explicit that the names do not refer to the same individual. Ontology
languages with the unique name assumption assume that two different names always
(or by default) refer to two different individuals. In OWL, this is not the case: OWL
does not hold to the unique name assumption, and thus OWL does not make any
assumptions about equality or inequality of two individuals referred to by different
names. The syntax for these axioms is as follows (for i ≥ 2):
SameIndividual(a1 a2 ... ai)
DifferentIndividuals(a1 a2 ... ai)

2.2.2 Class axioms

A terminological axiom is either a class axiom or a property axiom.
A class axiom can either be a subsumption, class equivalence, disjoint, or

disjoint union.
A subsumption has the following form:
SubClassOf(C D)

with C (the subclass) and D (the superclass) being class expressions. This axiom
states that every individual in the extension of C also has to be in the extension of
D. This means that individuals in C are described as being individuals in D. For
example,
SubClassOf(Square Polygon)

describes squares as polygons. Subsumptions may be simple subsumptions, com-
plex subsumptions, or descriptions.

In a simple subsumption both the subclass and the superclass are class names
instead of more complex class expressions. Simple subsumptions form the backbone
of class hierarchies.

26

2

2.2 Axioms

In a complex subsumption both the subclass and the superclass are complex
class expressions. A complex subsumption thus sets an intricate restriction on the
possible models of the ontology. Such restrictions may be rather hard to understand
by users of the ontology.

In a description, either the subclass is a class name and the superclass a complex
class expression, or the other way around. This describes the named class, i.e. the
complex class expression is a condition of the named class. If the named class is
the subclass, then the complex class expression offers a necessary condition of the
named class, i.e. each individual in the named class must also fit to the complex class
expression. If the named class is the superclass, then the complex class expression
offers a sufficient condition of the named class, i.e. each individual fitting to the
complex class expression will also be an individual of the named class. Descriptions
are among the most interesting axioms in an ontology, and they are the namesake of
description logics.

A class equivalence is stated as follows (for i ≥ 2):
EquivalentClasses(C1 C2 ... Ci)

with Cn, 1 ≤ n ≤ i, being class expressions. Class equivalences are simple class
equivalences, complex class equivalences, or definitions.

In a simple class equivalence, both class expressions of the class equivalence
axiom are class names. This is similar to a synonym, since it states that two names
mean the same class, i.e. that they have the same extension.

In a complex class equivalence both classes are complex class expressions,
and thus the axiom defines an intricate condition on the possible models. Just like
complex subsumptions such axioms and their implications may be hard to under-
stand.

If any of the two classes in a class equivalence is a class name and the other a
complex class expression, then the axiom is a definition of the class name. A
definition is the strongest statement about a class name, offering both a sufficient and
necessary condition by means of the complex class description. Thus, a definition
offers the complete meaning of a name by building on the meaning of the names used
in the defining class expression. As an example, a mother can be completely described
by the following axiom:

EquivalentClasses(Mother IntersectionOf(Woman
SomeValuesFrom(child Thing)))

defining a Mother as a Woman with a child.
A disjoint is an axiom of the form (for i ≥ 2):
DisjointClasses(C1 C2 ... Ci)

with Cn, 1 ≤ n ≤ i, being class expressions. The axiom states that two classes
have no common individuals. This type of axiom is syntactic sugar for the following
axiom:

27

Chapter 2 Terminology and Preliminaries

SubClassOf(C1 ComplementOf(C2 ... Ci))
for all Cn, 2 ≤ n ≤ i.

A disjoint union has the form (for i ≥ 2):
DisjointUnion(C D1 D2 ... Di)

stating that the class C is a union of all classes Dn, 1 ≤ n ≤ i, and at the same time
the classes Dn, 1 ≤ n ≤ i are all mutually disjoint. A disjoint union is also called a
complete partition or a covering axiom.

2.2.3 Property axioms

A property axiom describes formal semantics of properties. Unlike classes, prop-
erties can hardly be described or even defined with a single axiom. In other words,
whereas an OWL ontology allows to classify individuals based on their descriptions,
the same is not true for property instances. Property axioms can be used to define
the formal semantics of properties, but this is hardly ever expressive enough to define
a property. This is because the only property expressions are inverse property
and property chains.

The available property axioms either define (i) the relation between two properties,
(ii) their domain or range, (iii) their type, (iv) or keys for individuals. The formal
semantics of all these axioms are given in Table 2.1 on page 34.

Relations between properties are subproperties (e.g. mother as a subproperty of
parent), equivalent properties (e.g. mother as an equivalent property to mom),
disjoint properties (e.g. mother and father have to be disjoint sets), and inverse
properties (e.g. child is inverse to parent).

A domain definition defines the class an individual belongs to, if that property
points from it. A range definition defines the class an individual belongs to, if
that property points to it. E.g. the property wife would connect a groom with his
bride, and thus have the domain Man and the range Woman (based on a conservative
conceptualization not accounting for same-sex marriages). Note that domains and
ranges are not constraints, i.e. the system will usually not detect inconsistencies if the
related individuals do not belong to the specified class, a behaviour often anticipated
by programmers since it resembles the usage of signatures in procedure definitions. In
order to do so, the ontology requires either sufficient disjoints between the classes
(see Section 9.2.1) or we need to add the ability to formulate domains and ranges as
constraints (see Section 9.2.4).

A number of axioms can be used to declare specific formal types of properties. These
are functional, inverse functional, reflexive, irreflexive, symmetric, asymmet-
ric, and transitive property declarations. The formal semantics of all these properties
are given in Table 2.1.

Finally, property axiom can define keys over one or more properties. Keys, just as
inverse functional properties are important to infer the identity of individuals,

28

2

2.3 Entities

and thus play a crucial role in merging data from heterogeneous sources.

2.2.4 Annotations

An annotation connects an element by an annotation property with an an-
notation value. Elements can be either entities, ontologies, or axioms. An
annotation has no impact on the DL semantics, but adds further information about
the elements.

The most widely deployed annotation is rdf:label. It connects an element with a
human-readable label. We will investigate this in Section 4.2.3 in detail.

Annotations can express further metadata about the data itself, e.g. who stated
a specific axiom, when was a class introduced, which properties are deprecated, etc.
Many of these annotations can be used for evaluations, and throughout this thesis we
will frequently see examples of such usage. Before the introduction of the punning
mechanism in OWL2 (see Section 4.1.5) annotations were also required to make state-
ments about classes or properties. For example, the AEON approach for analyzing
class hierarchies was only possible by expressing the meta-properties with annotations
(see Section 6.3). Since punning was introduced it is allowed to make statements
about classes directly, which is much more powerful. We have used this new feature
in Section 6.3.

Ontology annotations add metadata about the whole ontology, e.g. stating the
author of the ontology, the version of the ontology, pointing to previous versions,
stating compatibility with previous versions, etc. The OWL standard already defines
a number of these ontology annotations, but allows for more to be added.

2.3 Entities

An ontology enitity may be an individual, a class, a property, or an ontology.
Since OWL2, the names referencing these entities do not have to be disjoint anymore,
i.e. one and the same name may point to both an individual and a class. Consider the
following example where Father is the name for a property (connecting a person to
its father), a class (of all fathers), and an individual (as an instance of the class role,
which in return can be used to query for all roles a person has or can have).

ClassAssertion(Familyrole Father)
PropertyDomain(Father Person)
PropertyRange(Father Man)
SubPropertyOf(Father Parent)
InverseProperties(Parent Child)
EquivalentClass(Father SomeValuesFrom(Child Person))
EquivalentClass(Father HasValue(Role Father))

29

Chapter 2 Terminology and Preliminaries

2.3.1 Individuals

Individuals can be given by their name or as an anonymous individual. An
individual can be any entity with an identity (otherwise it would not be possible to
identify that entity with an identifier).

An anonymous individual does not have a URI but provides only a local name
instead. This means that the individual can not be identified directly from outside of
the given ontology, but only through indirect means like inverse functional prop-
erties, keys, or nominals. We will discuss anonymous individuals in Section 4.3 in
more detail.

2.3.2 Classes

A class is a set of individuals. A class is given by a class expression. A class
expression may either be a class name or a complex class description. A
class name is simply the name, i.e. a URI, of a class. Class names do not carry any
further formal information about the class.

A complex class expression defines a class with the help of other entities
of the ontology. In order to create these expressions, a number of constructs can
be used. The formal semantics and exact syntax of all these constructs are given in
Table 2.2. The constructs are set operations or restrictions.

The available set operations are intersections, unions, complements, and nom-
inals. A nominal defines the extension of a class by listing all instances explicitly.

The available restrictions are the existential restriction on a property (i.e. a class
of all instances where the property exists), the universal restriction (on a property
P and a class C, constructing a class where the instances have all their P property
values be instances of C), unqualifed number restriction, the qualified number
restriction, and the self-restriction (on a property P , stating that an instance has
to be connected to itself via P).

As we can see, classes can be expressed with a rich variety of constructs, whereas
the same does not hold for individuals and properties.

2.3.3 Properties

Properties are given by a property expression. Most often, a property ex-
pression is just a property name. The only complex property expressions are
inverse properties and property chains.

An inverse property is the property expression that is used when the subject
and the object exchange their place in a property instantiation. For an example, child
is the inverse property of parent. Instead of giving the inverse property the property
name parent, we could have used the property expression InverseOf(child)
instead.

30

2

2.4 Semantics

A property chain is the property expression that connects several property
expressions in a chain, e.g. the property uncle can be described as a superproperty
of the chaining of the properties parent and brother by using the following axiom:
SubPropertyOf(PropertyChain(parent brother) uncle)
Note that this is not a definition of uncle (since uncle may also be the chaining of

the properties parent, sister, and husband). Since there are no boolean operators on
properties (i.e. property unions, intersections, and complements) we cannot actually
define uncle.

Properties can be either object properties or data properties. Object
properties connect two individuals with each other. Data properties connect an
individual with a data value.

A data value is not represented by a URI but rather by a literal, the syntactic
representation of a concrete value. The mapping between the literal and the data
value is given by a datatype map. For example, the typed literal "4"^^xsd:int is
mapped to the number 4. More on literals will be discussed in Section 4.2.

2.3.4 Ontologies

An ontology can be either a named or an unnamed ontology. Ontologies
can also be regarded as ontology entities and can have axioms to describe them,
especially with annotation axioms (e.g. to state the authoring institution or version
information).

A named ontology is an ontology that explicitly states its name inside the ontol-
ogy. Within this ontology, and especially in external ontologies this ontology can now
be referred to by name.

An unnamed ontology is an ontology that has no name given explicitly within
the ontology. If a location is available, the location may be used instead of the name
in this case. An ontology’s name is also always the local name which is represented
by the empty string, which should be interpreted as this ontology. For example, in
RDF/XML serialization the following statement would say that this ontology was
created on January 1 2010. We can see that instead of the name in the first line there
is just an empty string, enclosed by double quotes.

<owl:Ontology rdf:about="">
<dc:created>2010-01-01</dc:created>

</owl:Ontology>

2.4 Semantics

Throughout this thesis we are using the OWL2 Functional Syntax (Motik et al., 2009b)
for serializing axioms and thus ontologies. We believe that this is the most understand-

31

Chapter 2 Terminology and Preliminaries

able OWL2 syntax curently available. OWL2 Functional Syntax is easy to read and
nevertheless concise, and unlike DL syntax it actually reflects not only the semantics
of the axioms but often also their intention. To give an example: a domain declaration
in Functional Syntax is written as

PropertyDomain(mother Female)

whereas in DL syntax the same statement would be

∃mother.> v Female

Although the DL syntax is more concise, the intention of a domain declaration is
easier to see from the Functional Syntax. RDF based syntaxes such as N3 on the other
hand become very unwieldy and need to deal with many artifacts introduced to the
fact that complex axioms need to be broken down in several triples (see the example
below).

Table 2.1 describes all OWL axiom types, their direct set semantics, and their
translation to RDF. The table is abbreviated: for all axiom types marked with *, it
contains only the version with two (resp. three in the case of the DisjointUnion
axiom type) parameters, even though the parameter list can be arbitrarily long. This
often complicates the RDF graph enormously.

To give one example: the DisjointProperties axiom type is given in Table 2.1
with two possible parameters, R and S. This can be expressed in RDF with a single
triple:

R owl:propertyDisjointWith S .

But the axiom type can use an arbitrary number of parameters, e.g.

DisjointProperties(R S T)

stating that all the given properties are mutually disjoint, i.e.

(R u S) t (R u T) t (S u T) ≡ ⊥

Translating this axiom to RDF yields a much more complicated graph than the
single triple above:

_:x1 rdf:type owl:AllDisjointProperties .
_:x1 owl:members _:x2 .
_:x2 rdf:first R .
_:x2 rdf:rest _:x3 .

32

2

2.4 Semantics

_:x3 rdf:first S .
_:x3 rdf:rest _:x4 .
_:x4 rdf:first T .
_:x4 rdf:rest rdf:nil .

Table 2.2 is abbreviated in the same way. The IntersectionOf, UnionOf, OneOf,
and PropertyChain expression types can all accomodate more than the given number
of parameters. The Table is also abbreviated as it considers only object properties.
Datatype properties are built in an analogous way, but further allow for facets. Facets
allow to constrain the range of data values, i.e. one may restrict the age for adults to
be bigger than or equal to eighteen years.

Table 2.1 and Table 2.2 are compiled from (Motik et al., 2009b; Motik et al., 2009a;
Patel-Schneider and Motik, 2009). For further detail, a primer, and normative decla-
rations of all entities, the reader should consult the standards.

33

Chapter 2 Terminology and Preliminaries

Functional syntax Set semantics RDF-Graph (N3)
ClassAssertion(C a) a ∈ C a rdf:type C.
PropertyAssertion(R a b) (a, b) ∈ R a R b.
NegativePropertyAssertion (a, b) /∈ R :x rdf:type
(R a b) owl:NegativePropertyAssertion.

:x owl:sourceIndividual a.
:x owl:assertionProperty R.
:x owl:targetIndividual b.

SameIndividual(a b)* a = b a owl:sameAs b.
DifferentIndividuals(a b)* a 6= b a owl:differentFrom b.

SubClassOf(C D) C ⊆ D C rdfs:subClassOf D.
EquivalentClasses(C D)* C ≡ D C owl:equivalentClass D.
DisjointClasses(C D)* (C ∩D) ≡ ⊥ C owl:disjointwith D.
DisjointUnion(C D E)* C ≡ (D ∪ E) C owl:disjointUnionOf :x.

(D ∩ E) ≡ ⊥ :x rdf:first D.
:x rdf:rest :y.
:y rdf:first E.
:y rdf:rest rdf:nil.

SubPropertyOf(R S) R ⊆ S R rdfs:subPropertyOf S.
EquivalentProperties(R S)* R ≡ S R owl:equivalentProperty S.
DisjointProperties(R S)* (R ∩ S) = ⊥ R owl:propertyDisjointWith S.
InverseProperties(R S) (a, b) ∈ R↔ (b, a) ∈ S R owl:inverseOf S.
PropertyDomain(R C) (a, b) ∈ R→ a ∈ C R rdfs:domain C.
PropertyRange(R C) (a, b) ∈ R→ b ∈ C R rdfs:range C.
FunctionalProperty(R) (a, b) ∈ R ∧ (a, c) ∈ R R rdf:type

→ b = c owl:FunctionalProperty.
InverseFunctionalProperty(R) (a, c) ∈ R ∧ (b, c) ∈ R R rdf:type

→ a = b owl:InverseFunctionalProperty.
ReflexiveProperty(R) a ∈ > → (a, a) ∈ R R rdf:type

owl:ReflexiveProperty.
IrreflexiveProperty(R) a ∈ > → (a, a) /∈ R R rdf:type

owl:IrreflexiveProperty.
SymmetricProperty(R) (a, b) ∈ R↔ (b, a) ∈ R R rdf:type

owl:SymmetricProperty.
AsymmetricProperty(R) (a, b) ∈ R→ (b, a) /∈ R R rdf:type

owl:AsymmetricProperty.
TransitiveProperty(R) (a, b) ∈ R ∧ (b, c) ∈ R R rdf:type

→ (a, c) ∈ R owl:TransitiveProperty.
HasKey(C R S)* (a, c) ∈ R ∧ (b, c) ∈ R C owl:hasKey :x.

∧(a, d) ∈ S ∧ (b, d) ∈ S :x rdf:first R.
→ a = b :x rdf:rest :y.

:y rdf:first S.
:y rdf:rest rdf:nil.

Table 2.1: Semantics of OWL axioms. Axiom types noted with * may hold more than
the given parameters.

34

2

2.4 Semantics

Functional syntax Set semantics RDF-Graph (N3)
IntersectionOf(C D)* C ∩D :x owl:intersectionOf :y.

:y rdf:first C.
:y rdf:rest :z.
:z rdf:first D.
:y rdf:rest rdf:nil.

UnionOf(C D)* C ∪D :x owl:unionOf :y.
:y rdf:first C.
:y rdf:rest :z.
:z rdf:first D.
:y rdf:rest rdf:nil.

ComplementOf(C) ¬C :x owl:complementOf C.
OneOf(a)* {a} :x owl:oneOf :y.

:y rdf:first a.
:y rdf:rest rdf:nil.

SomeValuesFrom(R C) {x|∃((x, y) ∈ R ∧ y ∈ C)} :x rdf:type owl:Restriction.
:x owl:onProperty R.
:x owl:someValuesFrom C.

AllValuesFrom(R C) {x|∀(x, y) ∈ R→ y ∈ C} :x rdf:type owl:Restriction.
:x owl:onProperty R.
:x owl:allValuesFrom C.

HasValue(R a) {x|∃(x, a) ∈ R} :x rdf:type owl:Restriction.
:x owl:onProperty R.
:x owl:hasValue a.

HasSelf(R) {x|∃(x, x) ∈ R} :x rdf:type owl:Restriction.
:x owl:onProperty R.
:x owl:hasSelf true.

MinCardinality(n R) {x|#{y|(x, y) ∈ R} ≥ n} :x rdf:type owl:Restriction.
:x owl:onProperty R.
:x owl:minCardinality n.

MaxCardinality(n R) {x|#{y|(x, y) ∈ R} ≤ n} :x rdf:type owl:Restriction.
:x owl:onProperty R.
:x owl:maxCardinality n.

ExactCardinality(n R) {x|#{y|(x, y) ∈ R} = n} :x rdf:type owl:Restriction.
:x owl:onProperty R.
:x owl:cardinality n.

MinCardinality(n R C) {x|#{y|(x, y) ∈ R ∧ y ∈ C} ≥ n} :x rdf:type owl:Restriction.
:x owl:onProperty R.
:x owl:onClass C.
:x owl:minQualifiedCardinality n.

MaxCardinality(n R C) {x|#{y|(x, y) ∈ R ∧ y ∈ C} ≤ n} :x rdf:type owl:Restriction.
:x owl:onProperty R.
:x owl:onClass C.
:x owl:maxQualifiedCardinality n.

ExactCardinality(n R C) {x|#{y|(x, y) ∈ R ∧ y ∈ C} = n} :x rdf:type owl:Restriction.
:x owl:onProperty R.
:x owl:onClass C.
:x owl:qualifiedCardinality n.

PropertyChain(R S)* {(a, b)|∃(a, x) ∈ R ∧ (x, b) ∈ S} :x owl:propertyChain :y.
:y rdf:first R.
:y rdf:rest :z.
:z rdf:first S.
:z rdf:rest rdf:nil.

Table 2.2: Semantics of OWL expressions using object properties (datatypes properties
are analogous). Expression types with * may hold more parameters.

35

3Chapter 3

Framework

A definition is the starting point
of a dispute, not the settlement.

(Neil Postman, 1931–2003,
Language Education in a

Knowledge Context
(Postman, 1980))

We introduce a framework for ontology evaluation. The rest of this thesis will be
built on the framework in this chapter. First, we give an informal overview of the
whole framework in Section 3.1, introducing the relevant terms and their connections.
Section 3.2 describes an ontology of ontology evaluation and related concepts, formally
specifying the framework presented earlier. Based on that specification, we define
different types of ontologies in Section 3.3. We then outline the limits of this work
in Section 3.4. The concepts of the ontology are finally discussed in more detail in
the following sections: conceptualizations (Section 3.5), quality criteria (Section 3.6),
evaluation methods (Section 3.7), and ontology aspects (Section 3.8).

3.1 Overview

The following framework is inspired by the semiotic meta-ontology O2 and the ontology
of ontology evaluation and selection oQual (Gangemi et al., 2006b). We disagree on a
few premises which will be named explicitly in Section 11.1. Nevertheless, we try to
remain as close to O2 and oQual as reasonable.

An ontology (i) specifies a conceptualization, (ii) consists of a set of axioms, (iii)
is expressed by an ontology document, and (iv) constraints the construction of models
satisfying the ontology. In Section 3.5 we discuss the conceptualizations and their

37

Chapter 3 Framework

Conceptualization Ontology

Ontology document

RDF graph
Model

Evaluation method

specifies

evaluates

compatible

XML Infoset

Ontology evaluation
results about

Figure 3.1: Framework for ontology evaluation. The slashed arrow represents the ex-
presses relation.

relation to ontologies in detail. The structural definition of an ontology as a set of
axioms was given in Section 2.2. The serialization or expression of an ontology as an
ontology document was described in Section 2.1. Constraining the models is done by
the semantics of an ontology as given in Section 2.4.

Ontologies are not artifacts in a narrow sense, but are expressed by ontology docu-
ments which in turn are artifacts. Whenever one speaks about ontologies as artifacts
they mean ontology documents. Evaluation methods are descriptions of procedures
that assess a specific quality of an ontology. Since methods cannot asses an ontology
directly (since they are not artifacts), methods directly always evaluate ontology doc-
uments. Only indirectly it is possible for an evaluation method to assess an ontology
(i.e. by assessing the ontology document that expresses the ontology). Figure 3.1
shows that in a bit more detail by describing the different levels an ontology document
may express: either an XML Infoset, an RDF graph, or the ontology directly. These
nuances were already discussed in Section 2.1.

Figure 3.1 summarizes the relations between models and conceptualizations, ontolo-
gies, ontology documents, and evaluation methods.

An ontology evaluation may be expressed by an ontology, which has the advan-
tage that the result can be reused with the very same tools that we use with the
ontologies anyway. It enables us to integrate the results of several different methods
and thus to build complex evaluations out of a number of simple evaluations.

To give an example: the result of a method such as calculating the ratio between the
normalized and unnormalized depth (described in Section 8.2) may be represented as
a simple fact in an ontology profile:

38

3

3.2 Meta-ontology

PropertyAssertion(normalDepthRatio Ontology1 "2.25"^^xsd:decimal)

Another method may calculate the ratio between instantiated and uninstantiated
classes in an ontology, and result in a second fact:

PropertyAssertion(instancedClassRatio Ontology1 "1.0"^^xsd:decimal)

Since the results are both expressed in OWL, we can easily combine the two facts
and then create a new class of ontologies based on this metadata about ontologies:

EquivalentClasses(FluffyOntology}
IntersectionOf(HasValue(normalDepthRatio "1.0"^^xsd:decimal)

HasValue(instancedClassRatio "1.0"^^xsd:decimal)))

(Hartmann et al., 2005) introduced the Ontology Metadata Vocabulary (OMV) to
describe such kind of ontology metadata such as results of measurements, its design
policy, or how it is being used by others.

3.2 Meta-ontology

The framework presented in Section 3.1 and the terminology presented in Chapter 2
is specified as a meta-ontology (Vrandečić et al., 2006c). We call it a meta-ontology
since it is an ontology about ontologies. In Section 3.2.1 we show one example of
a reified axiom in order to understand how the meta-ontology works. Section 3.2.2
discusses reifying entities. In Section 3.2.3 we will show the advantages of a meta-
ontology within this thesis. In Section 3.3 we will then demonstrate how ontologies
can be classified with the help of the meta-ontology.

3.2.1 Reifying ontologies

A major part of the meta-ontology provides the vocabulary to reify an ontology. This
means that we create new entities to represent the axioms and entities in an ontology.
Here we will demonstrate how the reification works based on a single axiom type,
subsumption.

As shown in Section 2.2.2, the syntax for subsumptions is the following:
SubClassOf(o:Cat o:Pet)

The reification first creates a new individual to represent the axiom (m:Axiom1 in
the first line), then reifies the mentioned class names (second and third lines, creating
m:Cat and m:Pet), connects the reified terms to the terms in the original axiom (see
Section 3.2.2 for more details on reifying terms), and connects them to the individual
representing the axiom. The last line adds a property directly relating the reified
sub- and superclass, which helps with formulating some analyses (e.g. as given by the
AEON approach in Section 6.3).

39

Chapter 3 Framework

o:Pet

o:Cat

owl:subClassOf

m:Pet

m:Axiom1

m:Cat Simple_class_name

Subsumption reifies

reifies

subClassOf

subclass

superclass

Figure 3.2: A subsumption axiom (on the left) and its reification. Dotted lines rep-
resent instantiation, slashed lines annotations, circles individuals, and
squares classes.

ClassAssertion(meta:Subsumption m:Axiom1)
ClassAssertion(meta:Simple_class_name m:Cat)
ClassAssertion(meta:Simple_class_name m:Pet)
EntityAnnotation(o:Cat Annotation(meta:reifies m:Cat))
EntityAnnotation(o:Pet Annotation(meta:reifies m:Pet))
PropertyAssertion(meta:subclass m:Axiom1 m:Cat)
PropertyAssertion(meta:superclass m:Axiom1 m:Pet)
PropertyAssertion(meta:subClassOf m:Cat m:Pet)

The namespaces used in this example are meta for the meta-ontology itself, m for
the reifying ontology, and o for the ontology that is being reified. Figure 3.2 illustrates
the given example.

Every axiom is also explicitly connected to the ontology it is part of, and also the
number of axioms is defined. This allows us to close the ontology and thus to classify
it (see the classification example in Section 3.3.4). Furthermore, the ontology is also
defined to be about all the terms used in the ontology.

ClassAssertion(meta:Ontology m:Ontology1)
PropertyAssertion(meta:axiom m:Ontology1 m:Axiom1)
ClassAssertion(ExactCardinality(1 meta:axiom) m:Ontology1)
PropertyAssertion(meta:about m:Ontology1 m:Cat)
PropertyAssertion(meta:about m:Ontology1 m:Pet)

The meta-ontology includes further axioms about the terms regarding subsumptions.

FunctionalProperty(meta:subClass)
PropertyDomain(meta:subClass meta:Subsumption)

40

3

3.2 Meta-ontology

PropertyRange(meta:subClass meta:Class)
FunctionalProperty(meta:superClass)
PropertyDomain(meta:subClass meta:Subsumption)
PropertyRange(meta:subClass meta:Class)
SubPropertyOf(PropertyChain(InverseOf(meta:subClass) meta:superClass)

meta:subClassOf)

These axioms determine further formal relations between the terms of the meta-
ontology. These decrease the risk of adding erroneous axioms without becoming in-
consistent (i.e. the risk of adding errors that are not detected).

The property meta:subClassOf only regards explicitly stated subsumption. In
order to expressed inferred subsumption a property meta:inferredSubClassOf exists.

3.2.2 Reifying URIs

The reified ontology does not make statements about the classes and individuals of
the domain, but about the names used in the ontology. So, for example, even if the
ontology claims that two terms are synonymous
SameIndividual(o:Denny o:Zdenko)

the reified individuals representing these individuals are not the same, since they are
different names.
DifferentIndividuals(m:Denny m:Zdenko)

This means, whereas o:Denny represents the author of this thesis, m:Denny represents
the name of the author of this thesis (in this case the URI o:Denny).

Even though it would be easy to create new URIs for every reified axiom and entity
by simply creating new random URIs, it makes sense to generate the reified URIs
for the entities based on their actual URIs. We use an invertible function by simply
concatenating an URI-encoded (i.e. escaped) URI to a fixed namespace. This allows
us to set up a Web service that returns information about the given reified URI at the
fixed namespace.

3.2.3 Advantages of a meta-ontology

Throughout this thesis, we will use reified ontologies in order to express the methods
succinctly and unambiguously. The following gives an overview of some of the uses
the reified ontology can be put to.

• Section 3.3 shows how the meta-ontology can be used to classify the ontology
itself and thus to make information about the ontology explicit.

• SPARQL queries can be used to discover the application of ontology patterns or
anti-patterns (see Section 6.2 for examples).

41

Chapter 3 Framework

• There exists no standard OWL query language and SPARQL can not be used
to query for the existence of OWL axioms (see Section 6.2 for details). Based
on a reified meta-ontology it is possible to use SPARQL for queries against the
axiom structure of the ontology (instead merely the RDF graph structure).

• Meta-properties and constraints on meta-properties can be directly expressed
and reasoned over. The AEON approach uses the OntoClean methodology
(Guarino and Welty, 2002) in order to first state the meta-properties (e.g. if
a class is rigid or not) and then to check the constraints automatically (see
Section 6.3 for details).

• Additional axioms can be added to check if the ontology satisfies specific con-
straints, for example, it is easy to check if a subsumption axiom is ever used to
express the subsumption of a class by itself by adding that meta:subClassOf is
irreflexive and checking the resulting ontology for consistency.

3.3 Types of ontologies

3.3.1 Terminological ontology

A terminological ontology is an ontology that consists only of terminological
axioms and annotations. This is introduced in order to account for the often found
understanding that an ontology indeed is a set of only terminological axioms.
This disagrees with the W3C definition of the term ontology, where an ontology may
also include facts or even be constituted only of facts. In DL terms, a terminological
ontology consists only of a TBox, i.e. terminological knowledge.

In terms of the meta-ontology, we define a terminological ontology as follows:

EquivalentClasses(Terminological_ontology
IntersectionOf(Ontology

AllValuesFrom(axiom
UnionOf(Terminological_axiom Annotation))))

This distinction is a fairly common one, even though all facts can be expressed as
terminological axioms (using nominals) thus making this distinction irrelevant.
We proof this by offering terminological axioms that could replace each type of fact:

Proof. A fact is either an instantiation, a relation, an attribute, or an indi-
vidual (in)equality. An instantiation is expressed as
ClassAssertion(C a)
Written as a terminological axiom the same meaning is conveyed like this:
SubClassOf(OneOf(a) C)

42

3

3.3 Types of ontologies

Relations and attributes can be either positive or negative.
Positive relations and positive attributes are expressed as
PropertyAssertion(R a b)
As a terminological axiom it can be written as
SubClassOf(OneOf(a) HasValue(R b))
Negative relations or negative attributes are expressed as:
NegativePropertyAssertion(R a b)
This can be restated the following way:
SubClassOf(OneOf(a) ComplementOf(HasValue(R b)))
An individual equality is expressed as:
SameIndividual(a b)
As a terminological axiom this can be written as:
EquivalentClasses(OneOf(a) OneOf(b))
Finally, individual inequality is expressed as:
DifferentIndividuals(a b)
This can be transformed to:
DisjointClasses(OneOf(a) OneOf(b))

3.3.2 Knowledge base

A knowledge base is an ontology that consists only of facts and annotations.
In DL terms, a knowledge base only has an ABox, i.e. contains only assertional knowl-
edge.

EquivalentClasses(Knowledge_base
IntersectionOf(Ontology

AllValuesFrom(axiom
UnionOf(Fact Annotation))))

A knowledge base instantiates an ontology if the facts within the knowledge base
use property names and class names introduced in that ontology. Often, knowledge
bases instantiate several ontologies. An exclusive ontology instantiation uses only
property names and class names from a single ontology. Often such instantiating
ontologies are named by the ontology, e.g. a FOAF file is an often exclusive ontology
instantiation of the FOAF ontology (Brickley and Miller, 2005).

EquivalentClasses(FOAF_file
IntersectionOf(Ontology

AllValuesFrom(axiom UnionOf(
Annotation
IntersectionOf(Relation

HasValue(property FOAF_property))

43

Chapter 3 Framework

IntersectionOf(Attribute
HasValue(property FOAF_property))

IntersectionOf(Instantiation
HasValue(class FOAF_class))))))

EuivalentClasses(FOAF_property
IntersectionOf(Property HasValue(InverseOf(about) FOAF)))

EuivalentClasses(FOAF_class
IntersectionOf(Class HasValue(InverseOf(about) FOAF)))

Note that ontologies are not partitioned into terminological ontologies and knowl-
edge bases. Many ontologies on the Web will contain both terminological axioms and
facts, and thus not belong to one or the other. Ontologies that include both facts
and terminological axioms are called populated ontologies. We can further classify
them into populated proper ontologies or populated taxonomies, based on the types
of included terminological axioms.

3.3.3 Semantic spectrum

The semantic spectrum defines one dimension of ontologies, ranging from the most
simple and least expressive to the most complex and most precise ones. It was first
presented at an invited panel at the AAAI 1999 in Austin, Texas, then published in
(Smith and Welty, 2001) and refined in (McGuiness, 2003; Uschold and Gruninger,
2004).

We aggregate the types of ontologies they report on as the following five, ordered
by increasing complexity (see Figure 3.3 for a common visualization):

• catalogs / sets of IDs

• glossaries / sets of term definitions

• thesauri / sets of informal is-a relations

• formal taxonomies / sets of formal is-a relations

• proper ontologies / sets of general logical constraints

We name the most expressive type of ontologies proper ontologies rather than formal
ontologies as in (Uschold and Gruninger, 2004) since we regard an ontology as being
formal by definition (Gruber, 1995).

In order to appropriately evaluate an ontology, we have to first determine its type.
The type of an ontology determines which evaluation methods can be useful for the
ontology, and which make no sense. There are two ways to determine the type of the
ontology: prescriptive and descriptive. Prescriptive determination is given by the

44

3

3.3 Types of ontologies

Catalog

Glossary

Thesaurus

Taxonomy

Proper Ontology

With automated reasoning

Without automated reasoning

complexity

Figure 3.3: The semantic spectrum for ontologies.

ontology authors, i.e. they define the task that the ontology should fulfill and based
on that the type of ontology that is required. Descriptive determination is given
by examining an ontology and say what type of ontology is actually given.

Based on the meta-ontology described in Section 3.2 we can actually classify an
ontology automatically since we can define the above types in the meta-ontology.

A catalog is an ontology that consists only of label annotations. This means that
a catalog is just a set of URIs with human readable labels.

EquivalentClasses(Catalog
IntersectionOf(Ontology

AllValuesFrom(axiom Label_annotation)))

In the simplified case, Label annotation is defined as an annotation instantiating
the rdfs:label annotation property (Label is the reification of rdfs:label).

EquivalentClasses(Label_annotation
IntersectionOf(Annotation

HasValue(annotation_property Label)))

If we want to include not only instantiations of the rdfs:label property but also
of its subproperties, e.g. skos:prefLabel or skos:altLabel, we need to redefine
Label annotation to also include its subproperties.

EquivalentClasses(Label_annotation
IntersectionOf(Annotation

AllValuesFrom(annotation_property Label_property)))
EquivalentClasses(Label_property Has_Value(inferredSuperProperty Label))

45

Chapter 3 Framework

Due to OWL’s open world semantics this definition is much harder to reason with,
since the reification of the ontology we want to classify needs to include sufficient
axioms to make other models impossible. We will discuss possible solutions of that in
Section 3.3.4.

A glossary is an ontology that only has annotations. This way, only human read-
able, informal definitions of the terms can be given.

EquivalentClasses(Glossary
IntersectionOf(Ontology

AllValuesFrom(axiom Annotation)))

A thesaurus is an ontology that, besides annotations, also allows instantiations of
classes and properties from the SKOS ontology (Miles and Bechhofer, 2009). SKOS
(Simple Knowledge Organization System) is an ontology that allows to define the-
sauri with a number of predefined relations between terms, such as skos:narrower or
skos:broader.

EquivalentClasses(Thesaurus
IntersectionOf(Ontology

AllValuesFrom(axiom UnionOf(
Annotation
IntersectionOf(Relation

HasValue(property SKOS_property))
IntersectionOf(Attribute

HasValue(property SKOS_property))
IntersectionOf(Instantiation

HasValue(class SKOS_class))))))
EuivalentClasses(SKOS_property

IntersectionOf(Property HasValue(InverseOf(about) SKOS)))
EuivalentClasses(SKOS_class

IntersectionOf(Class HasValue(InverseOf(about) SKOS)))

Catalogs and glossaries do not provide the means to allow any inferences (they are
simply not expressive enough). Glossaries allow a very limited number of inferences,
due to domain and range axioms and inverse and transitive properties.

A taxonomy or class hierarchy is an ontology that consists only of simple sub-
sumptions, facts, and annotations.

EquivalentClasses(Taxonomy
IntersectionOf(Ontology

AllValuesFrom(axiom
UnionOf(Simple_subsumption

46

3

3.3 Types of ontologies

Fact
Annotation))))

A proper ontology finally allows for all possible axioms, as defined in Section 2.2.
In the semantic spectrum, each type of ontologies subsumes the simpler types, i.e.

Catalog ⊂ Glossary ⊂ Thesaurus ⊂ Taxonomy ⊂ Ontology

This means that every glossary is also a taxonomy (though obviously a degenerated
taxonomy, since the depth of the class hierarchy is 0), etc.

3.3.4 Classification example

This Section gives an illustrative example how an ontology may be classified. After-
wards we discuss problems of such classification and possible solutions.

Given ontology o:

ClassAssertion(o:Human o:Socrates)
SubClassOf(o:Human o:Mortal)

The reified ontology m is the following:

ClassAssertion(Class m:Human)
ClassAssertion(Class m:Mortal)
ClassAssertion(Individual m:Socrates)
ClassAssertion(Instantiation m:a1)
PropertyAssertion(class m:a1 m:Human)
PropertyAssertion(instance m:a1 m:Socrates)
PropertyAssertion(type m:Socrates m:Human)
ClassAssertion(Subsumption m:a2)
PropertyAssertion(subclass m:a2 m:Human)
PropertyAssertion(superclass m:a2 m:Mortal)
PropertyAssertion(subClassOf m:Human m:Mortal)
ClassAssertion(Ontology m:o1)
ClassAssertion(ExactCardinality(2 meta:axiom) m:o1)
PropertyAssertion(about m:o1 m:Human)
PropertyAssertion(about m:o1 m:Mortal)
PropertyAssertion(about m:o1 m:Socrates)
DifferentIndividuals(m:Human m:Mortal m:Socrates m:o1)

Using this with the meta-ontology, a reasoner can infer that m:o1 is a Taxonomy: it
is stated that there are exactly two axioms in the ontology (i.e. the ontology is closed),

47

Chapter 3 Framework

so it is allowed to make inferences from the universal quantifier in the definition of
Taxonomy.

Many reasoners cannot deal well with cardinality constraints. KAON2 (Motik, 2006)
requires a long time to classify an ontology starting with more than four axioms,
whereas Pellet (Sirin et al., 2007) and Fact++ (Tsarkov and Horrocks, 2006) start to
break with ontologies having more than a few dozen axioms. Since ontologies may
easily contain much bigger numbers of axioms, it may be preferable to write dedicated
programs to check if an ontology is a taxonomy or not. These programs may assume
certain structural conditions which the ontology reification has to adhere to. In this
example, the dedicated classifier may assume that the ontology is always complete
when reified and thus partially ignore the open world assumption.

3.4 Limits

Ontology evaluations are conducted on several different levels:

1. Ontologies can be evaluated by themselves.

2. Ontologies can be evaluated with some context.

3. Ontologies can be evaluated within an application. This is called application
based ontology evaluation (Brank et al., 2005).

4. Ontologies can be evaluated in the context of an application and a task. This is
called task based ontology evaluation (Porzel and Malaka, 2004).

In this thesis we will restrict ourselves to the first two possibilities. Note that
each of the above levels gains from evaluating the previous levels, i.e. every ontology
evaluated within an application should have been evaluated by itself and with some
context before that. Many types of errors are much easier discovered on the first and
second level than in the much more complex environment of an application or a task.
The majority of this thesis deals with the first task (Chapters 4–8), whereas the second
point is dealt with in Chapter 9.

Ontology-based applications most often have certain requirements regarding the
applied ontologies. For example, they may require that the data within the ontology is
complete (e.g. a semantic birthday reminder application may require that all persons
need to have at least their name and birthday stated), or they may have certain
structural or semantic constraints (e.g. the class hierarchy must not be deeper than
five levels). Such conditions can often be stated in a way that allows to use the
evaluation methods within this thesis in order to ensure the application’s requirements
are satisfied.

48

3

3.5 Conceptualizations

Asunción Gómez-Pérez separates ontology evaluation into two tasks: ontology ver-
ification and ontology validation (Gómez-Pérez, 2004).

Ontology verification is the task of evaluating if the ontology has been built
correctly. Verification checks the encoding of the specification. Errors such as circular
class hierarchies, redundant axioms, inconsistent naming schemes etc. are detected by
ontology verification. Verification confirms that the ontology has been built according
to certain specified ontology quality criteria.

Ontology validation is the task of evaluating if the correct ontology has been
built. Validation refers to whether the meaning of the definitions matches with the
conceptualization the ontology is meant to specify. The goal is to show that the world
model is compliant with the formal models.

Since this thesis mainly concentrates on methods that can be highly automatized we
will limit ourselves to ontology verification. Chapter 11 will discuss further methods
that lean more towards ontology validation. Often such ontology validation meth-
ods assume a simpler understanding of ontologies i.e. they assume that an ontology
is more a formal description of a domain than the formal specification of a shared
conceptualization. Section 3.5 will discuss in detail the ramifications of this difference.

Like applications, ontologies are used in many different domains. Whereas it is easily
possible, and often sensible, to create domain-specific ontology evaluation methods,
in this thesis we will restrict to domain-independent evaluations. This means that
even though the examples presented throughout the thesis will use some domain, the
applied methods will always be usable on any other domain as well.

To summarize, this thesis will concentrate on the domain-, task-, and application-
independent verification of Web ontologies. The framework presented in this chapter,
and thus the methods described throughout the following chapters, have to be regarded
in light of this limitation. Also, the methods presented in Part II are not a complete list
of possible evaluation methods. They should rather be regarded as a list of exemplary
methods in order to illustrate the usage of the framework presented here. Further
methods can easily be created and combined within the framework in order to meet
the needs of the evaluator.

3.5 Conceptualizations

This section describes and formalizes how agents can achieve a shared conceptualiza-
tion. The formalization is reminiscent of epistemic logics, but differs from them in
two main points: first, epistemic logics are about propositions, whereas here we speak
mainly about conceptualizations. Second, epistemic logics assume that propositions
itself are shareable, whereas here we assume conceptualizations to be private to an
agent. In this section we will resolve the discrepancy between shared and private
conceptualizations.

49

Chapter 3 Framework

A rational agent has thoughts and perceptions. In order to express, order, and sort
its thoughts and perceptions the agent creates, modifies, and uses conceptualizations.
A conceptualization is the agent’s mental model of the domain, its understanding of
the domain. We define CX(d) to be the conceptualization that agent X has of domain
d, CX being a function CX : D → CX with D being the set of all domains and CX
being the set of all conceptualizations of agent X.

A shared conceptualization represents the commonalities of two (or more) con-
ceptualizations of different agents. We define the operator ∩ for creating a shared
conceptualization, but note that this should not be understood as the set-theoretic
intersection operator – conceptualizations probably are not sets. It is rather an oper-
ation done internally by the agent on two or more of his internal conceptualizations
to derive the commonalities.

Extracting a shared conceptualization can only be done with conceptualizations of
the same agent, i.e. CX(d) ∩ CY (d) is undefined. This is because conceptualizations
are always private (i.e. conceptualizations have no reality external to their agents and
thus two agents can not have the same conceptualization). So in order to intersect
the conceptualizations of two different agents, an agent needs to conceptualize the
other agent’s conceptualization (as stated above, anything can be conceptualized, in
particular another conceptualization). By interacting and communicating with the
other agents, each agent builds conceptualizations of the other agents. These concep-
tualized agents again are conceptualized with their own private conceptualizations.
CX(CY (d)) is the conceptualization X has of the conceptualization Y has of a domain
d (note that CX(CY (d)) tells us more about CX(Y) and thus about X than about
CY (d) or about Y). For simplicity, we assume that each agent’s conceptualization of
its own conceptualization is perfect, i.e. CX(CX(d)) = CX(d) (this is similar to the
KK axiom in epistemic logics (Fagin et al., 2003)). Figure 3.4 illustrates two agents
and their conceptualization of a domain (in the example, a tree) and their conceptu-
alizations of each other and their respective conceptualizations. Note that the agents
conceptualizations do not overlap.

An agent can combine its conceptualizations to arrive at a shared conceptualization,
i.e. CX(d)∩CX(CY (d)) results in what X considers to be the common understanding
of d between itself and Y . Regarding a whole group of n agents we define the (private
conceptualization of the) shared conceptualization SCX as follows (let CX be one of
CYi):

SCX(d) =
n⋂

i=1

CX(CYi(d))

Furthermore, X assumes that ∀i : CX(SCYi(d)) = SCX(d), i.e. X assumes that
everybody in the group has the same shared conceptualization. This is true for all

50

3

3.5 Conceptualizations

d X Y

CX

CX(d) CX(Y)

CX(CY(d))

CY

CY(X) CY(d)

CY(CX(d))

Figure 3.4: Two agents X and Y and their conceptualizations of domain d (the tree),
each other, and their respective conceptualizations.

members of the group, i.e. ∀i, j : CXi(SCYj (d)) = SCXi(d). In Figure 3.5 this is
visualized by CX(X) and CX(Y) having the same shared conceptualization SCX(d).

An ontology O is the specification (defined as the function S) of a conceptualiza-
tion C, i.e. it is the result of the externalization of a conceptualization O = S(C).
For our discussion it is not important, how S was performed (e.g. if it was created
collaboratively, or with the help of (semi-)automatic agents, or in any other way).

The resulting ontology is a set of axioms that constrain the interpretations of the
ontology. This has two aspects, depending on the interpreting agent: a formal agent
(e.g. an application using a reasoning engine to apply the formal semantics) will have
the possible logical models constrained, and based on these models it will be able
to answer queries; a rational agent (e.g. a human understanding the ontology) is
constrained in the possible mappings of terms of the ontology to elements of its own
internal conceptualization (possibly changing or creating the conceptualization during
the mapping). Figure 3.5 illustrates an agent Z who internalizes ontology O and thus
builds its own conceptualization CZ of domain d from its understanding of the ontology
(i.e. CZ(d) is not build from the perceptions of d by Z but from O).

To give an example: if the property married is stated to be a functional property, a
formal agent will only allow models to interpret the ontology where the set R denoted
by married fulfills the condition (x, y) ∈ R ∧ (x, z) ∈ R→ y = z. A rational agent in
turn will map the term married to a monogamous concept of marriage, and will not
use the term to refer to polygamous marriages.

51

Chapter 3 Framework

CX

CX(d)
CX(Y)

SCX(d)

X Y Z
O

CX(X)
CX(O) CZ(O)

CZ

CZ(d)

Figure 3.5: Three agents and an ontology. Y ’s conceptualization is omitted for space
reasons. Z internalizes ontology O, thus connecting it to or creating its
own conceptualization CZ of domain d, in this case, the tree.

In this case, the rational agent already had a concept that just needed to be mapped
to a term from the ontology. In other cases the agent may need to first create the
concept before being able to map to it (for example, let a wide rectangle be defined as
a rectangle with the longer side being at least three times the size of the short side –
in this case readers create a new concept in their mind, and then map the term wide
rectangle to it).

So after the creation of the ontology O, each member Y of the group can create
a conceptualization of O, i.e. internalize it again. So a group member Yi gets the
internal conceptualization CYi(O), and then compares it to its own understanding of
the shared specification SCYi(d). Ideally, all members of the group will agree on the
ontology, i.e. ∀i : CYi(O) = SCYi(d)

Note that creating an ontology is not the simple, straight-forward process that is
presented in this section. Most of the conceptualizations will be in constant flux during
the process. The communication in the group during the creation of the specification
may change each member’s own conceptualization of the domain, each member’s con-
ceptualization of each other member’s conceptualization of the domain, each member’s
shared conceptualization of the domain, and in some cases even the domain itself.

52

3

3.6 Criteria

3.6 Criteria

Ontology evaluation can regard a number of several different criteria. In this section
we will list criteria from literature, aggregate them to form a coherent and succinct
set, and discuss their applicability and relevance for Web ontologies. The goal of an
evaluation is not to perform equally well for all these criteria – some of the criteria
are even contradicting, such as conciseness and completeness. It is therefore the first
task of the evaluator to choose the criteria relevant for the given evaluation and then
the proper evaluation methods to assess how well the ontology meets these criteria.

We selected five important papers from literature, where each defined their own
set of ontology quality criteria or principles for good ontologies (Gómez-Pérez, 2004;
Gruber, 1995; Grüninger and Fox, 1995; Gangemi et al., 2005; Obrst et al., 2007).
These quality criteria need to be regarded as desiderata, goals to guide the creation
and evaluation of the ontology. None of them can be directly measured, and most of
them cannot be perfectly achieved.

Asunción Gómez-Pérez lists the following criteria (Gómez-Pérez, 2004):

• Consistency: capturing both the logical consistency (i.e. no contradictions can
be inferred) and the consistency between the formal and the informal descriptions
(i.e. the comments and the formal descriptions match)

• Completeness: All the knowledge that is expected to be in the ontology is
either explicitly stated or can be inferred from the ontology.

• Conciseness: if the ontology is free of any unnecessary, useless, or redundant
axioms.

• Expandability: refers to the required effort to add new definitions without
altering the already stated semantics.

• Sensitiveness: relates to how small changes in an axiom alter the semantics of
the ontology.

Thomas Gruber defines the following criteria (Gruber, 1995):

• Clarity: An ontology should effectively communicate the intended meaning of
defined terms. Definitions should be objective. When a definition can be stated
in logical axioms, it should be. Where possible, a definition is preferred over a
description. All entities should be documented with natural language

• Coherence: Inferred statements should be correct. At the least, the defining
axioms should be logically consistent. Also, the natural language documentation
should be coherent with the formal statements.

53

Chapter 3 Framework

• Extendibility: An ontology should offer a conceptual foundation for a range
of anticipated tasks, and the representation should be crafted so that one can
extend and specialize the ontology monotonically. New terms can be introduced
without the need to revise existing axioms.

• Minimal encoding bias: An encoding bias results when representation choices
are made purely for the convenience of notation or implementation. Encod-
ing bias should be minimized, because knowledge-sharing agents may be imple-
mented with different libraries and representation styles.

• Minimal ontological commitment: The ontology should specify the weakest
theory (i.e. allowing the most models) and defining only those terms that are
essential to the communication of knowledge consistent with that theory.

Grüninger and Fox define a single criteria, competency (or, in extension, com-
pleteness if all the required competencies are fulfilled). In order to measure compe-
tency they introduce informal and formal competency questions (Grüninger and
Fox, 1995).

Obrst et al. name the following criteria (Obrst et al., 2007):

• coverage of a particular domain, and the richness, complexity, and granularity
of that coverage

• intelligibility to human users and curators

• validity and soundness

• evaluation against the specific use cases, scenarios, requirements, applications,
and data sources the ontology was developed to address

• consistency

• completeness

• the sort of inferences for which they can be used

• adaptability and reusability for wider purposes

• mappability to upper level or other ontologies

Gangemi et al. define the following criteria (Gangemi et al., 2005):

• Cognitive ergonomics: this principle prospects an ontology that can be easily
understood, manipulated, and exploited.

54

3

3.6 Criteria

• Transparency (explicitness of organizing principles): this principle prospects
an ontology that can be analyzed in detail, with a rich formalization of conceptual
choices and motivations.

• Computational integrity and efficiency: this principle prospects an ontol-
ogy that can be successfully/easily processed by a reasoner (inference engine,
classifier, etc.).

• Meta-level integrity: this principle prospects an ontology that respects certain
ordering criteria that are assumed as quality indicators.

• Flexibility (context-boundedness): this principle prospects an ontology that
can be easily adapted to multiple views.

• Compliance to expertise: this principle prospects an ontology that is com-
pliant to one or more users.

• Compliance to procedures for extension, integration, adaptation, etc.:
this principle prospects an ontology that can be easily understood and manipu-
lated for reuse and adaptation.

• Generic accessibility (computational as well as commercial): this principle
prospects an ontology that can be easily accessed for effective application.

• Organizational fitness: this principle prospects an ontology that can be easily
deployed within an organization, and that has a good coverage for that context.

We have taken analyzed the given criteria and summarized them into a concise set.
Eight criteria result from this literature survey: accuracy, adaptability, clarity,
completeness, computational efficiency, conciseness, consistency, and orga-
nizational fitness. All criteria given in the literature are subsumed by the this set. In
the following, we define the criteria and how they map to the given criteria described
above.

We have ignored evaluation criteria that deal with the underlying language used for
describing the ontology instead of evaluating the ontology itself. Before OWL became
widespread, a plethora of knowledge representation languages were actively used. For
some ontologies, specific ontology languages were developed in order to specify that
one ontology. Today, OWL is used for the vast majority of ontologies. Therefore
we disregard criteria that are based on the ontology language, such as expressivity,
decidability, complexity, etc.

One example is the criteria expandability from (Gómez-Pérez, 2004). It is defined as
the required effort to add new definitions without altering the already stated semantics.
Since OWL is a monotonic language it is not possible to retract any inferences that
have already been made. Thus the monotonicity of OWL guarantees a certain kind

55

Chapter 3 Framework

of expandability for all ontologies in OWL. A complete list of methods given in this
thesis is available in the appendix.

3.6.1 Accuracy

Accuracy is a criteria that states if the axioms of the ontology comply to the knowl-
edge of the stakeholders about the domain. A higher accuracy comes from correct
definitions and descriptions of classes, properties, and individuals. Correctness in this
case may mean compliance to defined “gold standards”, be it other data sources, con-
ceptualizations, or even reality ((Ceusters and Smith, 2006) introduces an approach
to use reality as a benchmark, i.e. if the terms of the ontology capture the intended
portions of reality). The axioms should constrain the possible interpretations of an
ontology so that the resulting models are compatible with the conceptualizations of
the users.

For example, all inferences of an ontology should be true. When stating that the
foaf:knows property is a superproperty of a married property, then this axiom would
only be accurate if indeed all married couples know their respective spouses. If we
find counterexamples (for example, arranged prenatal marriages), then the ontology
is inaccurate.

The following methods in this thesis can be used to measure this criteria: Method 3:
Hash vs slash (Page 71), Method 13: Querying for anti-patterns (Page 114), Method 14:
Analysis and Examples (Page 125), Method 18: Class / relation ratio (Page 146),
Method 19: Formalized competency questions (Page 154), Method 20: Formalized
competency questions (Page 155), Method 21: Affirming derived knowledge (Page 157),
Method 22: Expressive consistency checks (Page 160), and Method 23: Consistency
checking with rules (Page 161).

3.6.2 Adaptability

Adaptability measures how far the ontology anticipates its uses. An ontology should
offer the conceptual foundation for a range of anticipated tasks (ideally, on the Web, it
should also offer the foundation for tasks not anticipated before). It should be possible
to extend and specialize the ontology monotonically, i.e. without the need to remove
axioms (note that in OWL, semantic monotonicity is given by syntactic monotonicity,
i.e. in order to retract inferences explicit stated axioms need to be retracted). An
ontology should react predictably and intuitively to small changes in the axioms. It
should allow for methodologies for extension, integration, and adaptation, i.e. include
required meta-data. New tools and unexpected situations should be able to use the
ontology.

For example, many terms of the FOAF ontology (Brickley and Miller, 2005) are
often used to describe contact details of persons. FOAF was originally designed to

56

3

3.6 Criteria

describe social networks, but its vocabulary also allows to formalize address books of
all kinds.

The following methods in this thesis can be used to measure this criteria: Method 6:
URI declarations and punning (Page 75), Method 10: Blank nodes (Page 82), Method 13:
Querying for anti-patterns (Page 114), Method 15: Stability (Page 140), Method 17:
Maximum depth of the taxonomy (Page 145), Method 19: Formalized competency
questions (Page 154), Method 21: Affirming derived knowledge (Page 157), Method 22:
Expressive consistency checks (Page 160), and Method 23: Consistency checking with
rules (Page 161).

3.6.3 Clarity

Clarity measures how effectively the ontology communicates the intended meaning
of the defined terms. Definitions should be objective and independent of the context.
Names of elements should be understandable and unambiguous. An ontology should
use definitions instead of descriptions for classes. Entities should be documented
sufficiently and be fully labeled in all necessary languages. Complex axioms should be
documented. Representation choices should not be made for the convenience of the
notation or implementation, i.e. the encoding bias should be minimized.

For example, an ontology may choose to use URIs such as ex:a734 or ex:735 to
identify their elements (and may even omit the labels). In this case, users of the
ontology need to regard the whole context of the elements in order to find a suitable
mapping to their own conceptualizations. Instead, the URIs could already include
hints to what they mean, such as ex:Jaguar or ex:Lion.

The following methods in this thesis can be used to measure this criteria: Method 1:
Linked data (Page 67), Method 2: Linked data (Page 69), Method 3: Hash vs slash
(Page 71), Method 4: Opaqueness of URIs (Page 73), Method 6: URI declarations
and punning (Page 75), Method 7: Typed literals and datatypes (Page 78), Method 8:
Language tags (Page 79), Method 9: Labels and comments (Page 81), Method 14:
Analysis and Examples (Page 125), and Method 18: Class / relation ratio (Page 146).

3.6.4 Completeness

Completeness measures if the domain of interest is appropriately covered. All ques-
tions the ontology should be able to answer can be answered. There are different
aspects of completeness: completeness with regards to the language (is everything
stated that could be stated using the given language?), completeness with regards to
the domain (are all individuals present, are all relevant concepts captured?), complete-
ness with regards to the applications requirements (is all data that is needed present?),
etc. Completeness also covers the granularity and richness of the ontology.

For example, an ontology to describe the nationalities of all members of a group

57

Chapter 3 Framework

should provide the list of all relevant countries. Such closed sets in particular (like
countries, states in countries, members of a group) can often be provided as an external
ontology by an authority to link to, and thus promise completeness.

The following methods in this thesis can be used to measure this criteria: Method 3:
Hash vs slash (Page 71), Method 6: URI declarations and punning (Page 75), Method 7:
Typed literals and datatypes (Page 78), Method 9: Labels and comments (Page 81),
Method 10: Blank nodes (Page 82), Method 11: XML validation (Page 86), Method 12:
Structural metrics in practice (Page 101), Method 15: Stability (Page 140), Method 16:
Language completeness (Page 141), Method 17: Maximum depth of the taxonomy
(Page 145), and Method 19: Formalized competency questions (Page 154).

3.6.5 Computational efficiency

Computational efficiency measures the ability of the used tools to work with the
ontology, in particular the speed that reasoners need to fulfill the required tasks, be
it query answering, classification, or consistency checking. Some types of axioms may
cause problems for certain reasoners. The size of the ontology also affects the efficiency
of the ontology.

For example, using certain types of axioms will increase the reasoning complexity.
But more important than theoretical complexity is the actual efficiency of the imple-
mentation used in a certain context. For example, it is known that number restriction
may severely hamper the efficiency of the KAON2 reasoner (Motik, 2006), and should
thus be avoided when that system is used.

The following methods in this thesis can be used to measure this criteria: Method 6:
URI declarations and punning (Page 75), Method 7: Typed literals and datatypes
(Page 78), Method 10: Blank nodes (Page 82), Method 12: Structural metrics in
practice (Page 101), and Method 16: Language completeness (Page 141).

3.6.6 Conciseness

Conciseness is the criteria that states if the ontology includes irrelevant elements
with regards to the domain to be covered (i.e. an ontology about books including ax-
ioms about African lions) or redundant representations of the semantics. An ontology
should impose a minimal ontological commitment, i.e. specify the weakest theory pos-
sible. Only essential terms should be defined. The ontology’s underlying assumptions
about the wider domain (especially about reality) should be as weak as possible in
order to allow the reuse within and communication between stakeholders that commit
to different theories.

For example, an ontology about human resource department organization may take
a näıve view on what a human actually is. It is not required to state if a human has
a soul or not, if humans are the result of evolution or created directly by God, when

58

3

3.6 Criteria

human life starts or ends. The ontology would remain silent on all these issues, and
thus allows both creationists and evolutionists to use it in order to make statements
about which department has hired whom and later exchange that data.

The following methods in this thesis can be used to measure this criteria: Method 5:
URI reuse (Page 74), Method 10: Blank nodes (Page 82), Method 15: Stability
(Page 140), Method 17: Maximum depth of the taxonomy (Page 145), Method 18:
Class / relation ratio (Page 146), and Method 20: Formalized competency questions
(Page 155).

3.6.7 Consistency

Consistency describes that the ontology does not include or allow for any contra-
dictions. Whereas accuracy states the compliance of the ontology with an external
source, consistency states that the ontology itself can be interpreted at all. Logical
consistency is just one part of it, but also the formal and informal descriptions in the
ontology should be consistent, i.e. the documentation and comments should be aligned
with the axioms. Further ordering principles can be defined that the ontology has to
be consistent with, such as the OntoClean constraints on the taxonomy (Guarino and
Welty, 2002).

Note that within this thesis we will deal with logical consistency and coherence only
superficially. There is an active research community in the area of ontology debugging,
that covers discovering, explaining, and repairing errors that lead to inconsistency and
incoherence, see for example (Parsia et al., 2005; Lam, 2007; Haase and Qi, 2007).

An example for a non-logical inconsistency is the description of the element ex:Jaguar
being “The Jaguar is a feral cat living in the jungle.”, but having a logical axiom
ClassAssertion(ex:Car manufacturer ex:Jaguar). Such discrepancies are often
the result of distributed ontology engineering or a badly implemented change manage-
ment procedures in ontology maintenance.

The following methods in this thesis can be used to measure this criteria: Method 3:
Hash vs slash (Page 71), Method 4: Opaqueness of URIs (Page 73), Method 5: URI
reuse (Page 74), Method 9: Labels and comments (Page 81), Method 12: Structural
metrics in practice (Page 101), Method 13: Querying for anti-patterns (Page 114),
Method 14: Analysis and Examples (Page 125), Method 16: Language completeness
(Page 141), Method 21: Affirming derived knowledge (Page 157), Method 22: Expres-
sive consistency checks (Page 160), and Method 23: Consistency checking with rules
(Page 161).

3.6.8 Organizational fitness

Organizational fitness aggregates several criteria that decide how easily an ontology
can be deployed within an organization. Tools, libraries, data sources, and other

59

Chapter 3 Framework

ontologies that are used constrain the ontology, and the ontology should fulfill these
constraints. Ontologies are often specified using an ontology engineering methodology
or by using specific data sets. The ontology metadata could describe the applied
methodologies, tools, and data sources, and the organization. Such metadata can be
used by the organization to decide if an ontology should be applied or not.

For example, an organization may decide that all ontologies used have to align to the
DOLCE upper level ontology (Gangemi et al., 2002). This will help the organization
to align the ontologies and thus reduce costs when integrating data from different
sources.

The following methods in this thesis can be used to measure this criteria: Method 1:
Linked data (Page 67), Method 2: Linked data (Page 69), Method 3: Hash vs slash
(Page 71), Method 4: Opaqueness of URIs (Page 73), Method 5: URI reuse (Page 74),
Method 8: Language tags (Page 79), Method 9: Labels and comments (Page 81),
Method 11: XML validation (Page 86), and Method 19: Formalized competency ques-
tions (Page 154).

3.7 Methods

Evaluation methods either describe procedures or specify exactly the results of such
procedures in order to gain information about an ontology, i.e. an ontology description.
An evaluation method assesses specific features or qualities of an ontology or makes
them explicit. The procedures and result specifications given in Part II are not meant
to be implemented literally. Often such a literal or näıve implementation would lead
to an unacceptably slow runtime, especially with mid-sized or big ontologies. Many of
the methods in this thesis remain for now without an efficient implementation.

The relationship between criteria and methods is complex: criteria provide justifi-
cations for the methods, whereas the result of a method will provide an indicator for
how well one or more criteria are met. Most methods provide indicators for more than
one criteria, therefore criteria are a bad choice to structure evaluation methods.

A number of the methods define measures and metrics and also offers some upper
or lower bounds for these metrics. Note that these bounds are not meant to be strict,
stating that any ontology not within the bounds is bad. There are often perfectly
valid reasons for not meeting those limits. These numbers should also not lead to the
implementation of automatic fixes in order to implement changes to an ontology that
make the ontology abide to the given limits, but nevertheless decrease the ontology’s
overall quality. The numbers given in the method descriptions are chosen based on
evaluating a few thousand ontologies in order to discover viable margins for these
values. In the case a certain measure or metric goes well beyond the proposed value
but the ontology author or evaluator has good reasons, they should feel free to ignore
that metric or measure or, better, explain in a rationale why it is not applicable in the

60

3

3.8 Aspects

given case.
The Semantic Web is still in its infancy. It is to be expected that as we gather

more experience with engineering and sharing ontologies, we will find better values
for many of these bounds. It is also expected that further methods will be introduced
and existing ones may become deprecated. The framework described here allows to
accommodate for such changes. The set of methods is flexible and should be chosen
based on the needs of the given evaluation.

Part II of this thesis describes evaluation methods. In order to give some structure
for the description of the methods, the following section introduces different aspects
of an ontology. These aspects provide the structure for Part II.

3.8 Aspects

An ontology is a complex, multi-layered information resource. In this section we
will identify different aspects that are amenable to the automatic, domain- and task-
independent verification of an ontology. Based on the evaluations of the different
ontology aspects, evaluators can then integrate the different evaluation results in order
to achieve an aggregated, qualitative ontology evaluation. For each aspect we show
evaluation methods within the following chapters.

Each aspect of an ontology that can be evaluated must represent a degree of freedom
(if there is no degree of freedom, there can be no evaluation since it is the only choice).
So each aspect describes some choices that have been made during the design of the
ontology. Some tools do not offer a degree of choice on certain aspects. In such cases
evaluation methods for this aspect do not lead to useful insights. In turn, these tools
should be evaluated in order to result in the best possible choice for those fixed aspects.

• Vocabulary. The vocabulary of an ontology is the set of all names in that
ontology. Names can be URI references or literals, i.e. a value with a datatype
or a language identifier. This aspect deals with the different choices with regards
to the used URIs or literals (Chapter 4).

• Syntax. Web ontologies can be described in a number of different surface syn-
taxes. Often the syntactic description within a certain syntax can differ widely
(Chapter 5).

• Structure. A Web ontology can be described by an RDF graph. The structure
of an ontology is this graph. The structure can vary highly even describing
semantically the same ontology. The explicitly given graph is evaluated by this
aspect (Chapter 6).

• Semantics. A consistent ontology is interpreted by a non-empty, usually in-
finite set of possible models. The semantics of an ontology are the common

61

Chapter 3 Framework

characteristics of all these models. This aspect is about the formal meaning of
the ontology (Chapter 7).

• Representation. This aspect captures the relation between the structure and
the semantics. Representational aspects are usually evaluated by comparing
metrics calculated on the RDF graph with features of the possible models as
specified by the ontology (Chapter 8).

• Context. This aspect is about the features of the ontology when compared
with other artifacts in its environment, which may be, e.g. a data source that
the ontology describes, a different representation of the data within the ontology,
or formalized requirements for the ontology in form of competency questions or
additional semantic constraints (Chapter 9).

Note that in this thesis we assume that logical consistency or coherence of the
ontology is given, i.e. that any inconsistencies or incoherences have been previously
resolved using other methods. There is a wide field of work discussing these logical
properties, and also well-developed and active research in debugging inconsistency and
incoherence, e.g. (Parsia et al., 2005; Lam, 2007; Haase and Qi, 2007).

Ontologies are inconsistent if they do not allow any model to fulfill the axioms of
the ontology. Incoherent ontologies have classes with a necessarily empty intension
(Haase and Qi, 2007). Regarding the evaluation aspects, note that the vocabulary,
syntax, and structure of the ontology can be evaluated even when dealing with an
inconsistent ontology. This also holds true for some parts of the context. But semantic
aspects – and thus also representational and some contextual aspects – can not be
evaluated if the ontology does not have any formal models.

62

Part II

Aspects

4 Vocabulary 65

5 Syntax 83

6 Structure 99

7 Semantics 127

8 Representation 143

9 Context 151

4

Chapter 4

Vocabulary

O, be some other name!
What’s in a name?
that which we call a rose
By any other name
would smell as sweet

(William Shakespeare,
1564–1616,

Romeo and Juliet
(Shakespeare, 1597))

Evaluating the vocabulary aspect of an ontology means to evaluate the names used in
the ontology. In this chapter we discuss methods for evaluating the vocabulary of an
ontology, and provide a comparison for some of the values based on a large corpus of
Web ontologies.

The vocabulary of an ontology is the set of all names used in it. Names can be
either URIs or literals. The set of all URIs of an ontology is called the signature of
the ontology (and is thus the subset of the vocabulary without the literals). URIs
are discussed in Section 4.1. Literals are names that are mapped to a concrete data
value, i.e. instead of using a URI to identify an external entity, literals can be directly
interpreted. Literals are presented in Section 4.2. Finally, we will also discuss blank
nodes, i.e. unnamed entities within ontologies (Section 4.3).

4.1 URI references

Most names in ontologies are URI references (Uniform Resource Identifier, (Berners-
Lee et al., 2005)). URIs are more generic forms of URLs (Uniform Resource Locator,

65

Chapter 4 Vocabulary

(Berners-Lee et al., 1994)). Unlike URLs, URI references are not limited to identifying
entities that have network locations, or use other access mechanisms available to the
computer. They can be used to identify anything, from a person over an abstract idea
to a simple information resource on the Web (Jacobs and Walsh, 2004).

An URI reference should identify one specific resource, i.e. the same URI reference
should not be used to identify several distinct resources. A URI reference may be used
to identify a collection of resources, and this is not a contradiction to the previous
sentence: in this case the identified resource is the collection of resources, and thus a
resource of its own. Classes and properties in OWL ontologies are also resources, and
thus are identified by a URI reference.

A particular type of resources are information resources. Information resources are
resources that consist of information, i.e. the digital representation of the resource
captures the resource completely. This means that an information resource can be
copied without loss, and it can be downloaded via the Internet. Therefore informa-
tion resources can be located and retrieved with the use of a URL. An example of
an information resource is the text of Shakespeare’s “Romeo & Juliet” (from which
this chapter’s introductory quote is taken) which may be referenced, resolved, and
downloaded via its URL http://www.gutenberg.org/dirs/etext97/1ws1610.txt

Non-information resources can not be downloaded via the Internet. There may
be metadata about non-information resources available, describing the resource. An
example is the book “Romeo & Juliet”: the book itself can not be downloaded via the
Internet (in contrast to its content). There may be metadata stating e.g. the weight
or the prize of the book. In order to state such metadata we need to be able to identify
the book, e.g. using its ISBN number (ISO 2108, 2005). In this case we can not use an
URL: since the resource is not an information resource, it can not be located on the
Web, and thus can not be accessed with an URL. Nevertheless it may (and should)
have an URI in order to identify the resource.

Non-information resources and information resources are disjoint classes (i.e. no in-
formation resource can at the same time be a non-information resource and vice versa).
A further formalization of information resources can be found e.g. in the “Functional
Requirements for Bibliographic Records” ontology FRBR (Tillett, 2005), widely used in
the bibliographic domain, or in the DOLCE-based “Ontology of Information Objects”
(Guarino, 2006).

4.1.1 Linked data

URI references are strings that start with a protocol. If the protocol is known and
implemented by the ontology based application, then the application may resolve the
URI, i.e. use the URI according to the protocol in order to find more information
about the identified resource. In case the URI is an URL, the identified information
resource can be accessed and downloaded by using the protocol.

66

http://www.gutenberg.org/dirs/etext97/1ws1610.txt

4

4.1 URI references

URI references consist of an URI with an optional fragment identifier. Most URI
references in Web ontologies are indeed using a protocol that can be resolved by the
machine in order to fetch further information about the given URI reference. Most
commonly this is achieved by using the HyperText Transport Protocol HTTP (Fielding
et al., 1999). We have examined the Watson corpus (see Section 11.3) to figure out
the usage of protocols on the Web. The Watson corpus contains 108,085,656 URIs.
Only 491,710 (0.45%) of them are URIs not using the HTTP protocol.

Other prominent protocols besides HTTP are file (37,023 times; for local files),
mailto (22,971 times; for email adresses), mid (13,448 time; for emails), irc (3,260
times; for internet relay chat channels and user ids), ftp (1,716 times, for the file
transfer protocol), tel (703 times, for telephone numbers), or https (186 times; for
secure HTTP connections). Sometimes these protocols are just mistyped (such as
hhpt).

Sometimes, QNames (see Section 5.2) can mistakenly be interpreted as an URI,
especially in XML serialization (Jacobs and Walsh, 2004). The namespace prefix will
then be interpreted as the protocol scheme. We discovered that this makes up a
good deal of the Non-HTTP protocols: the two most prominent non-HTTP schemes
were UnitOfAssessment (46,691 times, or 9.5% of all Non-HTTP URIs) and Institute
(42,331 times, or 8.6%). Both of them are meant to represent namespace prefixes in
their ontologies, not URI schemes. These are errors in the ontology that can be easily
discovered using Method 1. Further examples for mis-interpreted namespace prefixes
include xs (19,927 times; used for XML schema datatypes), rdf (272 times), rdfs (7
times), and owl (84 times).

Method 1 (Check used protocols)
All URIs in the ontology are checked to be well-formed URIs. The evaluator has
to choose a set of allowed protocols for the evaluation task. The usage of any
protocol other than HTTP should be explained. All URIs in the ontologies have
to use one of the allowed protocols.

Resolving an HTTP URI reference will return an HTTP response code and usually
some content related to the URI reference. Certain HTTP responses imply facts about
the used URI reference. These facts are given in Table 4.1, e.g. a 303 response on
an URI without a fragment identifier implies the equality of the requested URI and
the URI returned in the location field of the response. If the response code is a 200,
it has even stronger implications: then the URI is actually the name of the served
resource, i.e. the URI is a information resource that can (and is) accessible over the

67

Chapter 4 Vocabulary

Table 4.1: An overview of what different response codes imply for the resolved HTTP
URI reference U. I is the information resource that is returned, if any. L
is the URI given in the location field of the response. The table covers the
most important responses only, the others do not imply any further facts.

Response code U has a fragment identifier U has no fragment identifier
200 OK I should describe U U is the name of I.

I is an information resource.
301 Moved L should describe U L and U are names of I.
Permanently I is an information resource.
303 See Other L should describe U L should describe U
Any other Nothing implied for I Nothing implied for I

Web (Sauermann and Cyganiak, 2008). Section 4.1.2 gives more details on fragment
identifiers and how they can be used for evaluation.

Both OWL classes and OWL properties are not information resources. With Ta-
ble 4.1 this allows us to infer that in OWL DL both class and property names (without
fragment identifiers) should not return a 200 or a 301 when resolved via the HTTP
protocol. In OWL 2 this is not true anymore, since punning allows URIs to be indi-
viduals, properties, and classes at the same time (Motik, 2007). But as we will discuss
later, punning should be avoided (see Section 4.1.5).

The table also lists the cases when the served resource should describe the name.
We can easily check if this is the case, if the description is sufficiently useful, and if it
is consistent with the knowledge we already have about the resource.

We have tested all HTTP URIs from the Watson EA corpus (see Section 11.3). For
the slash namespaces URIs, we got 14,856 responses. Figure 4.1 shows the distribution
of the response codes. It can be easily seen that for the vast majority (about 75%) of
URIs we get 200 OK, which means that the request returns a document. We conclude
that the current Semantic Web is indeed a Web of metadata describing the connections
between resources, i.e. documents, on the Web. 85% of the tested URIs return a 200
or 3XX response.1 We got 509 responses on the URIs with hash namespaces, of which
significantly more (about 85%) responded with a 200 OK. This shows that in general
hash URIs are better suited for terminological entities, and there should be good
reasons for using a slash namespace.

Significance of the difference between hash and slash URIs. For significance testing we
apply the two-proportion z-test. Let the null hypothesis be Ps = Ph, i.e. the proba-
bility for a slash URI to return a 200 OK being the same as the probability for a hash

1A 3XX response means an HTTP response in the range 300-307, a group of responses meaning
redirection (Fielding et al., 1999)

68

4

4.1 URI references

200 OK
75% 404 Not Found

14%

301 Moved Permanently
2%

303 See Other
4%

302 Moved Temporarily
4%

400 Bad Request
0%

401 Unauthorized
0%

403 Forbidden
0%

410 Gone
0%

405 Method Not Allowed
1% 406 Not Acceptable

0%

502 Bad Gateway
0%

500 Internal Server Error
0%

301 Moved Permanently
1%

302 Moved Permanently
1%

303 See Other
0%

304 Not Modified
0%

400 Bad Request
1%

403 Forbidden
1%

404 Not Found
11%

200 OK
85%

Figure 4.1: Distribution of the HTTP response codes on the HTTP URIs from the
Watson EA corpus. The left hand side shows the slash URIs, the right
hand side hash URIs.

URI. According to our tests on the Watson EA corpus, we set ps = ns/ts ≈ 0.7513 and
ph = nh/th ≈ 0.8585 (with sample sizes ns = 14, 856 resp. nh = 509 and ts = 11, 161
resp. th = 437 positive samples, i.e. URIs returning 200 OK codes). We calculate
the pooled sample proportion p̂ = psns+phnh

ns+nh
≈ 0.7548. The standard error results

in e =
√

p̂(1− p̂)(1/ns + 1/nh) ≈ 0.0194. The test statistic is a z-score defined as
z = ps−ph

e ≈ −5.5316. From that it follows that the probability that the null hypoth-
esis is true is p < 0.0001, which means the result is statistically highly significant.

Names from the same slash namespace should always return the same response
code. Differing response codes indicate some problems with the used terms. For
example, the social website LiveJournal2 exports FOAF profiles about their members,
including their social contacts, interests, etc. Some of the terms return a 303 See
Other (e.g. foaf:nick, foaf:knows, foaf:Person), whereas others return a 404
Not Found (e.g. foaf:tagLine, foaf:member_name, foaf:image). Investigating this
difference uncovers that the first set are all terms that are indeed defined in the FOAF
ontology, whereas the second set of terms does not belong to the FOAF ontology.

Method 2 (Check response codes)
For all HTTP URIs, make a HEAD call (or GET call) on them. The response code
should be 200 OK or 303 See Other. Names with the same slash namespace
should return the same response codes, otherwise this indicates an error.

2http://www.livejournal.com

69

http://www.livejournal.com

Chapter 4 Vocabulary

Note that this method can only be applied after the ontology has been published
and is thus available on the Web.

In summary, the usage of resolvable URI references allows us to use the Web to look
up more information on a given URI. This can help to discover available mappings, or
to explore and add new information to a knowledge based system. This is the major
advantage of using the Semantic Web instead of simply an ontology based application.

4.1.2 Hash vs slash

There was a long running debate in the Semantic Web community on the usage of
fragment identifiers in URI references. The basic question is on the difference between
using http://example.org/ontology#joe and http://example.org/ontology/joe
in order to refer to a non-information resource. The former type of URI is called a hash
URI (since the local part is separated by the hash character # from the namespace),
the latter type a slash URI (since the local part is separated by the slash character
/ from the namespace). The discussion was resolved by the W3C Technical Advisory
Group (Lewis, 2007; Jacobs and Walsh, 2004; Berrueta and Phipps, 2008).

When resolving a hash URI, only the namespace is resolved. All hash URIs with
the same namespace thus resolve to the same resource. This has the advantage that
the ontology can be downloaded in one pass, but it also has the disadvantage that the
file can become very big. Therefore, terminological ontologies and ontologies with a
closed, rarely changing, and rather small set of individuals (e.g. a list of all countries)
would use hash URIs, whereas open domains with often changing individuals often use
slash URIs (see for example in Semantic MediaWiki, Section 10.2.3).

We analyzed the Watson corpus to see if there is a prevalence towards one or the
other on the Web. We found 107,533,230 HTTP URIs that parse. 50,366,325 were
hash URIs, 57,166,905 were slash URIs. Discounting repetitions, there were 5,815,504
different URIs in all, 2,247,706 of them hash URIs, 3,567,789 slash URIs.

Regarding their distribution over namespaces, there are much bigger differences: we
find that there are only 46,304 hash namespaces compared to 2,320,855 slash names-
paces. The hash namespaces are, in average, much bigger than the slash namespaces.
2,197,267 slash namespaces (94.67%) contain only a single name, whereas only 16,990
hash namespaces (36.69%) contain only one name. On the other extreme, only 253
slash namespaces (0.01%) contain more than a 100 names, in contrast to 2,361 hash
namespaces (5.10%) that have more than 100 names. Still, as we can see in Table 4.2,
the namespaces with the biggest names are slash namespaces, being several times as
big as the biggest hash namespace. What does that mean?

70

http://example.org/ontology#joe
http://example.org/ontology/joe

4

4.1 URI references

Table 4.2: The five hash and slash namespaces with the biggest number of names.
Hash namespace # names
http://purl.org/obo/owl/FMA# 75,140
http://www.loa-cnr.it/ontologies/OWN/OWN.owl# 65,975
http://www.hero.ac.uk/rae/# 64,799
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl# 58,077
http://www.geneontology.org/owl/# 29,370
Slash namespace # names
http://www.livejournal.com/ 454,376
http://www.ecademy.com/ 104,987
http://www.deadjournal.com/ 79,093
http://www.aktors.org/scripts/ 41,312
http://www.hi5.com/profile/ 32,652

Slash namespaces are used in two very different ways in ontologies. First, they
are used to identify resources on the Web and to provide metadata about them. This
explains the huge number of slash namespaces with only a few names: only 3,142 slash
namespaces (0.14%) have more than 10 names (compared to 4,575 hash namespaces,
or 9.88%). In this case, when providing metadata, the names are often distributed
all over the Web, and thus introduce many different namespaces. The other usage of
slash namespaces is for collectively built ontologies: since hash namespaces reside in
one single file, they can not deal well with very dynamic vocabularies, that add and
remove names all the time and change their definitions. Looking at the five biggest
slash namespaces in Table 4.2, we see that four of five namespaces belong to social
networks (aktors.org is the Website of a UK-based Semantic Web research project).
Looking at the hash namespaces, we also see huge ontologies, but they represent
much more stable domains, providing vocabularies for the life sciences (FMA, Gene
ontology, NCI thesaurus), a vocabulary for education assessment (RAE), and an OWL
translation of WordNet (OWN). None of them are interactively built on the Web by
an open community, but rather curated centrally by editors.

Method 3 (Look up names)
For every name that has a hash namespace make a GET call against the namespace.
For every name that has a slash namespace make a GET call against the name.
The content type should be set correctly. Resolve redirects, if any. If the returned
resource is an ontology, check if the ontology describes the name. If so, N is a
linked data conformant name. If not, the name may be wrong.

71

http://purl.org/obo/owl/FMA#
http://www.loa-cnr.it/ontologies/OWN/OWN.owl#
http://www.hero.ac.uk/rae/#
http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#
http://www.geneontology.org/owl/#
http://www.livejournal.com/
http://www.ecademy.com/
http://www.deadjournal.com/
http://www.aktors.org/scripts/
http://www.hi5.com/profile/

Chapter 4 Vocabulary

4.1.3 Opaqueness of URIs

URIs should be named in an intuitive way. Even though the URI standard (Berners-
Lee et al., 2005) states that URIs should be treated opaque and no formal meaning
should be interpreted into them besides their usage with their appropriate protocols,
it is obvious that a URI such as http://www.aifb.kit.edu/id/Rudi_Studer will
invoke a certain denotation in the human reader: the user will assume that this is the
URI for Rudi Studer at the AIFB, and it would be quite surprising if it were the URI
for the movie Casablanca.

On the other hand, an URI such as http://www.aifb.kit.edu/id/p67 does not
have an intuitive denotation, and so they become hard to debug, write manually, and
remember. Their advantage is that they do not depend on a specific natural language.
An unfortunate number of tools still displays the URI when providing a user interface
to the ontology. Therefore intuitive URIs, that actually identify the entities to which
their names allude to (for the human reader) and that have readable URIs, should be
strongly preferred. Also, since URIs unlike labels should not change often (Sauermann
and Cyganiak, 2008), it is important to catch typos when writing URIs.

URIs should follow a naming convention. When using natural language based names,
the local name of classes may use plural (Cities) or singular forms (City), the lo-
cal name of properties may use verbs (marries), verbal phrases (married_to), nouns
(spouse), or nominal phrases (spouse_of or has_spouse). All of these naming con-
ventions have certain advantages and disadvantages: phrases make the direction of
the property explicit and thus reduce possible sources of confusion (given the triple
Aristotle Teacher Plato, is it immediately clear who the teacher is, and who the
student?). But using simple nouns can help with form based interfaces such as Tabu-
lator (Berners-Lee et al., 2006a), a Semantic Web browser. Tabulator also constructs
a name for the inverse property by appending “ of ” to the word, e.g. the inverse of
Teacher would be Teacher of.

Capitalization and the writing of multi-word names should also be consistent. The
ontology authors should decide which names to capitalize (often, classes and individ-
uals are capitalized, whereas properties are not). Multi-word names (i.e. names that
consist of several words, like Wide square) need to escape the whitespace between the
words (since whitespaces are not allowed in URIs). Often this is done by camel casing
(i.e. the space is removed and every word after a removed space starts with a capital
letter, like WideSquare), by replacing the space with a special character (often an un-
derscore like in Wide square, but also dashes or fullstops), or by simple concatenation
(Widesquare).

Many of these choices are just conventions. The used naming conventions should
be noted down explicitly. Metadata about the ontology should state the naming
convention for a given vocabulary. Many of the above conventions can then be tested
automatically. It is more important to consistently apply the chosen convention than

72

http://www.aifb.kit.edu/id/Rudi_Studer
http://www.aifb.kit.edu/id/p67

4

4.1 URI references

to choose the best convention (especially, since the latter is often unclear).
In addition, URIs on the Semantic Web should follow also the same rules that URIs

on the hypertext Web should follow. These are (Berners-Lee, 1998):

• don’t change (i.e. don’t change what the resource refers to, nor change the URI
of a resource without redirecting the old URI)

• be human guessable (i.e. prefer http://example.org/movie/The_Matrix over
http://example.org/movie/tt0133093)

• be reasonably short (which also means not to use deep hierarchical nesting, but
a rather flat structure)

• don’t show query parameters (i.e. don’t use URIs such as http://example.
org/interest?q=Pop+Music, use http://example.org/interest/pop_music
instead)

• don’t expose technology (e.g. don’t use file extensions like in http://example.
org/foaf.rdf, use http://example.org/foaf instead)

• don’t include metadata (e.g. don’t add the author or access restrictions into
the URI, e.g. as in http://example.org/style/timbl/private/uri, just use
http://example.org/style/uri. Authorship and access level may change)

Method 4 (Check naming conventions)
A proper naming can be checked by comparing the local part of the URI with
the label given to the entity or by using lexical resources like Wordnet (Fellbaum,
1998). Formalize naming conventions (like multi-word names and capitalization)
and test if the convention is applied throughout all names of a namespace. Check
if the URI fulfills the general guidelines for good URIs, i.e. check length, inclusion
of query parameters, file extensions, depth of directory hierarchy, etc.)

Note that only local names from the same namespace, not all local names in the
ontology, need to consistently use the same naming convention, i.e. names reused
from other ontologies may use different naming conventions.

4.1.4 URI reuse

In order to ease sharing, exchange, and aggregation of information on the Semantic
Web, the reuse of commonly used URIs proves to be helpful (instead of introducing
new names). At the time of writing many domains still do not provide an exhaustive

73

http://example.org/movie/The_Matrix
http://example.org/movie/tt0133093
http://example.org/interest?q=Pop+Music
http://example.org/interest?q=Pop+Music
http://example.org/interest/pop_music
http://example.org/foaf.rdf
http://example.org/foaf.rdf
http://example.org/foaf
http://example.org/style/timbl/private/uri
http://example.org/style/uri

Chapter 4 Vocabulary

lexicon of URIs yet, but projects such as Freebase3 or DBpedia (Auer and Lehmann,
2007) already offer a huge amount of identifiers for huge domains. Some domains,
like life sciences, music, computer science literature, or geography already have very
exhaustive knowledge bases of their domains. These knowledge bases can easily be
reused.

Analyzing the Watson EA corpus, we find that 75% of the ontologies use 10 or more
namespaces, in 95.2% of the ontologies the average number of names per namespaces
is lower than 10, in 76.5% it is lower than 3, in 46.4% lower than 2. This means
that most ontologies use many namespaces, but only few names from each namespace.
Considering knowledge bases this makes perfect sense: in their FOAF files persons
may add information about their location by referencing the Geonames ontology, and
about their favourite musician referencing the MusicBrainz ontology. Terminological
ontologies often reference the parts of external ontologies relevant to them in order to
align and map to their names.

Method 5 (Metrics of ontology reuse)
We define the following measures and metrics:

• Number of namespaces used in the ontology NNS

• Number of unique URIs used in the ontology NUN

• Number of URI name references used in the ontology NN (i.e. every mention
of a URI counts)

• Ratio of name references to unique names RNU = NUN
NN

• Ratio of unique URIs to namespaces RUNS = NUN
NNS

Check the following constraints. The percentages show the proportion of ontolo-
gies that fulfill this constraint within the Watson EA corpus, thus showing the
probability that ontologies not fulfilling the constraint are outliers.

• RNU < 0.5 (79.6%)

• RUNS < 5 (90.3%)

• NNS ≥ 10 (75.0%)

3http://www.freebase.com

74

http://www.freebase.com

4

4.2 Literals

4.1.5 URI declarations and punning

Web ontologies do not require names to be declared. This leads to the problem that
it is impossible for a reasoner to discern if e.g. ex:Adress is a new entity or merely
a typo of ex:Address. This can be circumvented by requiring to declare names, so
that tools can check if all used names are properly declared. This further brings the
additional benefit of a more efficient parsing of ontologies (Motik and Horrocks, 2006).

The declarations are axioms, stating not only that a name exists but also its type,
i.e. if it is declared as a class, an individual, a datatype, object or annotation property.
This feature was introduced in OWL 2, and thus does not yet appear in ontologies
outside of test cases.

Method 6 (Check name declarations)
Check for every URI if there exists a declaration of the URI. If so, check if the
declared type is consistent with the usage. This way it is possible to detect erro-
neously introduced punning.

In OWL 1 DL the set of class names, individual names, and property names were
disjoint. This restriction was removed in OWL 2, and now it is allowed to use the
names for either the individual, the property or the class. Based on the position in
the axiom it is always clear which type of entity the name refers to. There are good
reasons to allow punning: for example, the entity lion, depending on the context,
may represent the individual lion that is of the type species, or it may be the type
of the lion Simba (Berrueta and Phipps, 2005; Motik, 2007). There is no necessity
to introduce different names for the two, or to render the merger of two ontologies
inconsistent where lion is used as a class in the one ontology, and as an individual in
the other. Nevertheless, punning may cause confusion with the user, especially since
most tools are not yet well equipped to deal with punning. Punning should only be
carefully applied.

4.2 Literals

Ontologies often contain literals that represent data values. These data values can
be very varied, e.g. numbers (such as 4.75), points in time (such as 2:14 pm CEST on
6th March 2009), or strings (e.g. Jaguar). The importance of literals on the Semantic
Web can be shown by their sheer number of occurrences: the Watson corpus consists
of 59,749,786 triples, and 26,750,027 of them (42.8%) include a literal.

Anything that can be represented by a literal could also be represented by an URI.
For example, we could introduce the URI ex:Number4dot75 to be the URI to represent

75

Chapter 4 Vocabulary

the number 4.75. Using OWL Full, we could state that the literal and the URI are the
same individual. Often it is more convenient to use a literal instead of a URI, especially
since their meaning is already agreed on. Literals have the disadvantage that in triples
they are only allowed to be objects. This means that we cannot make statements about
literals directly, e.g. say that 4 is an instance of the class ex:EvenNumber. This can
be circumvented by using URIs as proxies for data values. It is currently discussed to
drop this limitation and to allow literals to also be subjects in triples.

Literals can be typed (see Section 4.2.1) or plain. A plain literal may be tagged
with a language tag (Section 4.2.2). The standard does not allow literals to be both
typed and language tagged. Language tagged literal would often make little sense:
the integer 4 is the same number regardless of the language. Since it makes sense
for text, the specification for the new data type rdf:text allows for language tagged
typed text literals (Bao et al., 2009b).

The RDF standard states that plain literals denote themselves (Hayes, 2004), i.e.
the plain literal Jaguar denotes the ordered list of characters Jaguar. Most of the
literals on the Web are plain literals – only 1,123,704 (4.2%) of them are typed.

4.2.1 Typed literals and datatypes

A typed literal is a pair of a lexical representation and a data type. The data type is
given by an URI that defines the interpretation of the lexical representation. Most on-
tologies use data types defined by the XML Schema Definition (Fallside and Walmsley,
2004). The OWL standard requires all tools to support xsd:string and xsd:integer
(Bechhofer et al., 2004) and names further recommended data types. OWL 2 extends
the number of required data types considerably, adding further data types for num-
bers, text, boolean values, binary data, URIs, time instants, and XML literals. OWL 2
also adds the possibility to constrain data type literals by facets (Motik et al., 2009b).

Figure 4.2 shows the most often used data types. The most often used data types
all belong to the set of recommended data types by the specification. The only two
non-recommended data types that are used more often than a hundred times are from
a deprecated XML schema version4 and from the W3C’s calendar working group.5

A fairly common error in data types is to use a namespace prefix (xs:string appears
19,927 times, xsd:string 518 times). Other common errors include misspelling of the
data type URIs (e.g. forgetting the hash, or miscapitalizing the local name) or using
deprecated versions of the XML schema.

The Semantic Web standards allow to define new custom data types, but this option
is very rarely used. It makes it nevertheless hard to automatically discover if a data
type URI is just an unknown data type, or if it is indeed a typo. Data type URIs

4http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger, used 157 times
5http://www.w3.org/2002/12/cal/icaltzd#dateTime, used 128 times

76

http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger
http://www.w3.org/2002/12/cal/icaltzd#dateTime

4

4.2 Literals

Datatypes

856.928

164.173

21.452 19.577 18.831 14.962
9.906

5.215 4.292
2.866

1.786
1.147

489 433 371

1

10

100

1.000

10.000

100.000

1.000.000

an
yU

RI
str

ing

un
sig

ne
dL

on
g

da
teT

im
e

int
eg

er

de
cim

al int

un
sig

ne
dS

ho
rt

rdf
:X

MLL
ite

ral

no
nN

eg
ati

ve
Int

eg
er

da
te

flo
at

do
ub

le

bo
ole

an lon
g

Figure 4.2: The fifteen most often used data types in the Watson corpus. Note the
logarithmic scale.

should be resolvable just as all other URIs and thus allow a tool to make an automatic
check. When evaluating ontologies, the evaluator should decide on a set of allowed
data types. This set depends on the use case and the tools being used. All tools should
be able to deal with the data types in this set. This closed set will help to discover
syntactic errors in the data type declarations of the literals in the ontology.

It should be checked if all used data types in the ontology are understood by the tools
dealing with these data types. That does not mean that all tools need to understand
all the used data types. A tool may be perfectly capable of dealing with an unknown
data type as far as the task of the tool itself is concerned. For example, a tool used
for converting RDF/XML-serialization into OWL Abstract Syntax does not need to
understand the data types. A reasoner who needs to check equality of different values
on the other hand needs to understand the used data types.

The second check that is relevant for typed literals is to check if the literals are
syntactically correct for the given data type. A typed literal of the form "Four" and
data type http://www.w3.org/2001/XMLSchema#integer is an error and needs to be
corrected. For this it is important for the evaluation tool to be able to check the
syntactic correctness of all used data types. This should be considered when choosing
the set of allowed data types. Otherwise it will be hard to discover simple syntactic
errors within literals.

77

http://www.w3.org/2001/XMLSchema#integer

Chapter 4 Vocabulary

Method 7 (Check literals and data types)
A set of allowed data types should be created. All data types beyond those rec-
ommended by the OWL specifications should be avoided. Creating a custom data
type should have a very strong reason. xsd:integer and xsd:string should be
the preferred data types (since they have to be implemented by all OWL confor-
mant tools).

Check if the ontology uses only data types from the set of allowed data types.
All typed literals must be syntactically valid with regards to their data type. The
evaluation tool needs to be able to check the syntactical correctness of all allowed
data types.

4.2.2 Language tags

Language tags can be used on plain literals to state the natural language used by the
literal. This enables tools to choose to display the most appropriate literals based
on their user’s language preferences. An example for a literal with a language tag is
"university"@en or "Universität"@de. Language tags look rather simple, but are
based on a surprisingly large set of specifications and standards.

Language tags are specified in the IETF RFC 4646 (Phillips and Davis, 2006b).
IETF RFC 4647 specifies the matching of language tags (Phillips and Davis, 2006a).
Language tags are based on the ISO codes for languages, if possible taking the Alpha-2
code (i.e. two ASCII letters representing a language) as defined by (ISO 639-1, 2002),
otherwise the Alpha-3 code (three ASCII letters representing a language) defined by
(ISO 639-2, 1998). Not all languages have an Alpha-2 code. The specification allows
to use Alpha-3 codes only if they do not have an Alpha-2 code. For example, to state
that the literal Gift is indeed the English word, we would tag it with en, the Alpha-2
code for the English language. If we wanted to state that it is a German word, we
would have tagged it with de, the Alpha-2 code for German. If it were the Middle
English word, it would have to be tagged with enm (since no two letter code exists).

Language tags can be further refined by a script, regional differences, and variants.
All these refinements are optional. The script is specified using ISO codes for scripts
(ISO 15924, 2004). To state that we use Russian with a latin script would be ru-latn.
Every language has a default script, that should not be specified when used, e.g. en
always assumes to be en-latn, i.e. English is written in latin by default. The IANA
registry maintains a complete list of all applicable refinement subtags, and also specifies
the default scripts for the used languages.6 Following the optional script parameter,

6http://www.iana.org/assignments/language-subtag-registry

78

http://www.iana.org/assignments/language-subtag-registry

4

4.2 Literals

the language can be specified to accommodate regional differences. The codes for the
regions are based on either the countries and regions ISO codes (ISO 3166, 1999) or,
alternatively, on the UN M.49 numeric three-digits codes (UN M.49, 1998). English
as spoken in Hong Kong would either be defined as en-hk or en-344. The regional
modifiers should only be used when needed, and preferably omitted. For example,
instead of using ja-jp for Japanese as spoken in Japan the tag ja would be preferred.
Finally, a relatively small number of further variants can be specified defined for special
cases such as historic language deviations, sign languages, and similar.

It is also possible to define private language tags or tag refiners, denoted by an x.
So one could use en-x-semweb as the language tag for the kind of English that is
spoken by the Semantic Web research community, where certain terms have meanings
deviating from standard English. Private tags should be avoided, and indeed, our
analysis of the Watson corpus shows that none are used.

Language tags are case insensitive. So it does not matter if one uses en-us, EN-US,
en-US, En-uS, or any other combination of upper and lower case characters. On the
Semantic Web it seems to be usual to use lower case characters only, with less than
200 occurrences of upper case codes.

We examined the usage of language tags on the Semantic Web to find if the standards
are applied correctly. For such a complex mesh of standards we found surprisingly few
errors. All in all, 17,313,981 literals have a language tag (67.6% of all plain literals).
English (en) was by far the most often used tag, applied 16,767,502 times (96.8%),
followed by Japanese (ja) with 519,191 tags (3.0%). The other languages are less
widely used by far, Suomi (fi) is used 9,759 times, German (de) 4,893 times, French
(fr) 1,810 times, and Spanish (es) 866 times.

The most often applied refined tags are en-us with 2,284 tags, en-gb 1,767 times,
and fr-fr 288 times. The latter could be regarded as redundant, since fr would be
sufficient. Further inappropriate usages or errors that can be found in the language tags
are en-uk (it should be en-gb, used 90 times), frp (undefined tag, used 30 times), and
jp (should be ja). In summary, with respect to the complexity of the used standards,
the number of errors regarding language tags is extremely low. This probably stems
from the fact that most of the advanced features are never used: no single tag specifies
a script (besides one example literal) or a variant, and only a handful of tags specify
a region, never using the UN M-49 standard (besides one example literal)7 but always
ISO 3166 codes.

7Both cited example literals are based on the W3C’s write up on its internationalization effort,
highlighting the possibilities of languages tags. See here: http://www.w3.org/International/

articles/language-tags/Overview.en.php

79

http://www.w3.org/International/articles/language-tags/Overview.en.php
http://www.w3.org/International/articles/language-tags/Overview.en.php

Chapter 4 Vocabulary

Method 8 (Check language tags)
Check that all language tags are valid with regards to their specification. Check
if the shortest possible language tag is used (i.e. remove redundant information
like restating default scripts or default regions). Check if the stated language and
script is actually the one used in the literal.

Check if the literals are tagged consistently within the ontology. This can be
checked by counting nl, the number of occurrences of language tag l that occurs
in the ontology. Roughly, nl for all l should be the same. Outliers should be
inspected.

4.2.3 Labels and comments

Labels are used in order to provide a human readable name for an ontological entity.
Every ontological entity should have labels in all relevant languages. Almost none of
the ontologies in the Watson corpus have a full set of labels in more than one language,
i.e. most ontologies are not multi-lingual. Thus they miss a potential benefit of the
Semantic Web, i.e. the language independence of ontologies. Comments add further
human-readable explanations to a specific entity, and should also be language tagged.

Labels and comments should follow a style guide and be used consistently. A style
guide should define if classes are labeled with plural or singular noun, if properties are
labeled with nouns or verbs, and under what circumstances comments should be used.
Labels and comments should never use camel case or similar escape mechanisms for
multi word terms, but instead simply use space characters (or whatever is most suitable
for the given language). I.e. an URI http://example.org/LargeCity should have a
label "large city"@en. External dictionaries such as WordNet (Fellbaum, 1998) can
be used to check consistency with regards to a style guide.

In an environment where ontologies are assembled on the fly from other ontologies
(Alani, 2006), the assembled parts may follow different style guides. The assembled
ontology will then not adhere to a single style guide and thus offer an inconsistent
user interface. It is not expected that a single style guide will become ubiquitous
on the whole Web. Instead, an ontology may specify explicitly what style guide it
follows, and even provide labels following different style guides. For example, the
SKOS ontology (Miles and Bechhofer, 2009) offers more specific subproperties for
labels such as skos:prefLabel. This would allow to introduce a subproperty of label
that is style guide specific, which would in return allow for the consistent display of
assembled ontologies.

Even when subproperties of rdfs:label are defined, there should always be one
label (per supported language) given explicitly by using rdfs:label itself. Even

80

4

4.3 Blank nodes

though this is semantically redundant, many tools (especially visualization tools) do
not apply reasoning for fetching the labels of an entity but simply look for the explicit
triple stating the entity’s label.

Method 9 (Check labels and comments)
Define the set of relevant languages for an ontology. Check if all label and comment
literals are language tagged. Check if all entities have a label in all languages
defined as being relevant. Check if all entities that need a comment have one in
all relevant languages. Check if the labels and comments follow the style guide
defined for the ontology.

4.3 Blank nodes

Blank nodes are an RDF feature that allows to use a node in the RDF graph without
giving it a URI. This way the node can only be indirectly referenced (if at all), for
example by using an inverse functional property. Blank nodes relieve the author of an
RDF graph to come up with good URIs for every node, which would impose additional
costs on creating the graph.

There are two different scenarios for using blank nodes. First, blank nodes are used
in the structural representation of certain OWL axioms within RDF graphs. Second,
blank nodes are used for anonymous ontology entities. An example for the first scenario
is the representation of a disjoint union axiom in RDF. The axiom
DisjointUnion(C D E)
will be represented by the following RDF triples:

C owl:disjointUnionOf _:x .
_:x rdf:first D .
_:x rdf:rest _:y .
_:y rdf:first E .
_:y rdf:rest rdf:nil .

Blank nodes in RDF are represented by using the namespace prefix (underscore).
In the given example, there are two blank nodes, :x and :y. They do not represent
any entities in the domain, but are introduced only out of structural necessity since
we cannot state the relationship between three entities (C, D, and E) from the original
axiom directly with triples. We defined these kind of blank nodes to be structural
blank nodes. Even though they could be given URIs, these URIs would not represent
any concept in our conceptualization and thus should be avoided.

81

Chapter 4 Vocabulary

The second scenario uses blank nodes to represent anonymous ontology entities. For
example, in the first few years it was regarded as good practice not to define a URI for
persons in FOAF documents but to use blank nodes instead. The argument in favor of
using blank nodes for persons was that it was regarded inappropriate to name people
via URIs. This echoes the sentiment of ”I am not a number”, or rather, ”I am not a
URI”. FOAF preferred to identify persons by using inverse functional properties such
as eMail-adresses or their hash sums.

Web architecture later suggested that all entities of interest should have a URI
(Jacobs and Walsh, 2004). The FOAF project also deprecated the use of blank nodes
for persons (since they are definitively entities of interest). Using a URI for an entity
allows for all the advantages described earlier about linked data (see Section 4.1.1),
most importantly the possibility to look up further data about the given entity by
resolving the URI.

In summary, blank nodes should be avoided unless structurally necessary.

Method 10 (Check for superfluous blank nodes)
Tables 2.1 and 2.2 list all cases of structurally necessary blank nodes in RDF
graphs. Check for every blank node if it belongs to one of these cases. Besides
those, no further blank nodes should appear in the RDF graph. All blank nodes
not being structurally necessary should be listed as potential errors.

82

5

Chapter 5

Syntax

Words differently arranged have
a different meaning, and
meanings differently arranged
have a different effect.

(Blaise Pascal, 1623–1662,
Pensées

(Pascal, 1670))

Web ontologies are serialized in a big (and growing) number of different surface syn-
taxes. Surface syntaxes can be classified into two different groups: the ones that
describe a graph (which in turn describes the ontology), and the ones that describe
the ontology directly (a graph can still be calculated from the ontology based on the
transformation described in (Patel-Schneider and Motik, 2009)). Examples of the for-
mer group are RDF/XML (Bechhofer et al., 2004) or NTriples (Grant and Beckett,
2004), examples of the latter are the Manchester Syntax (Horridge et al., 2006), OWL
Abstract Syntax (Patel-Schneider et al., 2004), or the OWL XML Presentation Syntax
(Hori et al., 2003). All these syntaxes are transformable automatically from and into
each other.

Each surface syntax warrants their own evaluation methods. Common features that
can be evaluated over most of the syntaxes in a fairly uniform way are the proper
and consistent indentation in the file and the order of the triples (for graph-based
syntaxes) or axioms (for ontology-based syntaxes). Triples forming complex axioms
should be grouped together. Groups of axioms forming an ontology pattern should also
be grouped together. Terminological axioms should precede facts, and terminological
axioms and facts about the same entity should be grouped together. Entities should be
declared before usage (see Section 4.1.5). The file’s encoding should be appropriate.

83

Chapter 5 Syntax

There should be a good reason for using anything but UTF-8 as the file encoding
(Unicode Consortium, 2006).

Even though ontologies will rarely be edited in simple text editors, these guidelines
will help tremendously once it does happen. Understanding a disjoint union axiom
when the triples making up the axiom are scattered throughout the graph serialization
creates an unnecessary challenge. We assume that the capability to debug the source
file of an ontology increases dramatically when the guidelines given above are imple-
mented. These guidelines are derived from the rules applied for software engineering
big programs, where similar rules exist for the layout of the code in the source files
(Kernighan and Plauger, 1978).

In this thesis we refrain from instantiating the given guidelines for any specific
surface syntax. The rest of this chapter will first discuss two further specifics of the
syntax which apply for most surface syntaxes (syntactic comments in Section 5.1 and
qualified names in Section 5.2) and close with introducing a possibility of using XML
validation for the completeness test of OWL knowledge bases (Section 5.3).

5.1 Syntactic comments

Many OWL surface syntaxes allow for comments. For example, an XML-based surface
syntax may contain an XML-style comment such as <!-- Created with Protege
-->. We call these syntactic comments and discern them from RDF-style comments,
i.e. comments that are part of the RDF graph (see Section 4.2.3). Syntactic comments
are often lost when two ontologies are merged, or when one ontology is transformed
from one syntax to another. RDF-style comments on the other hand are stable with
regards to transformation and merger.

For many syntaxes it is best practice to include some comments with metadata
about the ontology document. XML documents, for example, often start with an in-
troductory comment stating the version, author, and copyright of the given document.

In OWL document files this is not necessary, since all these informations can be
expressed as part of the ontology itself. For example, the above quoted XML-style
comment <!-- Created with Protege --> is injected by the Protégé editor (Noy et
al., 2000) in order to show that the ontology was created with that editor. Instead a
triple could state that the ontology has been created using the Protégé editor.

ex:Ontology_A ex:authoringtool sw:Protege .

Most of the metadata in syntactic comments can be expressed using statements
about the ontology. This allows ontology repositories to automatically and uniformly
interpret the metadata about the ontologies in the repository, and to provide access
and searches over the ontology using the very same sophisticated tools that are used
to access the data within the ontology themselves.

84

5

5.2 Qualified names

5.2 Qualified names

Most serialization formats include mechanisms to abbreviate URI references. They
are often based on known XML-based approaches, such as XML entities (Bray et al.,
2008) or XML namespaces (Bray et al., 2006). Thus, instead of having to write the
full URL http://xmlns.com/foaf/0.1/knows we can abbreviate names either using
XML entities as &foaf;knows or using XML namespaces as foaf:knows.

When defining abbreviations and prefixes in an ontology document, care should be
taken to bind well known abbreviations with the appropriate URIs. For example, the
foaf prefix (Brickley and Miller, 2005) is so prevalent on the Web that it should always
be defined as http://xmlns.com/foaf/0.1/. Some tools even assume that certain
prefixes such as rdf, rdfs, or owl are defined as specified in the OWL standards
(Smith et al., 2004), and fail to load ontologies properly where this is not the case.
Table 1.1 lists the prefixes that are used in this thesis.

Swoogle (Ding et al., 2004) is a Semantic Web crawler and ontology repository that
offers a number of statistics on the crawled ontologies. Swoogle can be used to offer
default definitions for namespaces, so that we can check automatically if the prefix
definitions follow common usage patterns on the Web.1 Another site with namespace
usage statistics is offered by Ping the Semantic Web, a service that helps with crawling
and maintaining an ontology repository.2 prefix.cc3 is a socially constructed website,
where users can add, edit, and vote on the prefixes and their resolution. Web service
interfaces allow the automatic querying of prefix.cc for usage in a serialization or
validation tool.

Note that using namespaces inconsistently with common usage will not lead to er-
rors. When merging and combining ontologies, the underlying OWL libraries will han-
dle the namespaces correctly, and do not care if we define http://xmlns.com/foaf/0.1/
to be foaf or dc. It merely helps to avoid confusion for the human user not to break
expectations regarding the definitions of namespaces, and to follow common practice
on the Web.

5.3 XML validation

The Semantic Web was created as a set of standards building on top of each other,
and incorporating already existing and well established standards such as URIs for
identifiers (Berners-Lee et al., 2005) or XML for serialization (Bray et al., 2008). The
inherent promise was that due to the reuse of these standards, widely deployed tools
and expensively built expertise will not be lost but remain relevant and in continued

1http://ebiquity.umbc.edu/blogger/2007/09/23/top-rdf-namespaces/
2http://pingthesemanticweb.com/stats/namespaces.php
3http://prefix.cc

85

http://ebiquity.umbc.edu/blogger/2007/09/23/top-rdf-namespaces/
http://pingthesemanticweb.com/stats/namespaces.php
http://prefix.cc

Chapter 5 Syntax

use. This promise has not been fully realized.
A characteristic of the standard RDF/XML syntax (Beckett, 2004) is that it can

be used to let ontologies, particularly simple knowledge bases, mimic traditional XML
documents and even be accompanied by an XML schema. But we will show in Sec-
tion 5.3.2 that most XML oriented tools can only deal superficially with RDF/XML
files. Due to numerous possibilities the RDF graph can be expressed in XML, creating
applications using the XML set of tools and expertise is often inefficiently expen-
sive and unreasonably hard. This is particularly true for typical XML evaluation
approaches such as document validation. Basically, they are currently not applicable.

In this section an approach resolving this problem is presented. It uses well-
established standards to sufficiently constrain the serialization of RDF/XML in order
to be usable by classic XML processing approaches. We suggest to use the same ap-
proach humans would use in order to serialize their conceptualizations in XML, namely
following an XML schema. Three popular XML schema languages are currently widely
used, the XML-native Document Type Definitions (DTD) (Bray et al., 2008), the W3C
XML Schema Definition language (XSD) (Fallside and Walmsley, 2004), and the Reg-
ular Language for XML Next Generation (RELAX NG) (Clark and Murata, 2001).
Due to its legibility and high availability we choose DTD for our prototype implemen-
tation, but the work can be extended to use the other schema languages as well, as
will be discussed in Section 5.3.7. Note that by restricting RDF/XML with DTDs, the
resulting files are still fully compliant RDF files, and therefore can be used by other
Semantic Web tools out of the box.

Method 11 (Validating against an XML schema)
An ontology can be validated using a standard XML validator under specific cir-
cumstances. In order to apply this, the ontology needs to be serialized using a
pre-defined XML schema. The semantic difference between the serialized ontology
and the original ontology will help in discovering incompleteness of the data (by
finding individuals that were in the original ontology but not in the serialized one).
The peculiar advantage of this approach is that it can be used with well-known
tools and expertise.

Depending on the schema, this method may severely impact the extensibility of the
ontology document. The advantage of using an XML validating ontology document is
that we can check if the document is data complete with regards to a previously made
specification. This way tools can check before hand if the data is not only consistent
with a given ontology, but also if there is sufficient data in order to perform a specific
task.

86

5

5.3 XML validation

The major theoretical challenges lie in the details of the interpretation of the XML
schema file as a specification for generating the requested serialization. XML schemas
can be roughly regarded as formal grammars meant to check a given input XML
document for validity. Instead, we use the very same XML schema file in order to query
a given RDF graph and then define how to serialize the results. This interpretation
forces us to define a number of constraints on the covered XML schemas (i.e., arbitrary
DTDs can not be used as described in Section 5.3.3). We describe a dialog-based tool
to quickly create RDF/XML-compliant DTDs that contain the data that is requested
by the developer, thus allowing the developer to easily adhere to these constraints
without deep understanding of Semantic Web standards.

We provide a prototype implementation of the approach, and present an example
instantiation of the method in order to demonstrate its usefulness and applicability.
For our example we take FOAF files from the Web, pipe them through our implemen-
tation, and then use standard XML processing techniques (XSLT) in order to generate
HTML pages. We provide the example workflow as a Web service.

Section 5.3.3 describes the approach to create the serializations. Section 5.3.4 pro-
poses how the dialog-driven DTD creation tool works. This is followed by a description
of the current prototype implementation and demonstration in Section 5.3.5. Sec-
tion 5.3.6 describes related approaches towards the goal we are outlining, before we
close with a discussion of further research questions. As a running example we de-
scribe a Web service that takes arbitrary FOAF-files (Brickley and Miller, 2005) and
translates them to HTML and vCard presentation.

5.3.1 Example

An example of an XML-based serialization of RDF is given by RSS 0.9 (Beged-Dov
et al., 2000). RSS (either used as a shortcut for RDF Site Summary or Really Simple
Syndication) is a format to enable the syndication of Web feeds of e.g. blogs, podcasts,
video diaries, updates, etc.

RSS files are both valid RDF files and valid DTD-described XML files, where the
DTD describes the document structure. Listing 5.14 is an abbreviated version of the
DTD document for RSS 0.9 by Dan Libby (entities defining special characters and
comments have been removed for brevity).

The DTD has the root element rdf:RDF (defined in the actual RSS document, see
Listing 5.2). The DTD gives the grammar for the XML elements: the root rdf:RDF
contains the elements channel, image, item, textinput in arbitrary order and num-
ber, but nothing else (note that the * around the brackets in line 1 makes the ? and +

4Original source at http://my.netscape.com/rdf/simple/0.9/ unavailable, copy according to
http://www.rssboard.org/rss-0.9.dtd

87

http://my.netscape.com/rdf/simple/0.9/
http://www.rssboard.org/rss-0.9.dtd

Chapter 5 Syntax

Listing 5.1: Document type definition for RSS 0.9 documents.� �
<!ELEMENT rdf:RDF (channel | image? | item+ | textinput ?)*>
<!ATTLIST rdf:RDF xmlns:rdf CDATA

#FIXED "http: //www.w3.org /1999/02/22 -rdf -syntax -ns#"
xmlns CDATA #REQUIRED >

<!ELEMENT channel (title | description | link)*>
<!ELEMENT image (title | url | link)*>
<!ELEMENT item (title | link)*>
<!ELEMENT textinput (title | description | name | link)*>
<!ELEMENT title (# PCDATA)>
<!ELEMENT description (# PCDATA)>
<!ELEMENT link (# PCDATA)>
<!ELEMENT url (# PCDATA)>
<!ELEMENT name (# PCDATA)>� �
inside the brackets meaningless). All these may contain a further number of elements,
which are all flat #PCDATA fields.

An RSS document that is valid with regards to the given DTD could look like the
example in Listing 5.2. A standard RDF tool will hardly serialize its RDF graph like
this. The DTD defines the order of the elements, and it defines the names of the XML
elements to be used. For an RDF library the order does not matter, and there are
a number of different ways to serialize triples in XML. In order to serialize an RDF
graph so that we can use it for validation against a schema, the serializer must be
aware of the schema.

Listing 5.2: Example RSS document.� �
<?xml version="1.0"?>
<!DOCTYPE rdf:RDF PUBLIC

" -//Netscape Communications //DTD RSS 0.9// EN"
"http://www.rssboard.org/rss -0.9. dtd">

<rdf:RDF
xmlns:rdf="http: //www.w3.org /1999/02/22 -rdf -syntax -ns#"
xmlns="http://my.netscape.com/rdf/simple /0.9/">
<channel >

<title>semanticweb.org</title>
<link>http:// semanticweb.org</link>
<description >Semantic Web Community </description >

</channel >
<image >

88

5

5.3 XML validation

<title>SemanticWeb.org</title>
<url>

http:// semanticweb.org/images/Semantic -Web -Logo -by-W3C.png
</url>
<link>http:// semanticweb.org</link>

</image >
<item>

<title>List of SemWeb tools</title>
<link>http:// semanticweb.org/wiki/Tools</link>

</item>
<item>

<title>W3C puts OWL2 in last call</title>
<link>http:// semanticweb.org/wiki/News</link>

</item>
</rdf:RDF >� �

Now we can check the RSS document against the DTD given above, and the XML
validator will provide us with a list of all validation errors. If the file validates, we do
not only know that it is a valid XML document and a valid RDF file, but that the
entities described in the graph have certain properties filled (i.e. all items will have a
title property).

Unlike the cardinality axiom SubClassOf(Item ExactCardinality(1 title)) that
allows us to infer that every item has to have a title property (be it given or not),
validating against the above DTD will guarantee us that we know the actual value of
the title property for every item. This allows us to state data completeness. This
means that for certain properties we do not only know that they exist, but we also
know that we know their values (this is similar to the usage of autoepistemic logic
with OWL as described in Section 9.2.3).

5.3.2 Motivation

Today, one of the major hindrances towards achieving the wide deployment of Semantic
Web technologies is the lack of sufficient expertise. If at all, Semantic Web technologies
have only recently been introduced to students’ curricula, and most general audience
books on Semantic Web technology have only been published in the last two years
(Pollock, 2009; Segaran et al., 2009; Allemang and Hendler, 2008; Hitzler et al., 2009).
On the other hand, XML expertise is widely available. There are numerous books and
courses on XML technologies, and many websites provides access to communities of
practice, often even within the specific domain of the user.

Also, even though the number of Semantic Web tools is growing rapidly, many
of them require a deeper understanding of the technology than is readily available.

89

Chapter 5 Syntax

Strengthening the ties between RDF and XML allows not only to reuse existing ex-
pertise, but also to re-enable the already existing tools.

To illustrate the problems with using RDF/XML, consider the following ontology,
serialized in N3 (Berners-Lee, 2006):

aifb:Rudi_Studer rdf:type foaf:Person .

The following four documents are examples that all serialize this single triple in
RDF/XML:

Listing 5.3: Expanded RDF/XML serialization� �
<rdf:RDF >

<rdf:Description rdf:about="&aifb;Rudi_Studer">
<rdf:type >

<rdf:Description rdf:about="&foaf;Person"/>
</rdf:type >

</rdf:Description >
</rdf:RDF >� �

An object may be moved to the property element as an attribute value:

Listing 5.4: Object as attribute value� �
<rdf:RDF >

<rdf:Description rdf:about="&aifb;Rudi_Studer">
<rdf:type rdf:Resource="&foaf;Person"/>

</rdf:Description >
</rdf:RDF >� �

Typing information can be moved to the element:

Listing 5.5: Typing by element name� �
<rdf:RDF >

<foaf:Person rdf:about="&aifb;Rudi_Studer"/>
</rdf:RDF >� �

Finally, the encompassing rdf:RDF root element is optional if it only has one child
node:

Listing 5.6: Removing optional root element� �
<foaf:Person rdf:about="&aifb;Rudi_Studer"/>� �
90

5

5.3 XML validation

All documents have very different XML infosets and very different XML serializa-
tions, but equal RDF semantics. Thus, creating a simple list of all persons according
to the RDF semantics is not trivial without using an RDF parser. An XQuery or an
XSLT transformation will be cumbersome to write. In order to simplify the authoring
of XML-based solutions, we provide a workflow that will normalize the RDF/XML
serialization following a given XML schema.

The example in Listing 5.7 shows an XML DTD that normalizes the way to express
FOAF data in XML files. It states that the root element has an arbitrary number
of foaf:Persons (line 1) and each foaf:Person must have a foaf:name and may
have some mail address (given by foaf:mbox, line 6). Lines 2-5 define the namespaces
(Bray et al., 2006) of the resulting document. Note that the namespaces are fixed.
This is to circumvent the fact that DTDs per se are not namespace-aware (unlike other
XML schema languages like XSD or RelaxNG). Line 7 ensures that every foaf:Person
instance has a URI and may not be a blank node.

Listing 5.7: A DTD for a fragment of FOAF� �
1 <!ELEMENT rdf:RDF (foaf:Person *)>
2 <!ATTLIST rdf:RDF xmlns:rdf CDATA #FIXED
3 "http: //www.w3.org /1999/02/22 -rdf -syntax -ns#">
4 <!ATTLIST rdf:RDF xmlns:foaf CDATA #FIXED
5 "http: //xmlns.com/foaf /0.1/">
6 <!ELEMENT foaf:Person (foaf:name foaf:mbox *)>
7 <!ATTLIST foaf:Person rdf:about CDATA #REQUIRED >
8 <!ELEMENT foaf:name (# PCDATA)>
9 <!ELEMENT foaf:mbox EMPTY >

10 <!ATTLIST foaf:mbox rdf:resource CDATA #REQUIRED >� �
A FOAF-file that validates against the given DTD in Listing 5.7 is given in List-

ing 5.8. The result is a reasonably legible XML file and also a fully valid RDF file,
which can be used with all Semantic Web tools.

Listing 5.8: FOAF-file after normalization� �
<rdf:RDF

xmlns:rdf="http: //www.w3.org /1999/02/22 -rdf -syntax -ns#"
xmlns:foaf="http: //xmlns.com/foaf /0.1/">

<foaf:Person
rdf:about="http: //www.aifb.kit.edu/id/Rudi_Studer">

<foaf:name >Rudi Studer </foaf:name >
<foaf:mbox rdf:resource="mailto:studer@kit.edu" />

</foaf:Person >
</rdf:RDF >� �

91

Chapter 5 Syntax

Even though the approach does not allow to create arbitrary XML – specifically, it
does not allow to create XML documents that are not valid RDF – and thus cannot
be used as a one-step solution towards reusing already existing DTDs, we will show
that one can create a custom DTD to serialize the RDF file first, and then translate
it to any representation the user requires (even in non-XML formats) by using readily
available XSLT tools and expertise. Therefore it is possible to ground any RDF file
into an already existing file format in two steps, given that all required information is
available.

5.3.3 Normalizing the serialization

In order to create the normalized serialization we use the provided DTD to generate a
series of SPARQL queries. The results of the queries are then used to write the actual
serialization. In this section we describe how this is accomplished.

The given DTD has to fulfill a number of constraints that will be listed explicitly in
the following section. First we need to read and define all given namespaces from the
root element and declare them appropriately in the SPARQL query. Furthermore we
add the RDF and RDFS namespaces, if not already given (for the namespaces used
here, see Table 1.1).

Next we go through every possible child element type of the root element rdf:RDF.
In our example we can see in line 1 that there is only one possible child element type,
foaf:Person. This is the type of the sought for instances, i.e. we translate it into the
following query fragment:

SELECT ?individual
WHERE {

?individual rdf:type foaf:Person .
}

Next, for every required child element of the found elements, we add a respective
line to the WHERE-clause. In our example, foaf:Person requires only foaf:name (line
6, foaf:mbox is optional). So we add the following line (introducing a new variable
every time):

?individual foaf:name ?v1 .

If the foaf:name itself would have pointed to another element, this element would
be the type of ?v1, and in return we would add all required properties for ?v1 by
adding the subelements of this type, and so on.

The result of this query is a list of all individuals that are described with all the
necessary properties as defined by the DTD. In the example they are, thus, not only

92

5

5.3 XML validation

instances of foaf:Person but also of Kfoaf : name.>, i.e. we know that they have at
least one foaf:name given (see Section 9.2.3).

Next we iterate over the result list, asking for every required and optional property
individually. In the example, we would issue the following two queries:

SELECT ?result
WHERE {

aifb:Rudi_Studer foaf:name ?result .
} LIMIT 1

SELECT ?result
WHERE {

aifb:Rudi_Studer foaf:mbox ?result .
}

Since line 6 of the DTD states that there is only one foaf:name, we limit the first
query to 1. Again, if the subelement of a property would have been stated in the
DTD, it would have been required to add all required properties for ?result, just
as it was done for ?v1 above. Furthermore, each required and optional property of
?result also has to be gathered in the same way as we do for all the instances of the
root element’s children.

With the results of the queries, we can start generating the serialization. Listing 5.8
shows such a serialization that was created with the normalization tool.

A further note on the approach: since the resulting queries are all describing con-
junctive queries, we can use the queries on a reasoning-aware SPARQL endpoint. This
allows us to employ the power of RDFS and OWL to provide for a fully transparent
ontology mapping. For example, even if the individuals in the input file are actually
having the class swrc:Student, as long as this is a subclass of foaf:Person the results
will come back as expected and the normalized serialization will contain all instances
of direct and indirect subclasses. This provides a powerful and easy way to quickly
add further knowledge to existing XML-based tool chains.

5.3.4 Creation of compliant schemas

The provided DTDs have to fulfill a number of constraints so that they can be used
by the normalization tool. This section lists those constraints explicitly. Since it
would require quite some expertise with regards to RDF/XML-serializations (which
we explicitly do not expect) to create DTDs fulfilling these constraints, we also propose
a dialog-based tool to easily create such DTDs.

An RDF-compliant DTD, that can be used by the normalizer described in the
previous section, has to fulfill the following constraints:

93

Chapter 5 Syntax

• the resulting XML-file must be a valid RDF/XML-file

• all used namespaces have to be fixed in the DTD and defined in the root element
of the resulting XML-file

• the root element of the XML-file has to be rdf:RDF

• since DTDs are not context-sensitive, the DTD can use each element only a
single time

Especially the last constraint is a severe restriction necessary due to the shortcom-
ings of DTDs. In Section 5.3.7 we will take a look at possible remedies for this problem
using other, more modern XML schema languages.

The first constraint is basically impossible to fulfill without deep knowledge of the
RDF/XML serializations. Because of that we suggest a tool that analyses a given
dataset or ontology and then guides the developer through understandable dialog
options to create a conformant DTD. The tool follows the following approach:

1. the tool loads a number of RDF files. It does not matter if these files contain
terminological ontologies, knowledge bases, or populated ontologies.

2. the tool offers the developer to select a class from the given RDF files. rdfs:Class
and owl:Class are both considered. The developer has to decide if the result
should contain exactly one instance, or an arbitrary number of instances.

3. for the selected class, all sensible properties are offered. Sensible properties are
those that either are defined with a domain being the given class, or where the
instances of the given class have assertions using the property. For each selected
property the developer has to decide if this property is required, can be repeated
arbitrary times, or both.

4. for each selected property the developer has to decide on the type of the filler,
especially if it is a datatype value or an individual, and if the latter, if it is of a
specific class (which again will be selected from a provided list, based both on
the range of the property and the classes of the actual fillers in the knowledge
base).

5. if a class was selected, enter recursively to Step 3.

6. as soon as a property is selected and fully described, the developer can select
another property by repeating from Step 3 on.

7. as soon as a class is fully described, the developer can continue with another
class by repeating from Step 2.

94

5

5.3 XML validation

The tool has to be careful not to allow the selection of any element twice. This
constraint is stronger than required, and we expect future work and more thorough
analysis to relax it and thus extend the expressivity of the tool. This is especially
true when moving to more powerful schema languages that are aware of the context
an element is used in. We are also aware that the list of sensible properties may be
incomplete. We discuss this in Section 5.3.7.

5.3.5 Implementation

In order to demonstrate the feasibility of our approach, we have developed a prototype
Web service implementation. The input is an arbitrary RDF file. It should describe
a person using the FOAF vocabulary. The Web service uses an extension of the DTD
given in Listing 5.7. The full DTD can be accessed online from our demonstration
site.5

The first step of the output is an RDF file describing one person, using a specified
syntax (an incomplete example is given in Listing 5.8, for complete examples please
refer to the demo site).

Now developers can post-process the output of the serializer with the same ease they
would have with any XML files, and they do not need to have any further knowledge
of Semantic Web technologies to do so. There are numerous technologies for the
further processing of XML files. In our example implementation we use the XML
transformation language XSLT (Clark, 1999). XSLT is capable of translating XML
files either to other XML files, or to any other format as well. In our example, we
provide an XSLT transformation to turn the resulting RDF file into a vCard (Dawson
and Howes, 1998). vCard is a pre-XML IETF standard for exchanging contact data,
which is in wide use. Listing 5.9 gives the full XSLT for this translation. The demo
website also offers a translation into HTML. An XSLT file offering the same results
over arbitrarily serialized RDF would have been much longer, and harder to write and
maintain.

Listing 5.9: XSLT for transforming FOAF to vCard� �
<xsl:stylesheet version="1.0"

xmlns:xsl="http: //www.w3.org /1999/ XSL/Transform"
xmlns:rdf="http: //www.w3.org /1999/02/22 -rdf -syntax -ns#"
xmlns:foaf="http: //xmlns.com/foaf /0.1/">

<xsl:output method="text" indent="yes"
media -type="text/x-vcard" />

<xsl:template match="foaf:Person">
BEGIN:VCARD
VERSION:3 .0

5http://km.aifb.uni-karlsruhe.de/services/RDFSerializer/

95

http://km.aifb.uni-karlsruhe.de/services/RDFSerializer/

Chapter 5 Syntax

UID:<xsl:value -of select="@rdf:about" />
N;CHARSET=UTF -8:<xsl:value -of select="foaf:family_name" />;
<xsl:value -of select="foaf:firstName" />;;;
FN;CHARSET=UTF -8:<xsl:value -of select="foaf:name" />
<xsl:for -each select="foaf:mbox">
EMAIL;TYPE=internet: <xsl:value -of select="@rdf:resource" />
</xsl:for -each>
URL:<xsl:value -of select="foaf:homepage/@rdf:resource" />
CLASS:PUBLIC
ORG;CHARSET=UTF -8:;
END:VCARD
</xsl:template >
</xsl:stylesheet >� �

The demonstration site uses Xalan6 as the the XSLT processor. Applying XSLT
transformations to the sample RDF file yields the the result given in Listing 5.10.

Listing 5.10: A vCard file created by transforming RDF/XML� �
BEGIN:VCARD
VERSION:3 .0
UID:http: //www.aifb.kit.edu/id/Rudi_Studer
N;CHARSET=UTF -8 :Studer;Rudi ;;;
FN;CHARSET=UTF -8 :Rudi Studer
EMAIL;TYPE=internet:mailto:rudi.studer@kit.edu
URL:http: //www.aifb.kit.edu/web/Rudi_Studer
CLASS:PUBLIC
ORG;CHARSET=UTF -8:;
END:VCARD� �
5.3.6 Related approaches

In this section we discuss alternative approaches towards bridging the gap between
the Semantic and the Syntactic Web.

1. The main related approach is to combine or extend XSLT with capabilities to
seamlessly deal with RDF, and still continue to provide the same output format-
ting power. There are a number of implementations towards this goal, such as

6http://xml.apache.org/xalan-j/

96

http://xml.apache.org/xalan-j/

5

5.3 XML validation

RDF Twig,7 TreeHugger,8 or RDFXSLT.9 XSPARQL10 provides similar capa-
bilities, but by extending SPARQL. These approaches have all proven feasible,
but do not resolve the original issue: they all require the developer to understand
RDF.

2. A very early approach is DTDMmaker (Erdmann and Studer, 2001) which auto-
matically creates DTDs based on the vocabulary defined in (F-logic) ontologies.
It also reports about the same issues identified here (about the shortcomings of
DTDs) but is not flexibly customizable and also does not create RDF-conformant
DTDs.

3. Another approach is to write custom hard-coded translators, that first read the
RDF graph and then create the serialization. This may be the easiest way, but
it requires hard-coding a proprietary solution for each use case, and it requires
the programmer to learn the API of at least one RDF parser. Our approach
does not require any newly written, proprietary code.

4. One approach is to use SPARQL first, and then use the SPARQL XML result
format as the basis for the XSLT translations. This approach is viable, but it
requires the developer both to understand SPARQL and the SPARQL result
format, and then create XSLT scripts to deal with the representation of their
data in the SPARQL result format instead of an XML vocabulary that is close
to the domain.

5. The serializers of RDF generating tools could be rewritten so that they always
return the required serialization. But this would mean that only output of these
tools can be used, and we lack interoperability with other tools using the same
ontology, since the XML serialization would usually not be specified. If the
serialization indeed is specified, then this would have been done using an XML
schema, and therefore it just hard codes our proposed approach into the RDF
source. This is the approach that RSS has chosen, as shown in Section 5.3.1.

6. Another approach is to change the tool using the data so that it becomes RDF
aware, i.e. instead of translating the RDF graph to the required format we
can enable the tool to use RDF. Even though we personally would prefer this
approach, in our example use case this would require to extend all existing tools
that can consume vCard to also accept RDF descriptions of persons. This renders
this solution unlikely.

7http://rdftwig.sourceforge.net/
8http://rdfweb.org/people/damian/treehugger/index.html
9http://www.wsmo.org/TR/d24/d24.2/v0.1/20070412/rdfxslt.html

10http://xsparql.deri.org/spec/

97

http://rdftwig.sourceforge.net/
http://rdfweb.org/people/damian/treehugger/index.html
http://www.wsmo.org/TR/d24/d24.2/v0.1/20070412/rdfxslt.html
http://xsparql.deri.org/spec/

Chapter 5 Syntax

We conclude that the major difference of our approach is in the zero-knowledge
assumption in using it: no knowledge of Semantic Web technologies is required. Ex-
pertise in wide-spread XML technologies is sufficient to start using Semantic Web
knowledge bases as data sources.

5.3.7 Open questions for XML schema-based RDF validation

We described and implemented an approach towards bridging the gap between classic
XML-technologies and the novel Semantic Web technology stack. The current imple-
mentation is already usable, but it exhibits a number of limitations. We list these
limitations here in order to explicitly name open challenges.

• The given approach can be redone using other, more powerful and modern XML
schema languages. These languages add further features, e.g. cardinalities.

• DTDs do not allow for context sensitive grammars. Therefore elements can only
appear once in every DTD, which severely constraints their expressive power. For
example, it is not possible to ensure that every person in a FOAF-file requires a
name and mailbox and may have friends (which are persons), and at the same
time define that friends should not have a mailbox. Using a context-sensitive
XML schema language can remedy this.

• Even without moving to more powerful schema languages, the given constraints
in Section 5.3.4 can be relaxed. Further analysis is required to understand this
bigger language fragment.

• For now the prototype implementation ignores that a property that appears
several times should have several different values, i.e. is basically a cardinality
declaration. This could be expanded.

• A number of features have not been explored for this first implementation, that
future work will take into account, e.g. datatypes, language tags, the collection
and xmlliteral parsetypes, and blank nodes.

• As we have seen, DTDs have to use fixed namespaces and prefixes, whereas XML
namespace-aware schema languages could deal with them more elegantly.

For now we provide the current implementation and a Web-accessible demonstration
workflow to show the advantages of the described approach. We expect that the
approach will be applied in a number of early use cases in order to gain more insight
in the actual usage and to direct the future development of the given project.

98

6

Chapter 6

Structure

Caught up in circles
confusion is nothing new

(Cindy Lauper, b.1953,
Time after Time

(Lauper and Hyman, 1983))

The most widely explored measures used on ontologies are structural measures. Graph
measures can be applied on the complete or partial RDF graph describing the ontology.
An example of an extensively investigated subgraph would be the one consisting only
of edges with the name rdfs:subClassOf and the nodes connected by these edges (i.e.
the explicit class hierarchy). This subgraph can be checked to see if the explicit class
hierarchy is a tree, a set of trees, or if it has circularities, etc. If it is indeed a tree, the
depth and breadth of the tree can be measured. Current literature defines more than
forty different metrics (Gangemi et al., 2005; Gangemi et al., 2006b; Lozano-Tello and
Gómez-Pérez, 2004; Tartir et al., 2005) that measure the structure of the ontology.
Structural measures have a number of advantages:

• they can be calculated effectively from the ontology graph. Graph metrics li-
braries are available and can be used for this task.

• they simply yield numbers. This makes tracking the evolution of the ontology
easy, because even in case the meaning of the number itself is not well understood,
its change often is.

• their results can be checked automatically against constraints. For example,
constraining the maximal number of outgoing edges of the type rdfs:subClassOf
from a single node to five can be checked on each commit of the ontology to a
version control system. Upon violation, an appropriate message can be created.

99

Chapter 6 Structure

• they can be simply visualized and reported.

Due to these advantages and their simple implementation, most ontology toolkits
provide ready access to a number of these metrics. Also ontology repositories often
provide annotations and filtering options of the ontologies in the repositories using
these metrics.

But in practice, structural metrics are often not well-defined. That is, based on
their definitions in literature, it is hard to implement them unambiguously. Also there
is often confusion with regards to their meaning. Often they define a new graph
structure (and do not use the existing RDF translation), but then fail to define a
proper translation of the ontology features to the graph (e.g. how to translate that a
property is transitive, how to translate domain and ranges, etc.). Section 6.1 examines
four metrics taken from literature and provides exemplary analysis of the shortcomings
of their definition, and also offers remedies for these definitional problems.

Besides measures counting structural features of the ontology, the structure can
also be investigated with regards to certain patterns. The best known example is to
regard cycles within the taxonomic structure of the ontology as an error (Gómez-Pérez,
2004). But also more subtle patterns (or anti-patterns) and heuristics can be used to
discover structural errors: Disjointness axioms between classes that are distant in the
taxonomic structure (Lam, 2007), as well as certain usages of the universal quantifier
(Vrandečić, 2005). Section 6.2 applies the RDF query language SPARQL over the
OWL graph in order to detect structural patterns and anti-patterns.

Section 6.3 shows how the meta-ontology defined in Section 3.2 can be used to detect
constraint validations within the ontology structure. As an example, we will formalize
the OntoClean constraints in OWL and show how OWL reasoners can be used to
discover OntoClean constraint validations (Guarino and Welty, 2002).

6.1 Structural metrics in practice

In this thesis we focus on the foundational aspects that form the base for automatically
acquirable measures. Therefore we will not define a long list of metrics and measures,
but rather take a step back and discuss conditions that measures have to adhere to
in order to be regarded as semantically aware ontology metrics. This also helps to
understand clearly what it means for a metric to remain on a a structural level.

Thus the scope of this work compares best to other metric frameworks, such as
the QOOD (quality oriented ontology description) framework (Gangemi et al., 2006b)
and the O2 and oQual models (Gangemi et al., 2006a). The authors created semiotic
models for ontology evaluation and validation, and thus describe how measures should
be built in order to actually assess quality. They also describe the relation between the
ontology description, the ontology graph, and the conceptualization that is expressed

100

6

6.1 Structural metrics in practice

within the graph, and they define measures for the structural, functional, and usability
dimension. A graphical overview of O2 is given in Figure 11.1 on page 189.

Simple structural measures can uncover a number of interesting features such as
the reasoning complexity of the given ontology. Complexity is actually a measure of
an ontology language, and defines the complexity for reasoning over instances of that
language. The complexity of the OWL languages are known, but that does not give
us much information on particular ontologies. The expressivity of the used language
merely defines an upper bound on the complexity that applies to the reasoning tasks.
With a simple list of the constructs used within the ontology one can further refine
the used language fragment, and thus arrive at a possibly lower complexity bound and
thus a better estimation of the reasoning task. For example, OWL DL is known to
correspond to the description logic SHOIN (D) (Horrocks and Patel-Schneider, 2004),
and thus reasoning tasks such as satisfiability checks are known to be NExpTime-
Complete (Schaerf, 1994).

Most OWL ontologies do not use the more expressive constructs (Wang et al., 2006;
d’Aquin et al., 2007a). Ontology editors such as SWOOP (Kalyanpur et al., 2006)
show the language fragment that is actually being used in a given ontology. But
if the ontology only uses a certain set of constructs, we know that we are, e.g., in a
tractable fragment (as an example, the Semantic MediaWiki query language described
in Chapter 10 corresponds to a tractable fragment of OWL). Furthermore, even if more
expressive constructs are used, queries to the ontology can often be answered much
more efficiently than the theoretical upper bound suggests. Experiments indicate that
a priori estimates of resoning speed can be pursued based purely on structural features
(Wang and Parsia, 2007).

Method 12 (Ontology complexity)
We define measures counting the appearance of each ontology language feature.
We do this by first defining a filter function OT : O → O with T being an axiom
or an expression type (as given in Chapter 2). OT returns all the axioms of axiom
type T or all axioms having an expression of type T .

We can further define a counting metric NT : O → N as NT (O) = |OT (O)|. We
also define N(O) = |O|.

Then we can further define a few shortcuts, derived from the respective letters
defining DL languages (Baader et al., 2003), for example:

• Number of subsumptions Nv(O) = NSubClassOf(O) = |OSubClassOf(O)|:
the number of subsumption axioms in the ontology

• Number of transitivities N+(O) = NTransitiveProperty(O): the number of
properties being described as transitive

101

Chapter 6 Structure

• Number of nominals NO(O) = NOneOf(O): the number of axioms using a
nominal expression

• Number of unions Nt(O) = NUnionOf(O): the number of axioms using a
union class expression

• etc.

With these numbers we can use a look-up tool such as the description logics
complexity navigator (Zolin, 2010). If NO > 0, then the nominals feature hast to
be selected, if N+ > 0 we need to select role transitivity, etc. The navigator will
then give us the complexity of the used language fragment (as far as known).

We further define H(O) : O → O as the function that returns only simple
subsumptions in O, i.e. only those SubClassOf axioms that connect two simple
class names.

The rest of this section discusses exemplary measures from the literature, shows
how they are ambiguous, and offers actions to remedy these ambiguities (in favor of a
purely structural application). In Chapter 8 these measures will be revisited in order
to redefine them with the help of normalization, introduced in Chapter 7. Note that
the following is criticizing only the actual description of the single measures, not the
framework they are described in. The remedies are often simple, and after applying
them the now remedied measures can be used with the original intention.

6.1.1 Maximum depth of the taxonomy

OntoMetric (Lozano-Tello and Gómez-Pérez, 2004) is a methodology for selecting an
ontology, based on five dimensions which in turn are organized into selection factors.
The content dimension is the one most related to the work presented in this thesis,
organized in the four factors concepts, relations, taxonomy, and axioms. We will take
a closer look at one of the metrics related to the factor taxonomy, the maximum depth.

The maximum depth of the concept hierarchy is ”defined as the largest existing path
following the inheritance relationships leading through the taxonomy”.1

This definition leads to a number of problems. First, cycles in the class hierarchy
will lead to the result that the maximum depth is ∞, which may be a not too useful
result. Furthermore, consider the following ontology:

1Translated from the original Spanish: ”La profundidad máxima en la jerarqúıa de conceptos: definida
como el mayor camino existente siguiendo las relaciones de herencia que puede alcanzar la tax-
onomı́a.” (Lozano-Tello, 2002, p. 72)

102

6

6.1 Structural metrics in practice

A D
B

C

Figure 6.1: Example for a circular hierarchy path.

EquivalentClasses(A MinCardinality 1 R)
EquivalentClasses(B MinCardinality 2 R)

Since the definition only considers explicit inheritance relationships, it will miss that
B is a subclass of A, and thus it will report a maximum depth of only 0 (no explicit
inheritance relationships) instead of 1.

In Section 7.1 we will introduce the technique of normalization, which will allow us
to use the maximum depth metric as it is intuitively meant to be used (see Section 8.2).

In order to define a purely structural maximum depth, it would be required to
first rename the metric so that the meaning of the resulting number is clear. The
appropriate name obviously depends on the actual definition of the metric, and one
possible definition could be: the biggest number of subsumption axioms connecting
consecutively simple class names without the same class name ever being repeated.
An appropriate name for such a metric could be maximum subsumption path length.

Compared to the original definition, this definition can deal with cycles in the sub-
sumption graph. Some issues still remain. Consider the following ontology, given in
Figure 6.1:

SubClassOf(B A)
SubClassOf(B C)
SubClassOf(C B)
SubClassOf(D C)
SubClassOf(D B)

The longest path is four (either ABCD or ACBD), even though we would expect the
maximal depth of the class hierarchy to be 3 (since B and C are on the same hierarchy
level). But this is an inherent flaw of structural metrics. Only by renaming the metric
from a name that implies that it measures a semantic feature (maximum depth of
the taxonomy) to a name that states explicitly that it measures a structural feature
(maximum subsumption path length) we can break the original intuition and thus
achieve a metric that does not deceive due to its name.

103

Chapter 6 Structure

6.1.2 Class / relation ratio

In (Gangemi et al., 2005) the authors introduce 32 ”measures of the structural di-
mension”. Note that these measures do not fully correspond to what we define to be
structural measures within this thesis. E.g., (M24) (Consistency ratio) is defined as
nCons

nG
with nCons being the number of consistent classes and nG the number of classes.

In order to count the number of consistent classes we need a reasoner and thus this
measures not a structural, but rather what we define a representational aspect of an
ontology.

Measure (M29) in (Gangemi et al., 2005) is called the ”Class / relation ratio”,
suggesting that it returns the ratio between classes and relations (or properties). The
exact definition of the measure is: ”nG∈S

nR∈S
where nG∈S is the cardinality of the set of

classes represent[ed] by nodes in g, and nR∈S is the cardinality of the set of relations
represented by arcs in g” (Gangemi et al., 2005).

But applying the definition yields the ratio between the number of nodes represent-
ing classes and the number of nodes representing relations within the ontology graph,
which will be a different number since a number of nodes, and thus names, can all
denote the same class or relation. Therefore the metric is improperly named, since it
does not yield the ratio between classes and relations, but rather between class names
and relation names.

In Section 8.3 we will return to this metric and redefine it properly to capture the
intuition behind the name. For now, in order to achieve a structural metric, it is
again required to rename the metric, e.g. to ”class name / property name ratio”. It is
unclear if this metric is useful, but since it is far easier obtained than the actual ”class
/ relation ratio” metric and will often correlate to it (compare Chapter 8), we expect
it to remain displayed by ontology tools.

6.1.3 Relationship richness

OntoQA is an analysis method that includes a number of metrics (Tartir et al., 2005),
and thus it allows for the automatic measurement of ontologies. They define metrics
such as richness, population, or cohesion. Whereas all these metrics are interesting,
they fail to define if they are structurally or semantically defined – which is a common
lapse.

As an example we choose the metric (RR) ”relationship richness”. (RR) is defined
as RR = |P |

|SC|+|P | , ”as the ratio of the number of relationships (P) defined in the
schema, divided by the sum of the number of subclasses (SC) (which is the same as the
number of inheritance relationships) plus the number of relationships” (Tartir et al.,
2005). In our terminology |P | is the number of property names, and |SC| the number
of subsumptions with the subclass being a class name.

According to the authors, this metric ”reflects the diversity of relations and place-

104

6

6.1 Structural metrics in practice

ment of relations in the ontology” and is based on the assumption that an ontology
that ”contains many relations other than class-subclass relations is richer than a tax-
onomy with only class-subclass relationships”. We will look at a number of examples
in order to evaluate this claim.

Consider the following top level ontology (the class hierarchy is from Proton (Terziev
et al., 2005), but the axioms are written differently to illustrate the argument. The
Proton ontology uses indeed simple subsumptions):

DisjointUnion(proton:Entity
proton:Abstract
proton:Happening
proton:Object)

EquivalentClasses(proton:Object
UnionOf(proton:Agent

proton:Location
proton:Product
proton:Service
proton:Statement))

Since we have not used any explicit subsumption axioms, |SC| is 0. Since no prop-
erties have been introduced, |P | is 0 as well, leading to RR = 0

0+0 , which is undefined.
Now we can easily imagine adding classes to the ontology, all defined by class equiv-
alences or disjoint unions – both |SC| and |R| will always be 0, and RR will remain
undefined. But now we add the following axiom from Proton:

PropertyRange(proton:isOwnedBy proton:Agent)

RR will suddenly become 1
0+1 = 1, i.e. as rich as possible. Even adding further

properties will not increase the relationship richness at all, it will constantly remain
1. Now consider the following axiom:

SubClassOf(proton:Agent proton:Object)

This axiom explicates one of the subsumptions relation stated indirectly in the class
equivalence axiom of the ontology, i.e. it is redundant. But if we add this axiom to
our original ontology instead of the range axiom, our RR value would have dropped
to 0, since |SC| woulde be 1 and |R| remain 0. And now we can add a mix of property
axioms and such explicated subsumption axioms and basically get any RR value that
we want, by simply explicating some of the subsumption axioms.

Therefore we state that RR is not a useful measure to capture relationship richness.
We return in Section 8.4 to this measure and discuss how the measure can be repaired.

105

Chapter 6 Structure

A

C2

B1

C1 C3 C4

B2

A

C2

B1

C1 C3 C4

B2

Figure 6.2: Two class hierarchies with identical semantics. Semantic similarity mea-
sure ssm of C1 and C3 is lower in the left ontology than in the right one.

6.1.4 Semantic similarity measure

Another example of a structural metric is given by (Alani and Brewster, 2006), where
the authors describe metrics for ranking ontologies, such as the class match or the
density measure. Interestingly even the so called semantic similarity measure ssm is
not a semantic measure in the sense described here, since they apply all these measures
on the graph that describes the ontology, not on the ontological model. ssm is defined
between two classes and is the reciprocal of the length of the shortest path in the
ontology graph from one class to the other (Alani and Brewster, 2006).

In Figure 6.2 we see two class hierarchies that represent the same semantics. The
structure in the right hand side ontology contains a number of redundant, explicit
subsumptions, i.e. the ontology graph contains a few redundant rdfs:subClassOf-
arcs. Since the semantics have not changed, one would expect that the semantic
similarity measure would remain constant in both ontologies, which is not the case.

In fact, one could always connect any class C with an explicit subsumption to the
top class without changing the semantics, and thus have any two classes be connected
in two links via the top class. Note that when introducing ssm, (Alani and Brewster,
2006) notes already that further studies are required in order to find whether the
assumption that ssm describes the semantic similarity depends on certain properties of
the ontology. As shown here, it does: in Section 8.5 we will describe these properties.

106

6

6.2 SPARQL for finding patterns

6.2 SPARQL for finding patterns

Patterns are crucial elements in all mature fields of engineering (Alexander et al., 1977;
Gamma et al., 1995). In ontology engineering, research has focused on ontology design
patterns to build ontologies using a set of predefined patterns (Gangemi, 2005; Svatek,
2004; Staab et al., 2001). In this case, patterns are used in order to formalize common
configurations of entities. But patterns can also emerge, i.e. they can appear in an
ontology without the prior intention to use a specific pattern, especially in the case of
networked ontologies.

One of the major tasks when working with patterns is to recognize them. In order
to offer the best support, ontology engineering tools need to recognize patterns and
offer appropriate user support for working with them. Otherwise patterns can easily
become compromised by tools that are unaware of them. We introduce an approach
for detecting patterns in ontologies using readily available SPARQL query engines
(Prud’hommeaux and Seaborne, 2008).

We investigate several issues and problems that arise when using SPARQL to de-
tect patterns in OWL ontologies. We discuss three approaches towards resolving these
problems and report empirical results when applying one of them. In order to keep
the examples simple we will concentrate on one of the best known ontology engineer-
ing patterns, the partition pattern. We expect many of the problems and solutions
investigated here to also apply to more complex patterns.

The following section describes how DL patterns can be translated to RDF graphs
in numerous different way. In Section 6.2.2 we discuss several approaches to remedy
these problems, and empirically test the most näıve approach with surprisingly good
results. We then apply the results on the notion of anti-patterns in Section 6.2.5.

6.2.1 Translating patterns from OWL to RDF

The partition pattern, as defined by (Gómez-Pérez et al., 2003), is maybe the best
known ontology engineering pattern. Partitions are also often used as a building block
for more complex patterns, as for example in the values as subclasses partitioning
a quality pattern (Rector, 2005). The pattern partitions a class A into a number
of disjoint subclasses B1 . . . Bn. For simplicity, we assume n = 2 in the following
examples.

SubClassOf(B1 A)
SubClassOf(B2 A)
SubClassOf(IntersectionOf(B1 B2) owl:Nothing)

The partition pattern is displayed in Figure 6.3, using the same graphical syntax as
in the Semantic Web best practice notes (Rector, 2005). An example for the appli-
cation of this pattern is the partition of animal into biped and quadruped (this also

107

Chapter 6 Structure

A

B1 B2 Bn …

Pairwise Disjoint
(owl:DisjointClasses)

Figure 6.3: The partition pattern: class A is partitioned into the subclasses B1 . . . Bn

exemplifies the difference to a complete partition, as defined by (Gómez-Pérez et al.,
2003), that would make the far stronger claim that every individual of the class A
needs to be an individual of exactly one of the subclasses B1 . . . Bn by adding the ax-
iom SubClassOf(A UnionOf(B1 B2 ... Bn)). The DisjointUnion axiom type was
introduced in OWL2 and can state a complete partition directly (see Section 2.2.2).
This is not true for the simple partition, that is taken as an example in this section.

Since SPARQL is a query language for RDF we need to consider how this pattern
is represented in RDF. This means that the pattern needs to be translated from OWL
to RDF (as shown in Table 2.1 and 2.2).

Unfortunately, this does not necessarily lead to a unique representation in RDF.
In order to make the relation to SPARQL more obvious, we use the Notation3 syn-
tax for RDF (Berners-Lee, 2006) instead of the more verbose standard RDF/XML-
serialization (Klyne and Carroll, 2004).

B1 rdfs:subClassOf A .
B2 rdfs:subClassOf A .
_:a rdf:type owl:Class .
_:a owl:intersectionOf _:b .
_:b rdf:first B1 .
_:b rdf:rest _:c .
_:c rdf:first B2 .
_:c rdf:rest rdf:nil .
_:a rdfs:subClassOf owl:Nothing .

108

6

6.2 SPARQL for finding patterns

Another, semantically equivalent possibility to describe the pattern in OWL is by
using the constructor for disjoint classes directly:

SubClassOf(B1 A)
SubClassOf(B2 A)
DisjointClasses(B1 B2)

This representation has the advantage of being easily extensible in case n > 2, since
we do not need to add numerous SubClassOf-Axioms stating incoherent unions like
in the first variant. As an RDF graph the second variant could look like this:

B1 rdfs:subClassOf A .
B2 rdfs:subClassOf A .
B1 owl:disjointWith B2 .

Note that the DisjointClasses-Axiom leads to at least n2−n
2 triples (since it needs

to be stated for all possible pairs of Bs, and thus will be less terse for n > 2).
Another possible instantiation of partition would be given by the following seman-

tically equivalent version of the partition pattern:

SubClassOf(B1 A)
SubClassOf(B2 intersectionOf(A complementOf(B1)))

This in turn can be translated to the following RDF graph:

B1 rdfs:subClassOf A .
B2 rdfs:subClassOf _:a .
_:a rdf:type owl:Class .
_:a owl:intersectionOf _:b .
_:b rdf:first A .
_:b rdf:rest _:c .
_:c rdf:first _:d .
_:c rdf:rest rdf:nil .
_:d rdf:type owl:Class .
_:d owl:complementOf B1 .

We assume that the partition pattern will be usually represented by one of these
three patterns, or patterns similar to these. Even though many more are conceivable,
they would be more complicated and thus less likely.

109

Chapter 6 Structure

6.2.2 Querying with SPARQL

The RDF graphs can be translated straight-forward to the following SPARQL query.

select distinct ?A ?B1 ?B2 where {
?B1 rdfs:subClassOf ?A .
?B2 rdfs:subClassOf ?A .
?B1 owl:disjointWith ?B2 .

}

With an OWL DL aware SPARQL implementation this query should return the
same result on all the variants above. But none of the implementations we are aware
of gives this result (this result is unsurprising, since SPARQL is not a query language
that fully addresses querying OWL DL ontologies, and the relation between the two
is underspecified in the SPARQL standard (Prud’hommeaux and Seaborne, 2008).
Most often SPARQL engines allow to query for ABox results, i.e. so-called conjunctive
queries, but forbid TBox queries such as the one given above).

Implementations that are not aware of OWL DL can not be used to discover all
instances of the pattern with the given SPARQL queries. In this case all possible
patterns would be needed to be queried to gain a complete result, which is not practical.

In order to be able to search for knowledge engineering patterns using SPARQL, we
thus can follow three possible approaches:

1. Implementing and using an OWL DL aware SPARQL engine

2. Materializing or normalizing the relevant parts of the ontology and then use an
OWL DL unaware SPARQL engine

3. Committing to an incomplete search by searching only specific variants of the
pattern’s implementations

We consider the first option to be out of scope for this thesis, and thus we will
discuss the other two options in the following two sections.

6.2.3 Ontology normalization

In Section 7.1 we define ontology normalization as an approach to make features of
the semantics of an ontology explicit within the ontology’s structure. By using an
OWL DL unaware SPARQL engine, SPARQL is useful only for querying the structure
of the ontology, i.e. its explicit RDF graph.

In order to use the query successfully with a SPARQL engine that is not aware of
the OWL DL semantics, we first have to use an OWL DL reasoner to materialize all
relevant parts of the ontology. In the case of the partition, we would need to materialize

110

6

6.2 SPARQL for finding patterns

the subClassOf- and disjointWith-constructs. But only direct subClassOf-relations
should be materialized. Stating disjointness between classes that are not siblings is
not considered a partition. If we materialize the complete subClassOf-graph, we
could not recognize direct siblings anymore. Therefore we need to use the first three
normalization steps introduced in Section 7.1 in order to avoid this problem.

Furthermore, the disjointWith-graph should not be fully materialized either, since
the same problem would emerge. Subclasses of a class A that was declared disjoint to
a class B would all be disjoint to B as well. Such inherited disjointness should not be
materialized.

Note that the normalization steps that would be required for recognizing the par-
tition pattern are valid only for the partition pattern. If we wanted to recognize
other patterns, we would have to consider anew which normalization steps would be
required, and which could be left out.

6.2.4 Incomplete searches

In this section we explore empirically what happens if we drop the requirement of
guaranteeing the discovery of a knowledge pattern. We took the SPARQL partition
query from Section 6.2.2 and ran it against our corpus (see Section 11.3). We further-
more performed several other tests in order to understand how complete the query
results are.

Of the 1331 ontologies of the Watson OWL corpus (see Section 11.3), only 55 where
using disjointness axioms at all (4.1%). This is roughly consistent with previous sur-
veys on the usage of expressive axioms in OWL ontologies on the Web: (Wang et al.,
2006) reported that 7.6% of the surveyed ontologies were using the disjointWith-
construct, and (d’Aquin et al., 2007a) reported 4.5% of OWL DL ontologies were
using the ALC language fragment or stronger. The differences can be easily explained
due to the different approaches towards collecting and filtering the ontology corpora.

Using the SPARQL query to detect partition patterns, we discovered the partition
pattern in 47 of these 55 ontologies (85.5%). This means that most of the time when
the disjointness axiom is used, the partition pattern is also applied. This fact was
recognized by the DAML+OIL ontology language (Horrocks et al., 2001) that included
some more powerful construct to present partitions and complete partitions, such as
disjointUnion (which has been introduced in OWL2 (Grau et al., 2008) again).

We have taken a look at the 8 ontologies that did not show the partition pattern
but still used disjointness (B90, B98, C37, E71, G13, H71, L22, and L66). E71,
G13, and L22 turned out to be versions of the time ontology that implement an anti-
pattern as discussed in Section 6.2.5. We will argue there that these ontologies should
instantiate the partition pattern, but fail to do so. B90, B98, and L66 are obviously
test ontologies and not meant to be used. C37 uses disjointness to partition the
whole domain. Finally, H71 contains a partition that is unrecognized by the SPARQL

111

Chapter 6 Structure

pattern, because the partitioned class is not subclassed directly but rather through an
IntersectionOf-construct.

In order to see if any of the other two variants (or even similar implementations)
given in Section 6.2.1 were used, we issued further queries. In order to detect variant
1 and similar patterns, we used the essential part of the variant 1 pattern:

select ?a where {
?a rdfs:subClassOf owl:Nothing .

}

This query did not return any results. Whereas in DL subclassing ⊥, i.e. the
empty class, is often used to state constraints, in OWL this possibility goes practically
unused. Since OWL includes numerous powerful constructs to state such constraints
directly, the rather counterintuitive usage of the empty class is usually avoided. Based
on this result we can conclude that variant 1 and any similar patterns were not used
to create partitions.

Based on these empirical results we may claim that any appearance of owl:Nothing
in an OWL ontology is an anti-pattern (see Section 6.2.5) and thus indicates prob-
lems with the formalization. Furthermore, also any appearance of owl:disjointWith
outside of a partition is a strong indicator for either a problem in the ontology, or an
incomplete formalization. Further anti-patterns should be gathered from the Web.

In order to detect instantiations of variant 3, we search for any subclasses that are
used to define a complement:

select ?a ?b where {
?c owl:complementOf ?b .
?b rdfs:subClassOf ?a .

}

This query returned 12 ontologies (A23, B14, C35, C53, F96, I27, J57, K13, L03,
L77, M31, and N11). We examined them manually and found that in all but two
cases the complement was used to state a restriction on the values of a property (e.g.
Vegetarian ≡ ∀eats.¬Meat). In the remaining two cases, the complement appeared
once in a complex class description2 and once to partition the whole domain.3

Based on these empirical results we see that the query indeed has detected all but
three (C37, H71 and N11) instances of the partition pattern (thus yielding a recall
of 94%). So even though we have discussed numerous problems and drawbacks of

2F96: ViewableFile ≡ File u ¬(MediaFile u ¬ImageFile)
3N11: IntangibleEntity ≡ ¬TangibleEntity

112

6

6.2 SPARQL for finding patterns

using SPARQL queries for detecting ontology patterns, experimental results are very
promising.

Future work needs to investigate further patterns in order to see if these positive
results will be confirmed for other, more complicated patterns. We assume though
that current ontology engineering practice is lagging well behind the state of the art
in ontology pattern research. Therefore possibilities for large-scale experiments will
be rather limited.

6.2.5 Querying for anti-patterns

To detect so called anti-patterns is at least as important as detecting patterns in
ontologies. Anti-patterns are strong indicators for problems in an ontology. The
notion of anti-patterns was introduced to software engineering by (Koenig, 1995). He
defines an anti-pattern to be similar to a pattern, ”except that instead of a solution it
gives something thats looks superficially like a solution, but isn’t one.”

Staying close to our example of the partition pattern we introduce the similar anti-
pattern of a skewed partition. In a skewed partiton it is not the sibling classes that are
declared to be disjoint, but rather classes in an uncle-relation, i.e. a class is disjoint to
the sibling of its superclass (Lam, 2007). The following SPARQL query detects such
an anti-pattern.

select distinct ?A ?B1 ?B2 ?C1 where {
?B1 rdfs:subClassOf ?A .
?B2 rdfs:subClassOf ?A .
?C1 rdfs:subClassOf ?B1 .
?C1 owl:disjointWith ?B2 .

}

The pattern was detected in five ontologies (E71, F54, G13, L22, and N25). Upon
manual inspection they all turned out to be different versions of the time ontology
(Hobbs and Pan, 2004). Figure 6.4 illustrates the relevant part of the ontology.

In the time ontology, a TemporalEntity has a start and an end time. There are
two kind of TemporalEntity: Instant and Interval. An Instant is defined as a
TemporalEntity that starts and ends at the same time, whereas a ProperInterval
is defined as an Interval that does have a start time that is different from the end
time.4 Now what is the meaning of the class Interval?
Interval was introduced to capture also degenerate intervals that start and end

at the same time. But such degenerate intervals are equivalent to Instant, and thus
4The discussed semantics of the time ontology are not fully captured in the OWL version of the time

ontology, but are formalized as described in their first order logic description (Hobbs and Pan,
2004)

113

Chapter 6 Structure

TemporalEntity

Interval

ProperInterval Instant

owl:DisjointClasses

Figure 6.4: The upper levels of the time ontology. Note that ProperInterval and
Instant are declared disjoint even though they are not sibling classes.

Interval is equivalent to TemporalEntity. The upper level of the time ontology
could thus be simplified by removing the Interval class and creating a partition of
TemporalEntity into ProperInterval and Instant (actually, a complete partition).

Cleaning up the ontology in such a way increases the understandability, and avoids
confusion (users would rightly assume a difference between interval and temporal en-
titiy, why else would there be two distinct classes?). Changing to a complete partition
as discussed above, and removing a class makes the ontology smaller, and thus easier
to understand, and brings the invoked conceptual model when studying the ontology
closer to its formal semantics.

Method 13 (Searching for Anti-Patterns)
SPARQL queries over the ontology graph can be used to discover potentially prob-
lematic patterns. For example results to the following queries have been found to
be almost always problems.

Detecting the anti-pattern of subsuming nothing:

select ?a where {
?a rdfs:subClassOf owl:Nothing .

}

Detecting the anti-pattern of skewed partitions:

114

6

6.3 The AEON approach

select distinct ?A ?B1 ?B2 ?C1 where {
?B1 rdfs:subClassOf ?A .
?B2 rdfs:subClassOf ?A .
?C1 rdfs:subClassOf ?B1 .
?C1 owl:disjointWith ?B2 .

}

A bigger library of such anti-patterns would help to flag areas in ontologies that
warrant further investigations. Since such a library can be checked automatically, we
can include it easily in an ontology build system.

6.3 The AEON approach

OntoClean (Guarino and Welty, 2000; Guarino and Welty, 2002) is a well-known
methodology for ontology evaluation. More precisely, OntoClean enables the formal
analysis of classes and their subsumption hierarchy based on the philosophical notions
rigidity, unity, dependency and identity (known as the OntoClean meta-properties).
By tagging the classes with the OntoClean meta-properties, the ontology engineer can
capture more of what the ontology means in a concise and formal way. For example,
by stating that a certain class is rigid or not helps to understand if this class is meant
to be used as a role that applies to an individual, or rather as an essential type. By
raising these questions and the ontology engineer answering them, the ontology will
be more specific and easier to be used consistently.

From a practical perspective OntoClean provides means to derive measurable mis-
matches of a taxonomy with respect to an ideal structure which takes into account the
semantics of subsumption. Such mismatches have a structural nature, e.g. one is able
to derive that a certain concept should not be the subconcept of another concept. On-
toClean provides an explanation of why mismatches occur which subsequently might
help to improve the taxonomic structure. The philosophical notions of OntoClean may
be the subjects of long discussions, however, strictly speaking, this is not part of the
evaluation but of the ontology engineering because deciding the proper nature of a
class forces the ontology to commit itself to a more specified meaning, which in turn
allows for a more objective evaluation technique.

The application of OntoClean consists of two main steps. First, all classes are
tagged with regards to the OntoClean meta-properties. Second, the tagged classes are
checked against predefined constraints, with constraint violations indicating potential
misconceptualizations in the subsumption hierarchy. Although OntoClean is well docu-
mented in numerous publications (Guarino and Welty, 2002; Guarino and Welty, 2004;

115

Chapter 6 Structure

Guarino and Welty, 2000), and its importance is widely acknowledged, it is still used
rather infrequently due to the high costs for application. Several tools supporting
the OntoClean methodology have been developed and integrated into ontology editors
such as ODEClean for WebODE (Fernández-López and Gómez-Pérez, 2002), OntoEdit
(Sure et al., 2003) or Protégé (Grosso et al., 1999).

In order to leverage the adoption of OntoClean, we have developed AEON, an
approach to automatize both steps of OntoClean. By means of AEON, we can auto-
matically tag any given ontology with respect to the OntoClean meta-properties and
perform the constraint checking. For creating the taggings, our implementation of
AEON5 makes extensive use of the World Wide Web as the currently biggest existing
source of common sense knowledge. In line with several approaches such as (Cimiano
et al., 2005) and (Etzioni et al., 2004) we defined a set of domain independent patterns
which can be considered as indicators for or against Rigidity, Unity, Dependence and
Identity of given concepts in an ontology.

To evaluate our automatic tagging approach we created a gold standard, i.e. we cre-
ated a manually tagged middle-sized real-world ontology, and compared AEON results
against it. A number of OntoClean experts as well as ontology engineering experts
were involved in the creation of the more than 2,000 taggings in the gold standard.
Each expert had to tag the PROTON ontology (Terziev et al., 2005) with OntoClean
meta-properties. Even though from a philosophical perspective one may argue that
there can be only one OntoClean tagging for a given ontology our experiments had
the interesting and important finding, that the experts agreed only to a certain extend
on how to tag each individual concept. This shows again the difficulty of applying
OntoClean in real-world settings. We see it as an advantage of our approach that it is
based on the text corpus of the whole Web, instead of being defined by a small group
or a single person. As key result of our evaluation our approach compares favorably
with respect to the quality of the automatic taggings while reducing significantly the
time needed to do the tagging.

In order to check the OntoClean constraints automatically, we decided to reuse an
existing OWL DL formalization of the OntoClean meta-properties and constraints
(OntoClean ontology). We used the meta-ontology given in Section 3.2 to represent
the tagged ontology and were then able to automatically check the tagged ontology
according to the OntoClean ontology. We expected two types of errors when analyz-
ing the inconsistencies. First, the tagging of a concept is incorrect, and second, the
corresponding taxonomic relationship is incorrect. We found both kinds of errors in
our experimental data and looked at some of the errors in more detail to understand
the rationale behind.

In the next section, we briefly introduce the idea behind OntoClean. Then we
describe the four meta-properties and the most important OntoClean constraints. The

5http://ontoware.org/projects/aeon/

116

http://ontoware.org/projects/aeon/

6

6.3 The AEON approach

automatic tagging has been mostly developed by Johanna Völker and is described
in (Völker et al., 2008) in full detail, providing also the experimental validation of
the automatic tagging approach. In Section 6.3.3, we describe AEON’s support for
the second step of OntoClean, i.e. the checking of constraints based on the meta-
property taggings. For this purpose we reused an existing OWL DL version of the
constraints and reified the tagged ontology. We also present some examples for the
kind of inconsistencies we found in the tagged ontology.

6.3.1 OntoClean in theory

We provide a brief introduction to OntoClean, for a more thorough description refer
for example to (Guarino and Welty, 2000). In the OntoClean vocabulary, properties
are what we call classes in this thesis. Meta-properties are therefore properties of prop-
erties. Within this section we will use the term meta-property in the usual OntoClean
sense, whereas we will refrain from using the term property but rather consistently use
the term class as introduced in Chapter 2.

Applying the OntoClean methodology consists of two main steps.

• First, every single class of the ontology to be evaluated is tagged with occurrences
of the core meta-properties, which are described in Section 6.3.2. Thus, every
class has a certain tagging such as +R+U-D+I, where for example +R denotes that
a concept carries Rigidity and +U denotes that the concept carries Unity. We call
an ontology with tagged classes a tagged ontology (with regards to OntoClean,
to be precise).

• Second, after the tagging, all subsumptions of the ontology are checked accord-
ing to the OntoClean constraints (described in Section 6.3.3). Any violation
of a constraint indicates a potential misconceptualization in the subsumption
hierarchy.

The key idea of OntoClean is to constrain the possible taxonomic relations by dis-
allowing subsumptions between specific combinations of tagged classes. This way,
OntoClean provides a unique approach by formally analyzing the classes intensional
content and their subsumption relationships. In other words, applying OntoClean
means comparing the taxonomical part of a tagged ontology versus a predefined ideal
taxonomic structure which is defined by the combination of meta-properties and con-
straints.

After performing the two steps the result is a tagged ontology and a (potentially
empty) list of misconceptualizations. According to this list an ontology engineer may
repair (in an OntoClean sense) the ontology, in order to remove all discovered miscon-
ceptualizations.

117

Chapter 6 Structure

6.3.2 OntoClean meta-properties

As already indicated, the main ingredients of OntoClean are four meta-properties and
a number of rules. The four meta-properties are: rigidity (R), unity (U), dependence
(D) and identity (I). They base on philosophical notions as developed by (Strawson,
1976) and others, even dating back to Aristotle (Aristotle, 330 BC). Here we will offer
a short description of these meta-properties.

• Rigidity. Rigidity is based on the notion of essence. A class is essential for
an instance iff it is necessarily an instance of this class, in all worlds and at
all times. Iff a class is essential to all of its instances, the class is called rigid
and is tagged with +R. Iff it is not essential to some instances, it is called non-
rigid, tagged with -R. An anti-rigid class is one that is not essential to any of its
instances. It is tagged ∼R. An example of an anti-rigid class would be teacher,
as no teacher has always been, nor is necessarily, a teacher, whereas human is a
rigid class because all humans are necessarily humans and neither became nor
can stop being a human at some time.

• Unity. Unity tells us what is part of the object, what is not, and under what
conditions the object is whole (Guarino and Welty, 2004). This answer is given
by an unity criterion (UC), which describes the conditions that must hold among
the parts of a certain entity to consider that entity as a whole. For example,
there is an unity criterion for the parts of a human body, as we can say for every
human body which parts belong to it. Classes carrying an UC have Unity and
are tagged +U else -U.

• Dependence. A class C1 is dependent on a class C2 (and thus tagged +D), iff for
every instance of C1 an instance of C2 must exist. An example for a dependent
class would be food, as instances of food can only exist if there is something for
which these instances are food. This does not mean that an entity being food
ceases to exist the moment all animals die out that regarded it as food, it just
stops being food. Another way to regard dependency is to distinguish between
intrinsic and extrinsic class. Intrinsic classes are independent, whereas extrinsic
classes need to be given to an instance by circumstances or definitions.

• Identity. A class with identity is one, where all instances can be identified as
themselves, by virtue of this class or a superclass. This means that the class
carries an identity criterion (IC). It is tagged with +I, and with -I otherwise.
It is not important to answer the question of what this IC is (this may be hard
to answer), it is sufficient to know that the class carries an IC. For example, the
class human carries an IC, as we are able to identify someone as being the same
or not, even though we may not be able to say what IC we actually used for

118

6

6.3 The AEON approach

that. On the other hand, a class such as red would be tagged -I, as we cannot
tell instances of red apart because of their color.

OntoClean differentiates between the two tags I and O, whereby the first means,
that the concept simply carries an Identity Criterion (also through inheritance) and
the second that it carries its own Identity Criterion. The difference is not relevant for
this thesis, as the tagging +O may just be treated like the tagging +I, as +O implies +I
anyway and there are no subsumption constraints about the tag O.

6.3.3 OntoClean constraints

A number of OntoClean rules is applied on the tagged ontology. We use the existing
OntoClean rules to check a tagged ontology for consistency. Here, we will give some
illustrative example for these rules. For a full list refer to (Guarino and Welty, 2004).
As shown in (Sure et al., 2003) such rules can be formalized as logical axioms and
validated automatically by an inference engine. We will do so in the following section.

• ∼R can’t subsume +R. Having a class C1 subsuming the class C2, with C1

tagged ∼R and C2 tagged +R, would lead to the following inconsistency: C2

must always hold true for all of its instances (this is the meaning of the tagging:
C2 is a rigid concept). C2, as a subsumed concept, would always imply C1 for
all of its instances. Therefore there are at least some instances of C1 that are
necessarily C1 as they are C2. Thus C1 can not be anti-rigid, as the tagging says,
because this would mean that it is not necessarily true for any of its instances –
which would be a contradiction. Example: food, an anti-rigid class, subsuming
apple, a rigid class. As it is explained in (Guarino and Welty, 2004), nothing is
essentially food – it may or may not be eaten. On the other hand, an apple is
always an apple. But if apples were subsumed by food, there would be some food
that would essentially be food, namely apples, since every apple would always
be an apple and thus food – which would be a contradiction to the statement
that no food is essentially food.

• +I can’t subsume -I. If this rule was broken, it would mean that instances of
the subsumed class can not be identified – although they are also instances of the
subsuming class, which explicitly allows for the identification of the instances.
This would be a contradiction, revealing an error in our taxonomy (or tagging).

• +D can’t subsume -D. food is an example for a dependent class. Modeling
the class candy, we decide that everything with more than 20% sugar is candy,
thus the class would be independent. We let food subsume candy, and the
formal analysis shows this rule is broken. This points us to either an error in
the taxonomy or in the tagging. In this example we see that the quality of the
taxonomical analysis is only as good as the quality of the applied tagging.

119

Chapter 6 Structure

6.3.4 Constraint checking

Equipped with the OntoClean taggings we are able to check the hierarchical part of
the ontology with regards to the meta-property constraints defined by OntoClean. In
order to check these constraints automatically, we use the meta-ontology described
in Section 3.2 and extend it in order to provide a formalization of the constraints in
OWL in order to check the reified ontology.

Listing 6.1: OntoClean constraints meta-ontology in OWL.� �
(1) TransitiveProperty(meta:subClassOf)
(2) DisjointUnion(meta:Class

oc:RigidClass oc:NonRigidClass)
(3) DisjointUnion(meta:Class

oc:UnityClass oc:NonUnityClass)
(4) DisjointUnion(meta:Class

oc:DependentClass oc:NonDependentClass)
(5) DisjointUnion(meta:Class

oc:SortalClass oc:NonSortalClass)
(6) SubClassOf(oc:AntiRigidClass oc:NonRigidClass)
(7) SubClassOf(oc:AntiUnityClass oc:NonUnityClass)
(8) EquivalentClasses(oc:RigidClass

AllValuesFrom(meta:subClassOf
ComplementOf(oc:AntiRigidClass)))

(9) SubClassof(oc:UnityClass
AllValuesFrom(meta:subClassOf

ComplementOf(oc:AntiUnityClass)))
(10) SubClassOf(oc:DependentClass

AllValuesFrom(inverseOf(meta:subClassOf)
DependentClass))

(11) SubClassOf(oc:SortalClass
AllValuesFrom(inverseOf(meta:subClassOf)

SortalClass))� �
The formalization given in Listing 6.1 is based on the OntoClean formalization in

OWL DL as described in (Welty, 2006). The ontology builds on top of the meta-
ontology introduced in Section 3.2, and it is updated to use features from OWL 2.6

Axiom (1) adds the transitivity of the meta:subClassOf property, so that indirect sub-
sumptions are checked as well. Axioms (2)-(7) describe the tagging hierarchy and the

6The original ontology can be found at http://www.ontoclean.org/ontoclean-dl-v1.owl

120

http://www.ontoclean.org/ontoclean-dl-v1.owl

6

6.3 The AEON approach

complete partitions (i.e. each class is either +R or -R, +U or -U, etc.) of meta:Class as
described in Section 6.3.2. The class oc:Sortal describes the identity meta-property.
Finally, the axioms (8)-(11) describe the actual constraints, as partially given in Sec-
tion 6.3.3. Just to take an example, Axiom (10) describes the constraint with regards
to dependency, i.e. +D needs to be subsumed by +D. Note that the ontology, in par-
ticular axioms (1) and (8), infer that all rigid classes have to be subsumed by rigid
classes.

We took the tagging created in the previous sections and formalized them in OWL DL
as well, taking each tagging and interpreting it as a class instantiation of the respective
class described in the OWL DL constraint ontology. Then we added the reification
of the class hierarchy. For each tag, declare the individual that relates to the class
from the original ontology to belong to the class corresponding to that tag within the
constraint ontology. For example, if a class C is tagged +R, take the reifiied class iC
and add the fact ClassAssertion(oc:RigidClass iC). If a class C is tagged -U, take
the individual iC and add the fact ClassAssertion(oc:NonUnityClass iC), etc.

The thus created ontology can be simply checked for satisfiability by an OWL DL
reasoner (actually, even much weaker reasoners would be sufficient due to the limited
language fragment used in the constraint ontology). Standard reasoning services and
ontology debugging tools can be applied in order to discover and repair inconsistencies.

For our experiments, we used RaDON (Ji et al., 2009) a tool for inconsistency di-
agnosis based on KAON2 (Motik, 2006). RaDON features a number of algorithms
for checking consistency and coherence of both TBox and ABox – among them an
algorithm for identifying a set of minimal inconsistent subontologies for any given
ontology. The algorithm starts with the inconsistent ontology, and (i) tries to find
any minimal inconsistent subontology (Haase et al., 2005). Then, (ii) it removes any
axiom from this minimal inconsistent subontology – which fixes (at least) one incon-
sistency in this part of the ontology. Finally, (iii) the algorithm starts all over again
beginning with step (i) until the whole ontology is consistent. Obviously, this algo-
rithm is non-deterministic, but it gives us a good approximation of the total number
of inconsistencies in the ontology.

The disadvantage of this algorithm is that it does not compute the absolute number
of minimal inconsistent subontologies, because in step (ii) it potentially fixes more than
one inconsistency. And finally, it is not deterministic. Therefore, different experiments
can result in different sets of minimal inconsistent subontologies.

Take the classes apple and food. apple is tagged +R, whereas food is tagged ∼R
(as described in Section 6.3.3). Now for the sake of the example let’s assume that
apple is defined as a subclass of food. We reify this axiom as described above, which
results in the following formalization:

(a) ClassAssertion(oc:AntiRigidClass food)
(b) ClassAssertion(oc:RigidClass apple)

121

Chapter 6 Structure

(c) PropertyAssertion(meta:subClassOf apple food)

Together with axiom (8) from the constraint ontology in Listing 6.1:

(8) EquivalentClasses(oc:RigidClass
AllValuesFrom(meta:subClassOf

ComplementOf(oc:AntiRigidClass)))

This leads to an unsatisfiability: apple is a RigidClass (b), which has a local range
axiom for the subClassOf relation (8) so that from the instantiated relation (c) we
must infer that food belongs to the ComplementOf(AntiRigidClass) class description
– which is a clear contradiction to the given fact (a) ClassAssertion(AntiRigidClass
food).

Reifying the subsumption hierarchy in OWL DL (Vrandečić et al., 2006c) and the
formalization of the OntoClean constraints also in OWL DL, allowed us to simply
merge the two and reuse standard tools in order to detect inconsistencies with regards
to the formal properties of the ontologies.

6.3.5 Analysis and Examples

For evaluating our approach, we have created a set of manual taggings for an ontology
provided by three independent annotators A1, A2 and A3 (Völker et al., 2008). Table
6.1 shows the number of inconsistencies (each of them corresponding to a constraint
violation) which were detected by RaDON for these tagging sets. On average, 17
constraint violations were found per annotator – most of them related to rigidity and
identity. This also holds for the agreements, i.e. the data sets consisting of those
taggings where two or three annotators agreed upon the same meta-property tagging
for each concept. A further analysis and discussion of the annotator agreement can
be found in (Völker et al., 2008). As shown by the lower part of the table the overall
number of inconsistencies drops for the intersection of any two human taggings to an
average of 3.0 constraint violations per data set.7 This can be explained by the fact
that the number of agreed taggings is much lower than the overall number of tagged
concepts.

How does this compare to the automatically generated taggings? After training a
classifier on each of the data sets we obtained seven fully automatic taggings. Since
AEON so far has not been trained to distinguish between an anti-rigid and non-rigid
(respectively, anti-unity and non-unity) tagging we converted all taggings to their

7The agreement statistics represent lower bounds as they are computed in a cautious manner with
respect to the number of possible inconsistencies. If at least one of the individual annotators tagged
the regarding concept as -R whereas the others agreed upon ∼R, we assumed the agreement to be
-R (or -U, respectively), i.e. the weaker tagging.

122

6

6.3 The AEON approach

Constraint Violations
Inconsistencies R U D I

A1 24 20 2 1 1
A2 14 7 0 1 6
A3 13 3 0 0 10

avg 17.0 10.0 0.7 0.7 5.7
A1 / A2 5 1 1 1 2
A1 / A3 2 1 0 0 1
A2 / A3 2 1 0 0 1

avg 3.0 0.3 0.3 1.0 1.3
A1 / A2 / A3 2 0 0 0 2

Table 6.1: Constraint Violations for Manual Taggings. The lower part of the ta-
ble shows constraint violations based on taggings from the inter-annotater
agreed sets, e.g. A2 / A3 shows the number of violations based on only the
taggings where annotator A2 and A3 agreed on.

stricter counterpart wherever possible, in order to obtain an upper bound for the
number of constraint violations. The results of the inconsistency diagnosis computed
for these taggings are presented in Table 6.2. As expected, the average number of con-
straint violations per data set increased significantly from 17 to 40.7. The automatic
unity taggings seems to cause far more inconsistencies than it is the case for any of
the manual taggings – probably, due to the fact that anti-unity tags are very rare in
the manually created tagging sets.

In the following we present some illustrative examples for inconsistencies which were
detected in the ontology, and discuss possible reasons for the corresponding constraint
violations.

We expected two different kinds of errors when analyzing the unsatisfiabilities:
(i) the tagging was incorrect, e.g., because the annotators interpreted a concept in
a different way than its author (presumably) did, or (ii) the subsumption relation was
wrong, i.e. contradictory to a plausible meta-property assignment. We assumed that
the OntoClean constraints as given in Listing 6.1 are correct.

An example of an error of the first kind is given by the following facts:

(a) ClassAssertion(oc:AntiRigidClass company)
(b) ClassAssertion(oc:RigidClass mediaCompany)
(c) PropertyAssertion(meta:subClassOf mediaCompany company)

The facts contradict axiom (8) from the constraint ontology:

123

Chapter 6 Structure

Constraint Violations
Inconsistencies R U D I

A1 74 23 43 1 7
A2 17 3 8 5 1
A3 31 1 0 0 30

avg 40.7 9.0 17.0 2.0 12.7
A1 / A2 13 1 6 1 5
A1 / A3 5 2 0 0 3
A2 / A3 7 3 0 0 4

avg 8.3 2.0 2.0 0.3 4.0
A1 / A2 / A3 3 0 0 0 3

Table 6.2: Constraint Violations for Automatic Taggings

(8) EquivalentClasses(oc:RigidClass
AllValuesFrom(meta:subClassOf

ComplementOf(oc:AntiRigidClass)))

This error uncovers the improper tagging given by the taggers: MediaCompany and
Company should be tagged in a compatible way. As of now, Company is said to be not
rigid for all of its instances, whereas MediaCompany is rigid for its instances. Granted
that the subsumption of MediaCompany by Company is correct, the error must be with
the tagging of the two concepts. But here the taggers seem to have two different notions
of companies in mind when they tagged Company and MediaCompany. An anti-rigid
company is the role an organization can have: a university, which is an educational
organization, can become a company; or a company can turn into a not-for-profit
charity organization. In this case, the concept company means an organization that is
meant to generate profit. On the other hand, a company that is tagged rigid actually
is a type for individuals: now, a company can not cease to be a company any more,
but a change as described above would basically require to generate a new individual.
It depends heavily on the conceptualisation which of the two company concepts are
useful within a given ontology. The example given above shows a confusion with
regards to the concepts, and thus a possible source for errors.

An error of the second kind was discovered in the subsumption relation between
Group and PoliticalParty, which is only an indirect relation: Group is, in PROTON,
actually a superclass of Organization which in turn is a superclass of PoliticalEntity
which is a superclass of PoliticalParty. The problem here is indeed in the subsump-
tion relation between Group and Organization: a group is defined in PROTON as
“a group of agents, which is not organized in any way.” (Terziev et al., 2005). This
description is not applicable for an organization (since an organization is, by its very

124

6

6.3 The AEON approach

nature and as shown in its name, organized). In formal terms, Group was tagged as
∼U, whereas Organization (and also PoliticalParty) were tagged as +U, which causes
an inconsistency (based on axioms 1 and 24 of the constraints meta-ontology). The
ontology would need to be changed to reflect that (such a change is discussed in (Guar-
ino and Welty, 2004), where, incidentally, this very same pair, organization and group,
is taken as an example).

Another example of a subsumption relation that required closer inspection was the
subsumption of Hotel by Building. Is Hotel rather the role or the function of a
building, whereas the building describes the object itself? Then the building would
have a height, whereas the hotel would have a manager. A good example to illustrate
the difference would be the number of rooms: it is counted differently for hotels than
for buildings. This illustrates that it is not obvious if Hotel should be subsumed by
Building or not, as the constraint violation suggested.

All the given examples are taken from the automatically tagged ontology. They
illustrate that AEON points to possible taxonomic errors in an ontology, and guides
the ontology engineer towards problematic parts of the ontology.

Method 14 (OntoClean meta-property check)
An ontology can be tagged with the OntoClean meta-properties and then automat-
ically checked for constraint violations. Since the tagging of classes is expensive,
we provide an automatic tagging system AEON.

All constraint violations, i.e. inconsistencies in the meta-ontology, come from
two possible sources:

• an incorrect meta-property tagging, or

• an incorrect subsumption.

The evaluator has to carefully consider each inconsistency, discover which type of
error is discovered, and then either correct the tagging or redesign the subsumption
hierarchy.

125

7

Chapter 7

Semantics

So, so you think you can tell
heaven from hell,
blue skies from pain?

(Pink Floyd, 1965–1994,
Wish You Were Here

(Waters and Gilmour, 1975))

As in many other related fields, one can only control what one can measure (DeMarco,
1982). Measuring ontologies is necessary to evaluate ontologies both during engineering
and application and is a necessary precondition to perform quality assurance and
control the process of improvement. Metrics allow the fast and simple assessment of
an ontology and also to track their subsequent evolution. In the last years, many
ontology metrics and measures have been suggested and some initial work has been
done to study the nature of metrics and measures for ontologies in general. We are
extending this work.

There is a recurring set of problems with existing ontology metrics and measures.
We have argued in Chapter 6 that most metrics are based on structural notions without
taking into account the semantics which leads to incomparable measurement results.
First, most ontology metrics are defined over the RDF graph that represents an OWL
DL ontology and thus are basically graph metrics solely. Second, a very small number
of metrics take the semantics of OWL DL into account (subsumption etc.). Third,
few metrics consider the open world assumption. We believe that foundational work
addressing these issues will substantially facilitate the definition of proper ontology
metrics in the future.

In this chapter we will describe these issues in more detail, and suggest methods to
avoid them. These issues are not always problematic: we will also explore under which
circumstances they are problematic, and when they can be considered irrelevant. We

127

Chapter 7 Semantics

will outline the foundations for a novel set of metrics and measures, and discuss the
advantages and problems of the given solutions. Our approach is based on notions
of ontology normalization for measuring (Section 7.1), of stable metrics (Section 7.2),
and of language completeness (Section 7.3). Normalization will help to properly define
better ontology metrics in subsequent research in this area. Stability and completeness
will help us understand metrics better.

7.1 Normalization

We define ontological, or semantic, metrics to be those which do not measure the
structure of the ontology, but rather the models that are described by that structure.
In a näıve way, we could state that we base our metrics not on the explicit statements,
but on every statement that is entailed by the ontology.

But measuring the entailments is much harder than measuring the structure, and
we definitively need a reasoner to do that. We also need to make a difference between
a statement X that is entailed by an ontology O to be true (O |= X), a statement that
is not entailed by an ontology (O 6|= X), and a statement that is entailed not to be
true (O |= ¬X). To properly regard this difference leads us to so called stable metrics
that can deal with the open world assumption of OWL DL.

Note that measuring the entailments is rather an intuitive description than an exact
definition. In many cases – for example for a measure that simply counts the number
of statements in an ontology – measuring all entailed statements instead of measuring
all explicit statements often leads to an infinite number of statements. Just to give
one example, the ontology

SubClassOf(
SomeValuesFrom(R owl:Thing) C)

also entails the statements

SubClassOf(
SomeValuesFrom(R

SomeValuesFrom(R owl:Thing)) C)

and

SubClassOf(
SomeValuesFrom(R

SomeValuesFrom(R
SomeValuesFrom(R owl:Thing))) C)

128

7

7.1 Normalization

and so on, an endless chain of SomeValuesFrom-descriptions. But only terminating
measures are of practical interest, and thus we need approaches that allow us to capture
ontological metrics in a terminating way.

In order to gain the advantage of the simple and cheap measurement of structural
features, we can transform the structure of the ontology. These transformation need
to preserve the semantics of the ontology, that is, they need to describe the same
models. But they also need to make certain semantic features of the ontology explicit
in their structure – thus we can take structural measures of the transformed ontology
and interpret them as ontological measures of the original ontology. We call this kind
of transformations normalization (Vrandečić and Sure, 2007). We discuss this with
examples in Section 8.1.

We define five normalization steps:

1. name all relevant classes, so no anonymous complex class descriptions are left
(Section 7.1.1)

2. name anonymous individuals (Section 7.1.2)

3. materialize the subsumption hierarchy and normalize names (Section 7.1.3)

4. instantiate the most specific class or property for each individual and property
instance (Section 7.1.4)

5. normalize property instances (Section 7.1.5)

Normalization offers the advantage that metrics are much easier defined on the
normalized ontology since some properties of the graph are guaranteed: the ontology
graph will have no cycles, the number of normal class names and actual classes will be
equal, and problems of mapping and redundancy are dealt with. We give an example
in Section 7.1.6 to illustrate some of the steps.

Often normalizations do not result in canonical, unique results (like, for example
conjunctive normal forms). The normalization as described here can be extended in
order to result in canonic normalized forms, but the benefits of such an extension are
not clear. Considering that common serializations, like the RDF/XML serialization of
OWL ontologies (Smith et al., 2004), lack a canonic translation anyway, they cannot
be compared on a character by character base as some version control systems like
CVS or SVN would require.

Also, normalization is not an applicable solution for every metric. For example, if
we want to know the number of atomic classes in an ontology, first normalizing it and
then calculating the number actually will return the wrong result in the general case.
The goal of normalization is to actually provide the metric designer some tools in order
to simplify the description of their metric. In Section 8.1 we describe an example of
how to apply the normalization for the description of a metric.

129

Chapter 7 Semantics

Further note that the algorithms provided in this section are merely effective but
not efficient. They are given for the purpose of understanding normalization, and
not as a blueprint for implementing them. Implementing the given algorithms will
be unnecessarily slow, and more clever strategies for efficiently normalizing ontologies
remain an open issue.

7.1.1 First normalization

In the first normalization our aim is to get rid of anonymous complex class descrip-
tions.

After the first normalization, there will be only two types of class axioms left:
definitions (i.e. class equivalence axioms between a simple class name and a class
description) and simple subsumptions (i.e. subsumptions between two simple class
names). Other class axioms (i.e. disjoints, disjoint unions, class equivalences involivng
more than one complex class description, and subsumptions involving any complex
class descriptions) will be reformulated. Class and property assertions will both use
only simple class or property names, and no complex class descriptions.

The first normalization can be done as follows:

1. replace all axioms of the form
DisjointUnion(C D E ...)
by the following axioms:
EquivalentClasses(C UnionOf(D E ...))
EquivalentClasses(owl:Nothing IntersectionOf(D E ...))

2. replace all axioms of the form
Disjoint(C D)
by the following axiom:
EquivalentClasses(owl:Nothing IntersectionOf(C D))

3. for every axiom of the form
SubClassOf(C D)
where C (or D) is a complex class description, add a new axiom
EquivalentClasses(A C) (or EquivalentClasses(B D))
with A (or B) being a new class name. Replace the original axiom with
SubClassOf(A D) (or SubClassOf(C B) or even SubClassOf(A B))
(so that only simple class names remain in the subsumption axiom)

4. in all axioms of the form
EquivalentClasses(C D)
where both C and D are complex class descriptions, replace that axiom with the
following two axioms:
EquivalentClasses(A C)

130

7

7.1 Normalization

EquivalentClasses(A D)
with A being a new simple class name.

5. replace all axioms of the form
EquivalentClasses(C A)
where C is a complex class description and A a simple class name with the axiom
EquivalentClasses(A C)

6. in all axioms having one of the following forms:
ClassAssertion(C a)
PropertyDomain(R C)
PropertyRange(R C)
HasKey(C R S)
where C is a complex class description, replace C with A (being a new simple class
name) and add the following axiom:
EquivalentClasses(A C)

None of these structural changes change the possible models, that means, that they
are semantically equivalent. They do introduce new class names to the ontology,
which may not be desirable in all cases (for example for presentation purposes, for
counting the classes, and so on), but it has to be noted that normalization is done
only for measuring processes, and not for the purpose of engineering and processing
the ontology (i.e., a normalized ontology is not meant to be published). Note that this
way named classes could be introduced that are unsatisfiable. This does not mean
that the ontology becomes unsatisfiable, but solely these newly introduced classes. In
the third step (Section 7.1.3) we can remove these additional names again.

7.1.2 Second normalization

The second normalization gets rid of anonymous individuals. This means that every
blank node that is an (asserted or inferred) individual needs to be replaced with an URI
reference. Especially in FOAF files (Brickley and Miller, 2005) this occurs regularly
since, for some time, it was regarded as good practice not to define URIs for persons.
Integration of data was not done via the URI, but with inverse functional properties.
This practice is problematic, since the semantics of blank nodes in RDF are rather
often not fully understood, and should thus be avoided. The second normalization as
defined here captures the semantics most users seem to want to express anyway, as
exemplified by the discussions around FOAF on their mailing list. We already argued
in Section 4.3 that such anonymous individuals should be avoided.

It is possible that these newly introduced individual names add a further name to
already existing (or other newly introduced) individuals. But since OWL DL does not
adhere to a unique name assumptions, this is no problem. Furthermore, the next step
of normalization will take care to resolve such synonyms.

131

Chapter 7 Semantics

7.1.3 Third normalization

The third normalization will materialize the subsumption hierarchy and normalize
the names. The first step requires a reasoner.

1. for all pairs of simple class names (A, B) in the ontology, add the axiom
SubClassOf(A B)
if the ontology entails that axiom (that is, materialize all subsumptions between
simple named classes)

2. detect all cycles in the subsumption structure. For each set
Mi = {A1 . . . An}
of classes that participate in a cycle, remove all subsumption axioms from the
ontology where both classes of the axiom are members of this set. For each such
set Mi introduce a new class name Bi. In subsumption axioms where only one
class is a member of this set, replace the class with Bi in the axioms. Add the
axioms
EquivalentClasses(Bi A1), . . . , EquivalentClasses(Bi An)
to the ontology. If Bi is unsatisfiable, take owl:Nothing instead of Bi. If Bi is
equal to owl:Thing, take owl:Thing

3. regarding solely the subontology that consists of all subsumption axioms of the
ontology, remove all redundant subsumption axioms (that is, remove all sub-
sumption axioms that are redundant due to the transitivity of the subsumption
relation alone). This also removes all subsumption axioms involving owl:Thing
and owl:Nothing

The subsumption structure now forms a directed acyclic graph that represents the
complete subsumption hierarchy of the original ontology. We define a set of normal
class names of an ontology as follows: every class name that participates in a sub-
sumption axiom after the third normalization of an ontology is a normal class name
of that ontology.

Now in all axioms of the types ClassAssertion, PropertyDomain, PropertyRange,
and HasKey we can replace all not normal class names with its equivalent normal class
names.

Note that instead of creating a new class name for each detected cycle, often it
will make more sense to choose a name from the set of classes involved in that cycle,
based on some criterion (e.g. the class name belonging to a certain namespace, the
popularity of the class name on the Web, etc.). For many ontology metrics, this does
not make any difference, so we disregard it for now, but we expect the normalizations
to have beneficial effects in other scenarios as well, in which case some steps of the
normalization need to be revisited in more detail.

132

7

7.1 Normalization

Compared to classes, properties are often neglected. Besides inverse properties
no other complex property descriptions can be stated in OWL. Therefore property
normalization can be regarded as normalizing inverses and property names analogous
to class name normalization. All normal property names have to be stated explicitly to
be equivalent to all other property names they are equal to (that is, we materialize the
equality relations between the normal property names and the non-normal ones). All
occurrences of non-normal property names (besides within the axiom stating equality
with the normal property name, and besides within annotation property instances)
are replaced with the normal property name. We can also normalize the property
hierarchy just as we normalized the class hierarchy.

The same holds true for individuals. In case an individual has more than one name,
we decide on or introduce a normal one and state explicitly equality to the normal
name, and then replace all occurrences of the non-normal individual names with the
normal one (besides within the axiom stating equality with the normal individual
name, and besides within annotation property instances).

We disregard annotation property instances since they may be used to state anno-
tations about the URI, and not about the actual class, property, or individual. There
could be annotations that describe when a certain URI was introduced, who created
it, its deprecation state, or that point to a discussion related to the introduction of the
URI. Some annotations on the other hand may be useful for the normal name as well
– especially labels, or sometimes comments. Since annotations do not have impact
on the DL semantics of the ontology anyway, they may be dropped for the purpose
of measuring semantic metrics. Nevertheless, if the normalization is done for some
other purpose, and it is planned to further use the normalized version of the ontology
in some scenario, then the possible replacement of names within annotation property
instances depends both on the scenario and the instantiated annotation property (for
example, it may be useful to normalize the label when the ontology will be displayed
on the user interface, but it may be bad to normalize versioning information that is
captured within annotations).

7.1.4 Fourth normalization

The fourth normalization aims towards instantiating the most specific classes and
properties, as this conveys the most information explicitly (and deriving instantiations
of higher levels is very cheap because of the asserted explicitness of the hierarchy due
to third normalization). This does not mean that every instance will belong to only
one class, multiple instantiations will still be necessary in general.

Here is a possible algorithm to perform the fourth normalization of an ontology O.

1. for each normal class name C and each normal individual name i in O, add
ClassAssertion(C i)

133

Chapter 7 Semantics

to O if it is entailed by the ontology

2. for each normal object property instance
PropertyAssertion(R i j)
and each normal object property name S so that SubPropertyOf(S R)
is an explicit axiom in O, add PropertyAssertion(S i j)
if it is entailed by the ontology. Check this also for the property instances added
this way (this step will terminate since the subsumption hierarchy is finite)

3. for each normal data property instance
PropertyAssertion(T i d)
and each normal data property name U proceed as in the previous step.

4. create a subontology IO out of O including only the facts and the explicitly stated
subsumption hierarchy of the classes and properties (after third normalization)

5. remove all facts from O that are redundant in IO

We do not want to remove all redundant facts from the ontology at this step, since
there may be some facts that are redundant due to an interplay of different other
terminological axioms. For example, in the following ontology

ClassAssertion(Person Adam)
PropertyAssertion(likes Adam Eve)
PropertyDomain(likes Person)

the first statement is actually redundant, but would not be removed by the above
algorithm. This is because we only remove axioms that are redundant within the
subontology IO, and the axiom stating the domain of likes would not be part of it.

7.1.5 Fifth normalization

The fifth normalization finally normalizes the properties: we materialize property
instances of symmetric, reflexive and inverse properties, and we clean the transitivity
relationship. This can be done similar to the creation of the subsumption hierarchy in
the third normalization: after materializing all property instances, we remove all that
are redundant in the subontology TO, which contains only the property instances of
all transitive properties, and the axioms stating the transitivity of these properties.

7.1.6 Examples of normalization

The metric we will regard in this example is the maximum depth of the taxonomy
as defined by (Lozano-Tello and Gómez-Pérez, 2004) and described in Section 6.1.1.

134

7

7.1 Normalization

What we want to measure is intuitively described as the length of the subsumption
hierarchy, or else the number of levels the class hierarchy has. We name the measure
md.

Let us regard the following ontology:

EquivalentClasses(C MinCardinality(1 R))
EquivalentClasses(D MinCardinality(2 R))
EquivalentClasses(E MinCardinality(3 R))

By the definition of md, the depth of the ontology is 1 (since there are no explicitly
stated subsumption axioms, every path has one node). But after normalization the
ontology gets transformed to this:

EquivalentClasses(C MinCardinality(1 R))
EquivalentClasses(D MinCardinality(2 R))
EquivalentClasses(E MinCardinality(3 R))
SubClassOf(D C)
SubClassOf(E D)

Now the very same metric, applied to the normalized ontology, actually captures
the intuition of the depth of the ontology and returns 3.

As discussed earlier, this example also shows us that some metrics will not work
with normalization. In (Gangemi et al., 2005), metric (M30) is the axiom/class ratio.
On the original ontology it is 1, but raises to 5/3 in the normalized version. In case
the original ontology is being distributed and shared, (M30) – if stated as metadata of
the ontology, for example in some kind of ontology repository (Hartmann et al., 2005)
– should be 1, and not calculated on the normalized version.

Let us regard another example. In the following ontology

SubClassOf(D C)
SubClassOf(E D)
SubClassOf(D E)
SubClassOf(F E)

md will be ∞ due to the subsumption cycle between D and E. The cycle can be
resolved by rewriting the axioms in the following way:

SubClassOf(D C)
EquivalentClasses(D E)
SubClassOf(F E)

135

Chapter 7 Semantics

But due to the definition, md would yield 2 here – there are two explicit subsumption
paths, (C, D) and (E, F), both having two nodes, and thus the longest path is 2. The
structural measure again does not bring the expected result. After normalization,
though, the ontology will look like this:

SubClassOf(A C)
EquivalentClasses(A D)
EquivalentClasses(A E)
SubClassOf(F A)

We have introduced a new class name A that replaces the members of the cycle (D,
E). Now the depth of the ontology is 3, as we would have expected from the start,
since the cycle is treated appropriately.

Existing structural metrics, as discussed in Chapter 6, often fail to capture what
they are meant for. Normalization is a tool that is easy to apply and that can easily
repair a number of such metrics. Even seemingly simple metrics, as demonstrated here
with the ontology depth, are defined in a way that makes too many assumption with
regards to the structure of the measured ontologies.

As we can see in this chapter, simple structural measures on the ontology do yield
values, and often these values may be highly interesting. If we know that md resolves
to ∞, then this tells us that we have a cycle in the subsumption hierarchy. Also a
high number of classes and complex axioms, but a low md may indicate an expensive
to reason about ontology, since the major part of the taxonomy seems to be implicitly
stated (but such claims need to be evaluated appropriately). But both results do
not capture what the measure was meant to express, that is, the depth of the class
hierarchy.

7.2 Stability

Another aspect of semantic metrics is their stability with regards to the open world
assumption of OWL (Vrandečić and Sure, 2007). The question is, how does the metric
fare when further axioms are added to the ontology? For example, a taxonomy may
have a certain depth, but new axioms could be added that declare the equivalence of
all leaves of the taxonomy with its root, thus leading to a depth of 1. This often will
not even raise an inconsistency, but is still an indicator for a weak ontology. Stable
metrics are metrics that take the open world assumption properly into account. Stable
metrics allow us to make statements about the behavior of an ontology in the context
of a dynamic and changing World Wide Web, where ontologies may frequently be
merged together in order to answer questions over integrated knowledge.

136

7

7.2 Stability

When an ontology is built, a stable metric will indicate if and how an ontology can
be changed. An ontology engineer can prevent certain changes that will render the
ontology useless. By adding more heavy-weight axioms to the ontology (for example
complete partitions) the minimal depth may raise, indicating a more robust ontology
with regards to future changes. Stable metrics are indicators for stable ontologies.

Stability with regards to the knowledge base can also be used by closing certain
classes. In some cases we know that a knowledge base offers complete coverage: for
example, we may publish a complete list of all members of a certain work group, or
a complete list of all countries. In this case we can use nominals to close off the
class and declare its completeness. But note that such a closure often has undesirable
computational side effects in many reasoners.

Often metrics intend to capture features of the ontology that are independent of the
actual representation of the ontology. But as we have seen, structural transformations
of the ontology description often lead to differences in the metrics even though the
semantics remained untouched. Normalization offers a way to overcome these problems
in many cases.

In order to illustrate metrics stability, consider the following ontology:

PropertyAssertion(author paper York)
PropertyAssertion(author paper Denny)
PropertyAssertion(author paper Zdenko)

Now let us ask the simple question: how many authors does the paper have? It
seems that the answer should be 3. But now, if you knew that Zdenko is just another
name for Denny, and thus state

SameIndividual(Zdenko Denny)

then you suddenly would change your answer to 2, or even, becoming more careful,
giving an answer such as “I am not sure, it is either 1 or 2”. So finally we can state
that

DifferentIndividuals(York Denny)

and thus arrive at the answer that the paper indeed has 2 authors (and even that is
possibly wrong if we consider that we could add statements any time in an open world
that add further authors to the paper – all we know as of now is that the paper has
at least two authors).

When creating a metric, we have to ask ourselves the following, similar question: how
does the metric behave when additions to the ontology happen? Since ontologies are
meant to be smushed and integrated constantly and dynamically, can we predict how
certain properties of the ontology will behave, that is, if M(O1) and M(O2) for a metric

137

Chapter 7 Semantics

M and two ontologies O1 and O2 are known, what can we state about M(O1 ∪ O2)?
Or even, can we give a function fM so that we can calculate fM (M(O1), M(O2)) =
M(O1 ∪ O2) without having to calculate M(O1 ∪ O2) directly (which may be much
more expensive)?

In the previous section we have discussed the simple example of ontology depth.
Given an ontology O1:

SubClassOf(D C)
SubClassOf(E D)

and a second ontology O2:

SubClassOf(C D)
SubClassOf(E D)

In this case, md(O1) = 3, md(O2) = 2. We may expect md(O1 ∪ O2) to be 3, since
md is defined as the maximal depth, but since the union of both ontologies actually
creates a cycle in the subsumption hierarchy, md is ∞ – or, after normalization, just
2, and thus even smaller than the maximal depth before the union.

We can avoid such behavior of the metrics by carefully taking the open world as-
sumption into account when defining the metric. But this leads us to three possibilities
for defining metrics,

1. to base the value on the ontology as it is,

2. to measure an upper bound, or

3. to measure a lower bound.

We need a more complicated example to fully demonstrate these metrics:

DisjointUnion(C D E)
SubClassOf(F E)
EquivalentClasses(G ComplementOf(C))
SubClassOf(H C)
ClassAssertion(F i)
ClassAssertion(D j)
ClassAssertion(G k)

The normalized version of this ontology looks like this (shortened slightly for read-
ability):

138

7

7.2 Stability

EquivalentClasses(C UnionOf(D E))
EquivalentClasses(owl:Nothing IntersectionOf(D E))
SubClassOf(D C)
SubClassOf(E C)
SubClassOf(F E)
EquivalentClasses(G ComplementOf(C))
SubClassOf(H C)
ClassAssertion(F i)
ClassAssertion(D j)
ClassAssertion(G k)

md of this ontology is 3 (C, E, F). But besides the actual depth, we can also calculate
the minimal depth of this ontology, that is, no matter what axioms are added, what
is the smallest number of levels the ontology class hierarchy will have (under the
condition that the ontology remains satisfiable)?

In the given example, if we add the axiom EquivalentClasses(F E) md will de-
crease to 2. But on the other hand, no matter what axiom we further add, there is no
way to let C collapse with D and E, therefore C is a proper superset of both (that is,
it contains more individuals than each D or E alone). And because C cannot become
owl:Thing (due to k being outside of C), the minimum depth of the ontology is 2.

The maximum depth of an ontology is usually ∞ (since we can always add axioms
about an arbitrarily long class hierarchy). Therefore we need to define a maximum
depth in a slightly different way in order to be of practical value. In the following, we
will discuss two possible definitions.

Instead of allowing for arbitrary axioms that may be added, we only allow to add
axioms of the form SubClassOf(A B) with A and B being normal class names of the nor-
malized ontology. Thus, in the above example, we may add the axiom SubClassOf(H
F) to the ontology in order to increase md from 3 to 4. No longer subsumption path is
possible, since all the other named classes would become unsatisfiable when added to
an existing path. So this metric will provide with a maximum depth of the ontology,
assuming no new class names are added.

Another possibility to constrain the axioms to be added, is to allow only for axioms
that do not relate to the existing ontology, that is, the intersection of the signatures of
the two ontologies is empty. The signature of an ontology is the set of all names used in
the ontology (besides the names from the OWL, RDF, RDFS, and XSD namespaces).
In this case, md of the merged ontology is the maximal md of the single ontologies,
since no interaction between the axioms can happen that may increase or reduce md.
We can thus define

fmd(md(O1), md(O2)) = max(md(O1), md(O2))

139

Chapter 7 Semantics

which is much cheaper to calculate than md(O1 ∪O2).

Stable metrics are metrics that take the open world assumption into account. Stable
metrics will help us to evaluate ontologies for the Wide Wild Web. Since we expect
ontologies to be merged on the Web dynamically, stable metrics allow us to state
conditions that the ontology will fulfill in any situation. The depth of an ontology
may be a too simple example to demonstrate the advantages of stable metrics, but
imagine a dynamic, ontology-based graphical user interface. Having certain guarantees
with regards to the future development of the properties of the ontology may help
the designer of the user interface tremendously, even if it is such a seemingly trivial
statement such as “the depth of the ontology is never less than 3”.

There is no simple recipe to follow in order to turn a metric into a stable metric, but
the question outlined at the beginning of this section, and then discussed throughout
the rest – how does the ontology behave when axioms are added? – can be used as a
guideline in achieving a stable metric.

Method 15 (Ensuring a stable class hierarchy)
Calculate a normalized class depth measure, i.e. calculate the length of the longest
subsumption path on the normalized version of the ontology md(N(O)). Now
calculate the stable minimal depth of the ontology mdmin(O). If

md(N(O)) 6= mdmin(O)

then the ontology hierarchy is not stable and may collapse.

We expect that the ready availability of metrics that take the open world assumption
into account will lead to more robust ontologies. Since ontology engineers will have
these numbers available at engineering and maintenance time, they will learn easier
how to achieve their actual goals. For example, ontology engineers that want to create
a class hierarchy that will not collapse to less levels can always check if the minimum
depth as described above corresponds to the asserted depth. This would be useful
when regarding a class hierarchy with a certain number of levels, which are known not
to collapse (e.g. a biological taxonomy). The ontology engineer now could check if the
well known number of levels indeed corresponds to the calculated minimum depth.

Tools could guide the ontology engineer towards achieving such goals. Ontology
engineers get more aware of such problems, and at the same time get tools to measure,
and thus potentially control them.

140

7

7.3 Language completeness

7.3 Language completeness

Language completeness is defined on a certain ontology with regards to a specific
ontology language (or subset of the language). Given a specific signature (i.e. set of
names), language completeness measures the ratio between the knowledge that can be
expressed and the knowledge that is stated. For example, if we have an ontology with
the signature Adam, Eve, Apple, knows, eats, Person, Food, we can ask which of the
individuals are persons, and which of the individuals know each other.

Thus assuming a simple assertional language such as RDF, language completeness
with regards to that language (or short: assertional completeness) is achieved by
knowing about all possible ground facts that can be described by the ontology (i.e. for
each fact {ClassAssertion(C i)|∀C ∈ O,∀i ∈ O}∪{PropertyAssertion(R i j)|∀R ∈
O,∀i ∈ O,∀j ∈ O} we can say if it is true or not, and none of them is unknown).

An expressive ontology language allows numerous more questions to be asked besides
ground facts: is the domain of knows a Person? Is it the range? Is eats a subproperty
of knows? In order to have a language complete ontology with regards to the more
expressive language, the ontology must offer defined answers for all questions that can
be asked with the given language.

Method 16 (Measuring language completeness)
We define a function Υi with the index i being a language fragment (if none is
given, the assertional fragment is assumed) from an ontology O to the set of all
possible axioms over the signature of O given the language fragment i.

We introduce Ci as language completeness over the language fragment i.

Ci(O) =
|{X|X ∈ Υ(O), O |= X ∨O |= ¬X}|

|Υ(O)|

Note that the language fragment the completeness measure is using is not tied to the
language fragment the ontology is using. Consider for example the following ontology
using the above example signature.

Disjoint(Food Person)
PropertyDomain(knows Person)
PropertyRange(eats Food)
ClassAssertion(Person Adam)
PropertyAssertion(knows Eve Adam)
PropertyAssertion(eats Eve Apple)

141

Chapter 7 Semantics

With the help of Table 7.1 we can calculate the assertional completeness C(O) =
17
24 ≈ 0.71. We see that we are using a far more expressive language to state the on-
tology than the simple assertional fragment we use for calculating the completeness.
Relational exploration is a method to explore language fragments of higher expressiv-
ity, and to calculate the smallest set of questions that have to be answered in order
to achieve a language complete ontology (Rudolph et al., 2007). In order to improve
completeness we can thus add further axioms, either by adding more facts such as

PropertyAssertion(knows Adam Eve)
NegativePropertyAssertion(eats Apple Apple)

or by adding terminological axioms that allow to infer that certain facts hold, such as

SymmetricProperty(knows)
IrreflexiveProperty(eats)

which in this case adds exactly the same amount of information to our given signature
using the same number of axioms (i.e. improving the completeness to 19

24 ≈ 0.79).

Class A
pp

le

A
da

m

E
ve

Food ! % %

Person % ! !

knows A
pp

le

A
da

m

E
ve

Apple % % %

Adam ? ? ?
Eve ? ! ?

eats A
pp

le

A
da

m

E
ve

Apple ? % %

Adam ? % %

Eve ! % %

Table 7.1: Class and property assertions to calculate the language completeness of the
example ontology.

Even though both sets of axioms improve the ontology with the same information
content, the second set seems intuitively better as it further describes the terms in-
tensionally instead of just adding facts extensionally. How can we capture that in a
completeness metric?

Instead of using assertional completeness, which indeed is not suited for capturing
intensional completeness, we have to use a more expressive language fragment. For
example, by adding the symmetry axiom to the language fragment used for computing
language completeness, we see that the second set indeed displays a higher complete-
ness (0.77) than the first set (0.73). The more expressive the language fragment used
for calculating the completeness, the more the measure will reflect the value of inten-
sional axioms.

142

8

Chapter 8

Representation

Ceci n’est pas une pipe.

(René Magritte, 1898–1967,
The Treachery of Images

(Magritte, 1929))

Representational aspects of an ontology deal with the relation between the semantics
and the structure, i.e. the way the semantics are structurally represented. This will
often uncover mistakes and omissions within the relation between the formal specifi-
cation and the shared conceptualization – or at least the models which are supposedly
isomorphic to the conceptualizations.

8.1 Ontological metrics

Normalization helps with the definition of ontological metrics, since they will help a
metric designer in being explicitly aware in their choices when creating the metric.
Furthermore they offer the ontology designer ready to use methods to easier capture
what they mean to express with the designed metric. Sometimes simple structural
metrics are sufficient for the task at hand, and many structural metrics exist today.
Sometimes an understanding of the semantic model is required, and we have introduced
a way to gain that.

The aspect of representation covers how the structure represents the semantic. In or-
der to evaluate features of the representation, we compare the results of the structural
measures to the results of the semantic measures. Using the normalization described
in Chapter 7, we can even often use the same (or a very similar) metric as described in
Chapter 6, applied before and after normalization, and compare the respective results.
Any deviations between the results of the two measurements indicate elements of the

143

Chapter 8 Representation

A A

B

E D D

B C

Figure 8.1: A simple taxonomy before (left) and after (right) normalization. The ar-
rows denote subsumption.

ontology that require further investigation. For example, consider the ontology given
in Figure 8.1. The number of classes before normalization is 5, and after normaliza-
tion 3. This difference shows that several classes collapse into one, which may be an
error or done by intention. In case this is an error, it needs to be corrected. If this is
done intentionally, the rationale for this design decision should be documented in the
ontology. This becomes especially evident if you imagine removing any single one of
the subsumption relations between B, C and E. The result will be very different, i.e.
such an erroneous axiom has a high impact on the resulting conceptualization.

By contrasting the two ontology structures in Figure 8.1 we see that the right one is
a more faithful representation of the semantics of the ontology. Both structures have
the same semantics, i.e. allow the same sets of models. The right one is more concise,
and for most cases more suitable than the left one. Evaluation methods dealing with
representational aspect can uncover such differences and indicate problematic parts of
an ontology (Vrandečić and Sure, 2007).

In the remainder of this Section, we will discuss the four metrics we have introduced
in Section 6.1 as examples of how they can be turned into semantic metrics that
actually reflect their descriptions. This is a prerequisite for the discussion of the
representational metrics introduced subsequently, and their meaning. For notation,
we formalize the five steps of normalization as the functions N1 to N5 : O → O, where
Ni+1(O) always means Ni+1(Ni(O)), N0 is the identity function, and N(O) being a
shortcut for N5(O).

144

8

8.2 Maximum depth of the taxonomy

8.2 Maximum depth of the taxonomy

In Section 6.1.1.we have introduced the maximum depth of the taxonomy metric as
defined by (Lozano-Tello and Gómez-Pérez, 2004). We have argued that the metric
would be more appropriately be named maximum subsumption path length instead.
Now that we have the tool of normalization at hand, we can actually use that in order
to capture the original meaning of the metric: the maximum depth of the taxonomy
(let that be TD) of an ontology O equals the maximum subsumption path length
(let that be SL) of the normalized version of the ontology O (to be exact, after the
third normalization), i.e. TD(O) = SL(N3(O)). This resolves all the problems we
have mentioned in Section 6.1.1 and the result of the metric does indeed capture its
meaning.

Now we can introduce a new metric, ET (O) = TD(O)
SL(O) which describes the explicit-

ness of the subsumption hierarchy.

Method 17 (Explicitness of the subsumption hierarchy)
Calculate ET (O).

• If ET (O) = 1 everything seems fine

• If ET (O) < 1 then some of the classes in the ontology have collapsed. Find
the collapsed classes and repair the explicit class hierarchy

• If ET (O) > 1 part of the class hierarchy has not been explicated. Find that
part and repair the class hierarchy

Note that this test does not necessarily discover all errors – one could imagine an
ontology where parts of the class hierarchy collapse, and part of the class hierarchy
is not explicated so that the result balances out to 1 again. But whenever the metric
ET (O) does not result in 1, there is a high probability of an error. In order to find all
possible errors in the class hierarchy we would rather calculate

D = H(O)/H(N(O)) ∪H(N(O))/H(O)

with H : O → O a function that selects only the simple subsumptions. This calculates
all single subsumptions that are not part of the hierarchy, and the other way around.
Each axiom x ∈ D is thus a potential problematic axiom that should be checked.

145

Chapter 8 Representation

8.3 Class / relation ratio

In Section 6.1.2 we discussed the (M29) class / relation ratio from (Gangemi et al.,
2005) being

M29(O) =
|C(O)|
|P (O)|

(with C(O) yielding the set of used class names in O, and P (O) the set of property
names in O). We have shown that the metric would be better named class name /
property name ratio. But making the same modification as above and yielding a new
metric

M29∗(O) = M29(N(O)) =
|C(N(O))|
|P (N(O))|

also would not yield the ratio between classes and relations, since the normalization
does not remove synonymous class and property names (but rather potentially adds
further such names).

Instead we need to define a metric that counts the number of normal class and
property names (we do that by introducing CN (O) yielding the set of normal class
names in the normalized version of O and PN (O) yielding the set of normal property
names in the normalized version of O), and thus leading to a new metric

N29(O) =
|CN (O)|
|PN (O)|

Comparing the two ratios M29(O)/N29(O) does not yield a value with an obvious
meaning. Instead we should regard the ratio between each of the two components, i.e.
the ratio of classes and class names

RC(O) =
|CN (O)|
|C(O)|

and the ratio of properties and property names

RP (O) =
|PN (O)|
|P (O)|

Method 18 (Explicit terminology ratio)
Calculate RC(O) and RP (O).

• If RC(O) = RP (O) = 1 then this indicates no problems with the coverage of
elements with names in the ontology

146

8

8.4 Relationship richness

• If RC(O) < 1 or RP (O) < 1 and the ontology does not include a mapping to
an external vocabulary then this indicates possible problems since a number
of names have collapsed to describe the same class

• If RC(O) < 1 or RP (O) < 1 and the ontology includes a mapping to an
external vocabulary we can remove all axioms providing the mapping and
calculate RC(O′) and RP (O′) anew

• If RC(O) > 1 or RP (O) > 1 then this indicates that not all interesting
classes or properties have been given a name, i.e. the coverage of classes and
properties with names may not be sufficient

In this metric we see that we cannot just mechanically replace the ontology with
its normalized version in order to yield a metric that fits to the desired definition. It
is also not true that simply comparing the metrics of the normalized and the original
ontology yields interesting metrics that provides us with more insight in the quality
of the ontology.

8.4 Relationship richness

We redefine the original relationship richness metric from (Tartir et al., 2005) as
described in Section 6.1.3 here as

RR∗(O) =
|P (O)|

|H(O)|+ |P (O)|

(with H as defined in Section 8.2 and P as defined in Section 8.3). As discussed in
Section 6.1.3 this value is pretty much meaningless as it is.

In order to repair this we cannot just redefine RR(O) = RR∗(N(O)) because
P (N(O)) does not yield the number of properties. Instead we could use the num-
ber of normal property names, resulting in

RR(O) =
|PN (O)|

|H(N(O))|+ |PN (O)|

which is probably the closest we can get to the original intended definition.
Regarding the rationale for this metric, the authors are looking for a metric that

”reflects the diversity of relations and placement of relations in the ontology” and is
based on the assumption that an ontology that ”contains many relations other than
class-subclass relations is richer than a taxonomy with only class-subclass relation-

147

Chapter 8 Representation

ships”. We question this assumption: it seems more straightforward to simply use the
number of classes than the number of class-subclass relations. We do agree with the
original definition that the relationship richness should be of the form |PN (O)|

X+|PN (O)| , but
we disagree that |H(N(O))| is a good value for X but instead we suggest |CN (O)|.
In order to understand the difference we first investigate the relationship between the
number of class-subclass relations and the number of classes in an ontology.

We understand the number of class-subclass relations to be |H(N(O))|, i.e. the
number of simple subsumptions in the normalized ontology. The number of classes is
|CN (O)|, i.e. the number of normal class names in an ontology. Now we can define
the set of all root classes, i.e. of all classes that have no given superclass (besides
owl:Thing) as

R(O) = {C|C ∈ CN (O) ∧ ∀D ∈ CN (O) : SubClassOf(C D) 6∈ H(N(O))}

Further we can define the treelikeness of the class hierarchy as

t(O) =
|CN (O)/R(O)|
|H(N(O))|

(or 0 if |H(N(O))| = 0). The closer the value to 1 the more treelike the class hierarchy
is. So if there is exactly one simple subsumption for each class that is not a root class
then the treelikeness of the class hierarchy is 1 (this allows us to easily give a formal
definition for the terms tree and set of trees describing the taxonomy of an ontology:
a tree is given if t(O) = 1 ∧ |R(O)| = 1, a set of trees if t(O) = 1 ∧ |R(O)| > 1).

So if |CN (O)| is fixed, an increased value of |H(N(O))| leads to a less tree-like
class hierarchy, but has no other obvious effect on the ontology. The treelikeness
of the hierarchy seems to be independent of the relationship richness. Therefore we
suggest to choose another function for X : obvious candidates seem to be the size of
the ontology, i.e. the number of axioms |O|, the number of terminological axioms, or
simply the number of classes. We think that the number of classes is a better choice,
since a growth in the number of axioms but having a fixed number of entities indicates
an overall growth of richness. Therefore it would be counterintuitive for the relational
richness to decrease if existing classes are described in more detail. This effect does
not happen if we choose X to be instead the number of classes, i.e. |CN (O)|.

So we suggest the best metric to capture relational richness that is still close to the
original metric as defined by (Tartir et al., 2005), to be

RR(O) =
|PN (O)|

|CN (O)|+ |PN (O)|

Again it would not make sense to compare this metric to the original metric. But
we see that normalization is a useful tool to define metrics more precisely, and to get

148

8

8.5 Semantic similarity measure

closer to what we want to capture with a given metric.

8.5 Semantic similarity measure

The semantic similarity measure is a function ssm : O × C × C → R that describes
the similarity of two classes in an ontology. It is defined as the reciprocal value of the
distance over the subsumption graph of the ontology. Continuing the argumentation
from Section 6.1.4, we can see that first normalizing the ontology and then calculating
the distance avoids a number of pitfalls.

The problem we run into here, though, is that normalization removes all explicit
subsumption axioms connecting owl:Thing with the root classes R(O) thus potentially
leading to a number of disconnected graphs. In this case, we can either define ssm to
be 0, or we can add a further step to the normalization procedure, namely ∀C ∈ R(O)
add the axiom SubClassOf(C owl:Thing) to the ontology. This way we connect the
whole subsumption graph and will always have a finite number for the distance.

When we introduced normalization, we stated explicitly that the given steps are
neither necessary nor sufficient for all tasks. They provide a metric engineer with a
new tool to define and test metrics, but as we see in this example we need to further
extend the preprocessing of the ontology before we can measure the value of a specific
metric. Again, the given step is a semantic-preserving syntactic transformation, but
it is required in order to measure the ontology.

It is unclear what the comparision of ssm over the original and the normalized
ontologies will yield. Whereas one may think that the normalized ontology provides
a better base for calculating a semantic similarity, it may indeed be the case that
the opposite is true: usually, even though a redundant subsumption axiom may be
represented in the ontology, the inclusion of such an axiom often has a rationale. In
learned ontologies, it may be based on the evidence for exactly this relation, in human-
engineered ontologies it may be to put emphasis on a specific relation (even though
that does not mean anything in the formal semantics). So explicit connections may
indicate some semantic closeness that the formal semantics do not properly capture.

This evaluation is out of scope for this thesis. Our task is to provide a framework
in which to discuss and define metrics for ontology qualities. We have shown in this
section a number of metrics as example and demonstrated the usefulness of the tools
provided in this thesis.

149

9

Chapter 9

Context

Neo: I just have never. . .
Rama-Kandra: . . . heard a
program speak of love?
Neo: It’s a. . . human emotion.
Rama-Kandra: No, it is a
word. What matters is the
connection the word implies.

(Matix Revolutions
(Wachowski and Wachowski,

2003))

There are a number of approaches in the literature describing the creation and defi-
nition of artifacts accompanying an ontology. An evaluating tool can load both the
additional artifact and the ontology and then perform further evaluations. The ad-
ditional artifact thus provides a context for the ontology and the evaluation method.
Note that we do not consider the whole of the Semantic Web to be a context in this
sense. Thus we use the Web for evaluations of other aspects as well, be it for check-
ing the vocabulary (as for linked data in Section 4.1.1) or for automatically deriving
properties of classes (as in AEON in Section 6.3). Only specific further artifacts used
as input to an evaluation process is considered context within our framework.

One of the earliest approaches toward ontology evaluation was the introduction
of competency questions, i.e. questions that the ontology should be able to answer
(Grüninger and Fox, 1995). In order to enable the automatic evaluation with regards
to competency questions, the competency questions need to be formalized in a query
language that can be used by the tool the ontology is developed for. A first intuition
would claim that the the query language has to be expressive enough to encode the
competency questions. If it is not expressive enough, the relevance of the competency

151

Chapter 9 Context

questions needs to be assessed: if the ontology-based tool cannot ask the question, why
should the correct answer be important? The additional artifact, in this case, would
be the set of formalized competency questions and the required correct answers.

But in some cases a list of formalized competency questions and their correct answers
is not feasible or possible to generate. Instead, we often can state certain constraints
the answers need to fulfill in order to be possibly correct. Again we have to come to the
conclusion that we cannot create an automatic system that allows us to check if the
ontology is correct – but merely a system that sends out warnings when something
seems to be wrong. The constraints in turn may often require expressivity beyond
what OWL offers.

We address problems in ontology engineering and maintenance that arose during the
work with ontologies within the case studies in the European FP6 project SEKT.1 As
they often reminded us of problems that occurred in software engineering, a solution
that was successfully introduced to software engineering was examined – unit testing.
Although the notion of unit testing needed to be adapted for ontologies, it inspired a
slew of possible approaches. Section 9.1 will show how unit testing for ontologies can
be applied.

In Section 9.2 we discuss how further expressivity that goes well beyond the available
standardized languages can be used in order to guarantee that the evaluated ontologies
fulfill certain, formalized properties. Since these semantics cannot be expressed within
OWL there have to be necessarily regarded as contextual in the sense of our definition,
i.e. as extra-ontological artifacts that can be used for the evaluation of the ontology.

9.1 Unit tests

In the SEKT project one of the case studies aimed at providing an intelligent FAQ
system to help newly appointed judges in Spain (Benjamins et al., 2005). The system
depends on an ontology for finding the best answers and to find references to existing
cases in order to provide the judge with further background information. The applied
ontology is built and maintained by legal experts with almost no experience in formal
knowledge representation (Casanovas et al., 2005).

As the ontology evolved and got refined (and thus changed), the legal experts noticed
that some of their changes had undesired side effects. To give a simplified example,
consider the class hierarchy depicted in Figure 9.1. Let’s assume that this ontology has
been used for a while already, before someone notices that not every academic needs
necessarily be a member of an university. So Academic becomes a direct subclass of
Person, instead of University_member. But due to this change, also Professor is no
subclass of University_member anymore (a change that maybe was hidden from the

1http://cordis.europa.eu/ist/kct/sekt_synopsis.htm

152

http://cordis.europa.eu/ist/kct/sekt_synopsis.htm

9

9.1 Unit tests

Lecturer Professor

Academic

University member

Person

Secretary

Figure 9.1: Example class hierarchy.

ontology engineer, as the ontology development environment may not have displayed
all subclasses of Academic).

The resulting ontology remains perfectly satisfiable. But a tool, that, for example,
creates a Web page for all members of the university may now skip the professors,
since they are not classified as university members any more – an error that would
only become apparent in the use of the tool much later and will be potentially hard to
track down to that particular ontology change operation. Unit testing for ontologies
can discover such problems, and a few other ones as well.

In software engineering, the idea of unit testing (Beck, 1999) was introduced to
counter the complexities of modern software engineering efforts. Unit tests are meant
to facilitate the development of program modules or units, and to ensure the interplay
of such units in the combined system. It results in code that is easier to refactor
and simpler to integrate, and that has a formalized documentation (although not
necessarily complete). Unit tests can be added incrementally during the maintenance
of a piece of software, in order to not accidentally stumble upon an old bug and
hunt it down repeatedly. Unit tests in software engineering became popular with the
object oriented language Smalltalk, and still to this day remain focused on languages
with strong possibilities to create smaller units of code. They are based on several
decomposition techniques, most important of all information hiding.

Ontologies behave quite differently than program units. As there is no notion of
information hiding in ontology engineering, and thus no black box components, at
first the idea of unit testing for ontologies seems not applicable. Therefore we need to
adapt the idea for ontologies.

The main purpose of unit tests for ontologies is similar to their purpose in software
engineering: whenever an error is encountered with an axiom which is falsely inferred
or respectively incorrectly not inferred, the ontology maintainer may add this piece of
knowledge to the appropriate test ontology. Whenever the ontology is changed, the
changed ontology can be automatically checked against the test ontology, containing

153

Chapter 9 Context

the formalized knowledge of previously encountered errors.
We investigate the benefits of unit testing applied to ontologies, especially their

possibilities to facilitate regression tests, to provide a test framework that can grow
incrementally during the maintenance and evolution phase of the ontology, and that
is reasonably simple to use. In order for unit tests for ontologies to be useful, they
need to be reasonably easy to use and maintain. This will depend heavily on the given
implementation. The following approach is informed by the idea of design by contract,
i.e. we enable to formalize what statements should and should not derive from an
ontology being developed or maintained, either as formalized competency questions
(Section 9.1.1) or as explicit ontology statements (Sections 9.1.2 and 9.1.3).

9.1.1 Formalized competency questions

Competency questions, as defined by some methodologies for ontology engineering
(such as OTK (Sure and Studer, 2002) or Methontology (Fernández-López et al.,
1999)), describe what kind of knowledge the resulting ontology is supposed to answer.
These questions are necessarily formalizable in a query language (since otherwise the
ontology management module would actually not be able to give the answer to the sys-
tem later). Formalizing the queries instead of writing them down in natural language,
and formalizing the expected answers as well allows for a system to automatically
check if the ontology meets the requirements stated with the competency questions.

Method 19 (Checking competency questions against results)
Formalize your competency question as a SPARQL query. Write down the ex-
pected answer as a SPARQL query result, either in XML (Beckett and Broekstra,
2008) or in JSON (Clark et al., 2007). Compare the actual and the expected
results. Note that the order of results is often undefined.

This approach is especially interesting when the expressivity of the query language
is outside of the expressivity of the knowledge representation language. This is, for
example, the case with SPARQL and OWL. The following SPARQL query for ex-
ample returns all instances of Good_mother, i.e. those mothers that are also friends
with their child (we omit namespace declarations for readability). Since there are no
property intersections in OWL, one cannot describe a class including all instances of
Good_mother in OWL.

SELECT ?Good_mother
WHERE {

?child :mother ?Good_mother .

154

9

9.1 Unit tests

?child :friend ?Good_mother .
}

We consider this method especially useful not for the maintenance of the system,
but rather for its initial build, in order to define the extent of the ontology. Note that
competency questions usually are just exemplary questions – answering all competency
questions does not mean that the ontology is complete. Also note that sometimes,
although the question is formalizable, the answer does not necessarily need to be known
at the time of writing the question. This is especially true for dynamic ontologies, i.e.
ontologies that reflect properties of the world that keep changing often (like the song
the user of the system is listening to at query time). In that case we can define some
checks if the answer is sensible or even possible (like that the answer indeed needs to
be a song).

How can we test such constraints? Instead of using a SPARQL SELECT query, we
can use a SPARQL CONSTRUCT query to create a new ontology with the given results
(again, namespace declarations are omitted):

CONSTRUCT { ?Good_mother rdf:type :Good_mother }
WHERE {

?child :mother ?Good_mother .
?child :friend ?Good_mother .

}

This will result in an ontology that consists only of class instantiations for the
Good_mother class. We can now merge the ontology resulting from the SPARQL
CONSTRUCT query with the background ontology (usually the ontology used for query
answering) and a constraint ontology that includes constraints on the results, like the
following.

DisjointClasses(Good_mother Father)

The ontology states that fathers cannot be good mothers. Now should one of the
results actually be an instance of father, the resulting merged ontology will be incon-
sistent.

Method 20 (Checking competency questions with constraints)
Formalize your competency question for ontology O as a SPARQL CONSTRUCT
query that formulates the result in RDF as ontology R. Merge R with O and
a possibly empty ontology containing further constraints C. Check the merged
ontology for inconsistencies.

155

Chapter 9 Context

9.1.2 Affirming derived knowledge

Unit tests for ontologies test if certain axioms can or can not be derived from the
ontology (Vrandečić and Gangemi, 2006). This is especially useful in the case of
evolving or dynamic ontologies: we can automatically test certain assumptions with
regards to a given ontology O.

We create two test ontologies T+ (called the positive test ontology) and T− (the
negative test ontology), and define that an ontology O, in order to fulfill the constraints
imposed by the test ontologies, needs to fulfill the following conditions: each axiom
A+

1 ...A+
n ∈ T+ must be derivable from O, i.e.

O |= A+
i ∀A+

i ∈ T+

and each axiom A−1 , . . . , A−n ∈ T− must not be derivable from O, i.e.

O 6|= A−i ∀A−i ∈ T−

Note that T+ trivially fulfills the first condition if O is not satisfiable, whereas an
empty ontology trivially fulfills the second condition. So it is not hard to come up
with ontologies that fulfill the conditions, which shows that unit tests are not meant
to be complete formalizations of the requirements of an ontology, but rather helpful
indicators towards possible errors or omissions in the tested ontologies.

To come back to our previous example in Section 9.1 a simple test ontology T+ that
consists of the single axiom SubClassOf(Professor University_member) would have
been sufficient to discover the problem described. So after the discovered error, this
statement is added to the test ontology, and now this same error will be detected next
time automatically by running the unit tests.

The test ontologies are meant to be created and grown during the maintenance of
the ontology. Every time an error is encountered in the usage of the ontology, the
error is formalized and added to the appropriate ontology (like in the example above).
Experienced ontology engineers may add appropriate axioms in order to anticipate
and counter possible errors in maintenance.

In software engineering it is often the case, that the initial development of a pro-
gram is done by a higher skilled, better trained, and more consistent team, whereas the
maintenance is then performed by a less expensive group, with less experienced mem-
bers, that change more frequently. So in software engineering, the more experienced
developers often anticipate frequent errors that can happen during maintenance, and
create unit tests accordingly in order to put appropriate constraints on the future evo-
lution of the software. We expect a similar development in ontology engineering and
maintenance, as soon as ontologies become more common components of information
systems. The framework proposed here offers the same possibilities to an ontology
engineer.

156

9

9.1 Unit tests

Why should an ontology engineer not just add the axioms from T+ to O, and ¬A−i
for each A−i in T−? There are several reasons:

1. not every axiom A−i can be negated. For example, a subsumption statement
cannot be negated without inventing new entities.

2. adding such axioms increases redundancy in the ontology, and thus makes it
harder to edit and maintain.

3. the axioms may potentially increase reasoning complexity, or else use language
constructs that are not meant to be used within the ontology.

4. as discussed in Section 9.1.3, the axioms in T− may be contradictory.

5. finally, due to the open world assumption, O 6|= A−i ∀A
−
i ∈ T− is not the same

as O |= ¬A−i ∀A
−
i ∈ T−, so that the negative test ontology can actually not be

simulated with the means of OWL DL.

A Protégé plug-in implementing an OWL Unit Test framework2 exists, that allows
to perform what we have described with T+ testing for affirming derived knowledge
(Horridge, 2005). We generalize and expand the theoretical foundations of the frame-
work.

Method 21 (Unit testing with test ontologies)
For each axiom A+

i in the positive test ontology T+ test if the axiom is being
inferred by the tested ontology O. For every axiom that is not being inferred,
issue an error message.

For each axiom A−i in the negative test ontology T− test if the axiom is being
inferred by the tested ontology O. For every axiom that is being inferred, issue an
error message.

Formalized competency questions and positive unit test ontologies can sometimes
be translated from one into the other, but are largely complementary. We already
have shown that SPARQL enables queries beyond the expressivity of OWL, and also
test ontologies are much more natural to express OWL constructs than SPARQL is
(compare with Section 6.2). Finally, the notion of negative test ontologies expand the
possibilities of unit testing well beyond formalized competency questions.

2http://www.co-ode.org/downloads/owlunittest/

157

http://www.co-ode.org/downloads/owlunittest/

Chapter 9 Context

9.1.3 Asserting agnosticism

Whereas ontologies in general should be consistent in order to be considered useful,
this is not true for the negative test ontology T−. Since T− is simply a collection of
all axioms that should not be inferrable from the tested ontology O, it does not need
to be satisfiable. Thus they may be two (or more) sets of axioms (subsets of T−) that
contradict each other. What does this mean? The existence of such contradicting sets
mean that O must not make a decision about the truth of either of these sets, thus
formalizing the requirement that O must be agnostic towards certain statements.

For example an ontology of complexity classes (where each complexity class is an
individual) should have the following two axioms in its negative test ontology:

DifferentIndividuals(P NP)
SameIndividual(P NP)

It is obvious that the test ontology is inconsistent, but what it states is that any
tested ontology will neither allow to infer that P and NP are equal, nor that they are
different. Every ontology that is successfully tested against this negative test ontology
will be agnostic regarding this fact.

Besides known unknowns (such as the P=NP? problem) we can also assert agnos-
ticism in order to preserve privacy. If we want to ensure that it cannot be inferred if
Alice knows Bob from an ontology (i.e. a set of statements, possibly gathered from
the Web), we can state that in a test ontology:

PropertyAssertion(foaf:knows Alice Bob)
NegativeProperyAssertion(foaf:knows Alice Bob)

Note that if such a test ontology is indeed used for privacy reasons, it should not be
made public since knowing it may lead to important clues for the actual statements
that were meant to remain secret.

9.2 Increasing expressivity for consistency checking

Certain language constructs, or their combination, may increase reasoning time con-
siderably. In order to avoid this, ontologies are often kept simple. But instead of
abstaining from the use of more complex constructs, an ontology could also be mod-
ularized with regards to its complexity: an ontology may come in different versions,
one just defining the used vocabulary, and maybe their explicitly stated taxonomic
relations, and a second ontology adding much more knowledge, such as disjointness
or domain and range axioms. If the simple ontology is properly built, it can lead to
an ontology which often yields the same results to queries as the complete ontology
(depending, naturally, on the actual queries). The additional axioms can be used in

158

9

9.2 Increasing expressivity for consistency checking

order to check the consistency of the ontology and the knowledge base with regards to
the higher axiomatized version, but for querying them the simple ontology may suffice.

We investigate the relationship of heavy- to lightweight ontologies, and how they
can interplay with regards to ontology evaluation in Section 9.2.1. We then move to an
exemplary formalism going well beyond the expressivity of OWL, by adding rules to the
ontology for evaluating it in Section 9.2.2. Autoepistemic operators lend themselves
also to be used in the testing of ontologies, especially with regards to their (relative)
completeness, since they are a great way to formalize the introspection of ontologies
(Section 9.2.3). We also regard a common error in ontology modeling with description
logics based languages, and try to turn this error into our favor in Section 9.2.4.

9.2.1 Expressive consistency checks

Ontologies in information systems often need to fulfill the requirement of allowing rea-
soners to quickly answer queries with regards to the ontology. Light weight ontologies
usually fulfill this task best. Also, many of the more complex constructors of OWL DL
often do not add further information, but rather are used to restrict possible mod-
els. This is useful in many applications, such as ontology mapping and alignment, or
information integration from different sources.

For example, a minimal cardinality constraint will, due to the open world assump-
tion, hardly ever lead to any inferred statements in an OWL DL ontology. Nevertheless
the statement can be useful as an indicator for tools that want to offer a user interface
to the ontology, or for mapping algorithms that can take this information into account.

Further expressive constraints on the ontology, such as disjointness of classes, can
be used to check the ontology for consistency at the beginning of the usage, but after
this has been checked, a light weight version of the ontology, that potentially enables
reasoners to derive answers with a better response time, could be used instead.

Formally, we introduce a test ontology C for an ontology O, including additional
axioms of the entities used in O that constrain the possible models of the ontology,
and check for the satisfiability of the merged ontology O ∪ C.

For example, consider the following ontology O about a family:

PropertyAssertion(father Adam Seth)
PropertyAssertion(mother Eve Seth)

Now consider ontology C, formalizing further constraints on the terms used in the
ontology:

SubPropertyOf(father parent)
SubPropertyOf(mother parent)
PropertyDomain(parent Person)
PropertyRange(father Male)

159

Chapter 9 Context

PropertyRange(mother Female)
DisjointClasses(Male Female)

Now, O ∪ C will be recognized as inconsistent by a reasoner. This is because of
the definitions of the properties father and mother showing that it should point to
the father respectively the mother, whereas in O it is used to point from the father
respectively the mother. This is recognized because C adds range axioms on both,
thus letting us infer that Seth has to be an instance of both Female and Male, which
is not possible due to the DisjointClasses axiom in C.

Method 22 (Increasing expressivity)
An ontology O can be accompanied by a highly axiomatized version of the ontology,
C. The merged ontology of O∪C has to be consistent, otherwise the inconsistencies
point out to errors in O.

9.2.2 Consistency checking with rules

The consistency checks with context ontologies do not need to be bound by the ex-
pressivity of OWL, but can instead be using languages with a different expressivity,
such as SWRL (Horrocks et al., 2003; Brockmans and Haase, 2006). For our example,
we will use the transformation of the ontology to a logic programming language like
datalog (Grosof et al., 2003) as implemented by the OWL tools (Motik et al., 2005)
wrapping KAON2 (Motik, 2006). We can then add further integrity constraints to the
resulting program. This may exceed the expressivity available in the original ontology
language. Consider constraints on the parent relationship that state that a parent
has to be born before the child. In datalog we can concatenate the translation of the
ontology to datalog (i.e. LP(O)) with the constraint program C, and test the result-
ing program for violations of the integrity constraints. Note that LP(O) cannot fully
translate arbitrary complex ontologies O, but for our use case it is sufficient to only
regard the resulting logic program. We can simply ignore the rest.

Consider (a repaired version of) the family ontology O given in Section 9.2.1. We
also add years of birth for Adam and Seth:

PropertyAssertion(father Seth Adam)
PropertyAssertion(mother Seth Eve)
PropertyAssertion(birthyear Adam "-3760"^^xsd:gYear)
PropertyAssertion(birthyear Seth "-3890"^^xsd:gYear)

Translating it to datalog will yield the following result LP(O):

160

9

9.2 Increasing expressivity for consistency checking

father(Seth, Adam)
mother(Seth, Eve)
birthyear(Adam, -3760)
birthyear(Seth, -3890)

We also translate the constraint ontology C from Section 9.2.1 as LP(C):

parent(X, Y) ← father(X, Y)
parent(X, Y) ← mother(X, Y)
Person(X) ← parent(X, Y)
Male(Y) ← father(X, Y)
Female(Y) ← mother(X, Y)
← Male(X) ∧ Female(X)

Now we regard further integrity constraints such as the following R (< meaning
before):

← parent(X, Y) ∧ birthyear(X, BX) ∧ birthyear(Y, BY) ∧ (BY < BX)

R states that if the year of birth of the parent’s child is before the year of birth of
the parent, then we have an inconsistency. We can now concatenate LP(O), LP(C)
and R and check for inconsistencies – and indeed, one will be raised since Adam was
born 130 years after Seth, and thus the ontology must be inconsistent.

Method 23 (Inconsistency checks with rules)
Translate the ontology to be evaluated and possible constraint ontologies to a
logic program. This translation does not have to be complete. Formalize further
constraints as rules or integrity constraints.

Concatenate the translated ontologies and the further constraints or integrity
constraints. Run the resulting program. If it raises any integrity constraints, then
the evaluated ontology contains errors.

9.2.3 Use of autoepistemic operators

One approach using increased expressivity is to describe what kind of information
an ontology is supposed to have, using autoepistemic constructs such as the K- and
A-operators (Grimm and Motik, 2005). In this way we can, for example, define that
every person in our knowledge base needs to have a known name and an address, and

161

Chapter 9 Context

put this into a description. Note that this is different than just using the existential
construct. An axiom like

SubClassOf(Human SomeValuesFrom(parent Human))

tells us that every human has a human parent, using the K operator we could require
that every humans’ parent has to be explicitly given in the knowledge base or else an
inconsistency would be raised. Autoepistemic operators allow for a more semantic way
to test the completeness of knowledge bases than the syntactic XML based schema
definitions described in Section 5.3. This way the ontology can be evaluated with
regards to its data completeness. Data completeness is defined with regards to a tool
that uses the data. The tool needs to explicate which properties it expects when being
confronted with an individual belonging to a certain class. The operators allow to map
completeness checks to satisfiability checks, and use a common language to express
these checks. Otherwise the completeness checks have to be checked programmatically
by the tool.

In (Grimm and Motik, 2005) an extension of OWL DL with autoepistemic operators
is described. The axiom above translated to DL would be

Human v ∃parent.Human

Using the K- and A−operators instead, we would define that

KHuman v ∃Aparent.AHuman

i.e. for every human a parent must be known who also must be known to be human
(i.e. either stated explicitly or inferrable) in the ontology, or else the ontology will not
be satisfiable.3 Thus we are able to state what should be known, and a satisfiability
check will check if, indeed this knowledge is present.

On the Semantic Web, such a formalism will prove of great value, as it allows to
simply discard data that does not adhere to a certain understanding of completeness.
For example, a crawler may gather event data on the Semantic Web. But instead of
simply collecting all instances of event, it may decide to only accept events that have
a start and an end date, a location, a contact email, and a classification with regards
to a certain term hierarchy. Although this will decrease the recall of the crawler, the
data will be of a higher quality, i.e. of a bigger value, as it can be sorted, displayed,
and actually used by calendars, maps, and email clients in order to support the user.

The formalization and semantics of autoepistemic operators for the usage in Web
ontologies is described in (Grimm and Motik, 2005).

3The example follows ex. 3.3 in (Donini et al., 2002)

162

9

9.2 Increasing expressivity for consistency checking

9.2.4 Domain and ranges as constraints

When novice ontology engineers have a background in programming, they often find
the semantics of domain and range confusing (Allemang and Hendler, 2008). They
expect domain and ranges to be used like type constraints in programming languages,
i.e. if they say that father is a relation with the range Male and one applies it between
Seth and Eve, who is a Woman, they expect an inconsistency to be raised. Instead, Eve
will be classified as a Man by the reasoner (for the sake of the example no disjointness
axiom is stated between Male and Female). When programming in a stronlgy typed
language like Java or C++, if we had a function defined as father(Male dad, Person
child), calling the function with an object instance of Female will raise an exception
(or, due to polymorphism, actually not find a suitable function. This assumes that
Female is not a subclass of Male).

In order to simulate a mechanism similar to the expectations of programmers, we
need to introduce two new axiom types, PropertyDomainConstraint to describe a
constraint on a domain of a property, and PropertyRangeConstraint for the range
respectively. Besides their name they have the same syntax as the PropertyDomain
respective PropertyRange axioms. Using autoepistemic logic, the axiom

PropertyDomainConstraint(R C)

translates to the following semantics

∃KR.> v AC

stating that everything that is known to be in the domain of R has to be a known
instance of C.

Instead of using a new axiom type, we could also use the fact that ontology engineers
often add domain and range axioms erroneously, not in order to add more inferences
but with the meaning intended by the new axiom types, i.e. as type constraints. Based
on that we suggest to consciously misinterpret the semantics of the already existing
domain and range axioms for the sake of ontology evaluation (note, that this explicitly
is not meant as an reinterpretation for using the ontology, but merely for evaluating it
before usage). The evaluator will quickly figure out if this is a useful misinterpretation
for a given ontology or not. We checked both the Watson EA and the Watson 130
corpora (see Section 11.3) and we did not find a single case where the domain axiom of
a property added an inferred class assertion to an individual using that property with
the individual not being already explicitly asserted to be an instance of that class.
This indicates that this approach could indeed provide fruitful.

163

Part III

Application

10 Collaborative ontology evaluation in Semantic MediaWiki 167

11 Related work 185

12 Conclusions 197

10

Chapter 10

Collaborative ontology evaluation
in Semantic MediaWiki

Given enough eyeballs,
all bugs are shallow.

(Eric Raymond, b. 1957,
The Cathedral and the Bazaar

(Raymond, 2001))

Wikis have become popular tools for collaboration on the Web, and many vibrant
online communities employ wikis to exchange knowledge. For a majority of wikis,
public or not, primary goals are to organize the collected knowledge and to share
information. Wikis are tools to manage online content in a quick and easy way,
by editing some simple syntax known as wikitext. This is mainly plain text with
some occasional markup elements. For example, a link to another page is created by
enclosing the name of the page in brackets, e.g. by writing [[Semantic Web]].

But in spite of their utility, the content in wikis is barely machine-accessible and
only weakly structured. In this chapter we introduce Semantic MediaWiki (SMW)
(Krötzsch et al., 2007c), an extension to MediaWiki (Barret, 2008), a widely used wiki
software. SMW enhances MediaWiki by enabling users to annotate the wiki’s contents
with explicit information. Using this semantic data, SMW addresses core problems of
today’s wikis:

• Consistency of content: The same information often occurs on many pages.
How can one ensure that information in different parts of the system is consistent,
especially as it can be changed in a distributed way?

• Accessing knowledge: Large wikis have thousands of pages. Finding and
comparing information from different pages is challenging and time-consuming.

167

Chapter 10 Collaborative ontology evaluation in Semantic MediaWiki

Semantic

store

MediaWiki DB

(MySQL)

Storage

Abstraction

Storage

Implementation

Parsing Rendering
Inline

Queries
Setup

Lan-

guage

Java-

Scripts

+

CSS

OWL

Export
...

Datatype API

Data processing

Type:String

Type:Date

Type:Number

...

Page display and

manipulation

Special

pages

DB interface

MediaWiki

Webserver (Apache)

Semantic
MediaWiki

S
e
t
u
p

L
a
n
g
u
a
g
e

s
y
s
t
e
m

Figure 10.1: Architecture of SMW’s main components in relation to MediaWiki.

• Reusing knowledge: Many wikis are driven by the wish to make information
accessible to many people. But the rigid, text-based content of classical wikis
can only be used by reading pages in a browser or similar application.

SMW is a free and open source extension of MediaWiki, released under the GNU
Public License. Figure 10.1 provides an overview of SMW’s core components and ar-
chitecture. The integration between MediaWiki and SMW is based on MediaWiki’s
extension mechanism: SMW registers for certain events or requests, and MediaWiki
calls SMW functions when needed. SMW thus does not overwrite any part of Me-
diaWiki, and can be added to existing wikis without much migration cost. Usage
information about SMW, installation instructions, and the complete documentation
are found at SMW’s homepage.1

Section 10.1 explains how structural information is collected in SMW, and how
this data relates to the OWL ontology language. Section 10.2 surveys SMW’s main
features for wiki users: semantic browsing, semantic queries, and data exchange on
the Semantic Web. Queries are the most powerful way of retrieving data from SMW,
and their syntax and semantics is presented in detail. In Section 10.3 we survey
related systems. Based on our definition of ontology, it is clear that SMW is an
ontology engineering tool that aims at a massively collaborative usage. Based on that,
Section 10.4 discusses how ontology evaluation can be performed collaboratively within
SMW using some of the approaches introduced in Part II of this thesis.

1http://semantic-mediawiki.org

168

http://semantic-mediawiki.org

10

10.1 Annotation of wiki pages

10.1 Annotation of wiki pages

The main prerequisite of exploiting semantic technologies is the availability of suitably
structured data. For this purpose, SMW introduces ways of adding further structure
to MediaWiki by means of annotating the textual content of the wiki. In this section,
we recall some of MediaWiki’s current means of structuring data (Section 10.1.1),
and introduce SMW’s annotations with properties (Section 10.1.2). Finally, a formal
semantic interpretation of the wiki’s structure in terms of OWL is presented (Sec-
tion 10.1.3).

10.1.1 Content structuring in MediaWiki

The primary method for entering information into a wiki is wikitext, a simplified
markup language that is transformed into HTML pages for reading. Accordingly,
wikitext already provides many facilities for describing formatting, and even some for
structuring content. For defining the interrelation of pages within a wiki, hyperlinks are
arguably the most important feature. They are vital for navigation, and are sometimes
even used to classify articles informally. In Wikipedia, for example, articles may
contain links to pages of the form [[as of 2010]] to state that the given information
might need revalidation or updates after that year.

The primary structural mechanism of most wikis is the organization of content in
wiki pages. In MediaWiki, these pages are further classified into namespaces, which
distinguish different kinds of pages according to their function. Namespaces cannot
be defined by wiki users, but are part of the configuration settings of a site. A page’s
namespace is signified by a specific prefix, such as User: for user homepages, Help: for
documentation pages, or Talk: for discussion pages on articles in the main namespace.
Page titles without a known namespace prefix simply belong to the main namespace.
Most pages are subject to the same kind of technical processing for reading and editing,
denoted Page display and manipulation in Figure 10.1. The major exception are so-
called special pages – built-in query forms without user-edited content – that use
Special: as a namespace prefix.

Many wiki engines generally use links for classifying pages. For instance, searching
for all pages with a link to the page [[France]] is a good way to find information about
that country. In MediaWiki, however, this use has been replaced by a more elaborate
category system (Schindler and Vrandečić, 2010). Every page can be assigned to one
or many categories, and each category is represented with a page in the Category:
namespace. Category pages in turn can be used to browse the classified pages, and
also to organize categories hierarchically. Page categories and their hierarchy can be
edited by all users via special markup within the wiki. Overall, the category system
probably is the one function of MediaWiki that is closest in spirit to the extensions of
SMW.

169

Chapter 10 Collaborative ontology evaluation in Semantic MediaWiki

Another structuring problem of large wikis are synonymous and homonymous ti-
tles. In case of synonyms, several different pages for the same subject may emerge
in a decentralized editing process. MediaWiki therefore has a redirect mechanism by
which a page can be caused to forward all requests directly to another page. This is
useful to resolve synonyms but also for some other tasks that suggest such forwarding
(e.g. the mentioned articles [[as of 2005]] are redirects to the page about the year
2005). Homonyms in turn occur whenever a page title is ambiguous, and may refer to
many different subjects depending on context. This problem is addressed by so-called
disambiguation pages that briefly list the different possible meanings of a title. Actual
pages about a single sense then either use an unique synonym or are augmented with
parentheses to distinguish them, e.g. in the case of [[1984 (book)]].

A final formatting feature of significance to the structure of the wiki is MediaWiki’s
template system. The wiki parser replaces templates with the text given on the tem-
plate’s own page. The template text in turn may contain parameters. This can be
used to achieve a higher consistency, since, for example, a table is then defined only
once, and so all pages using this table will look similar. The idea of capturing semantic
data in templates has been explored inside Wikipedia2 and in external projects such
as DBpedia (Auer and Lehmann, 2007).

In addition to the above, MediaWiki knows many ways of structuring the textual
content of pages themselves, e.g. by sections or tables, presentation markup (e.g. text
size or font weights), etc. SMW, however, aims at collecting information about the
(abstract) concept represented by a page, not about the associated text. The layout
and structure of article texts is not used for collecting semantic annotations, since they
should follow didactic considerations.

10.1.2 Semantic annotations in SMW

Adhering to MediaWiki’s basic principles, semantic data in SMW is also structured
by pages, such that all semantic content explicitly belongs to a page. Using the terms
from Section 2.3, every page corresponds to an ontology entity (including classes and
properties). This locality is crucial for maintenance: if knowledge is reused in many
places, users must still be able to understand where the information originated. Dif-
ferent namespaces are used to distinguish the different kinds of ontology entities: they
can be individuals (the majority of the pages, describing elements of the domain of
interest), classes (represented by categories in MediaWiki, used to classify individuals
and also to create subcategories), properties (relationships between two individuals or
an individual and a data value), and types (used to distinguish different kinds of prop-
erties). Categories have been available in MediaWiki since 2004, whereas properties
and types were introduced by SMW.

2See, e.g., http://de.wikipedia.org/wiki/Hilfe:Personendaten.

170

http://de.wikipedia.org/wiki/Hilfe:Personendaten

10

10.1 Annotation of wiki pages

'''London''' is the capital city of [[England]] and of the [[United Kingdom]]. As of

[[2005]], the population of London was estimated 7,421,328. Greater London covers an

area of 609 square miles. [[Category:City]]

'''London''' is the capital city of [[capital of::England]] and of the [[capital of::United

Kingdom]]. As of [[2005]], the population of London was estimated [[population::7,421,328]].

Greater London covers an area of [[area::609 square miles]]. [[Category:City]]

Figure 10.2: Source of a page about London in MediaWiki (top) and in SMW (bottom).

SMW collects semantic data by letting users add annotations to the wiki source
text of pages via a special markup. The processing of this markup is performed by the
components for parsing and rendering in Figure 10.1. While the annotation syntax is
most relevant (and most visible) to wiki editors, it is but a small part of the overall
SMW system. The underlying conceptual framework, based on properties and types is
rather more relevant. We also expect the annotation syntax to become more hidden,
as exemplified by a number of extensions on top of SMW.

Properties in SMW are used to express binary relationships between one individual
(as represented by a wiki page) and some other individual or data value. Each wiki-
community is interested in different relationships depending on its topic area, and
therefore SMW lets wiki users control the set of available properties. SMW’s property
mechanism follows standard Semantic Web formalisms where binary properties also
are a central expressive mechanism. But unlike RDF-based languages, SMW does not
view property statements (subject-predicate-object triples) as primary information
units. SMW rather adopts a page-centric perspective where properties are a means of
augmenting a page’s contents in a structured way.

MediaWiki offers no general mechanism for assigning property values to pages, and a
surprising amount of additional data becomes available by making binary relationships
in existing wikis explicit. The most obvious kind of binary relations in current wikis
are hyperlinks. Each link establishes some relationship between two pages, without
specifying what kind of relationship this is, or whether it is significant for a given
purpose. SMW allows links to be characterized by properties, such that the link’s
target becomes the value of a user-provided property. But not all properties take other
wiki pages as values: numeric quantities, calendar dates, or geographic coordinates are
examples of other available types of properties.

For example, consider the wikitext shown in Figure 10.2 (top). The markup ele-
ments are easy to read: triple quotes '''. . . ''' are used for text that should appear
bold-faced, and text within square brackets [[. . .]] is transformed into links to the
wiki page of that name. The given links to [[England]], [[United Kingdom]], and
[[2005]] do not carry any machine-understandable semantics yet. To state that Lon-

171

Chapter 10 Collaborative ontology evaluation in Semantic MediaWiki

Figure 10.3: A semantic view of London.

don is the capital of England, one just extends the link to [[England]] by writing
[[capital of::England]]. This asserts that London has a property called capital
of with the value England. This is even possible if the property capital of has not
been introduced to the wiki before.

Figure 10.2 (top) shows further interesting data values that are not corresponding
to hyperlinks, e.g. the given population number. A syntax for annotating such values
is not as straightforward as for hyperlinks, but we eventually decided for using the
same markup in both cases. An annotation for the population number therefore could
be added by writing [[population::7,421,328]]. In this case, 7,421,328 is not
referring to another page and we do not want our statement to be rendered as a
hyperlink. To accomplish this, users must first declare the property population and
specify that it is of a numerical type. This mechanism is described below. If a property
is not declared yet, then SMW assumes that its values denote wiki pages such that
annotations will become hyperlinks. An annotated version of the wikitext for London
is shown in Figure 10.2 (bottom), and the resulting page is displayed in Figure 10.3.

Properties are introduced to the wiki by just using them on some page, but it is
often desirable to specify additional information about properties. SMW supports this
by introducing wiki pages for properties. For example, a wiki might contain a page
[[Property:Population]] where Property: is the namespace prefix. A property
page can contain a textual description of the property that helps users to employ it
consistently throughout the wiki, but it also can specify semantic features of a property.
One such feature is the aforementioned (data)type of the property. In the case of
[[Property:Population]] one would add the annotation [[has type::Number]] to
describe that the property expects numerical values. The property has type is a built-

172

10

10.1 Annotation of wiki pages

in property of SMW with the given special interpretation. It can also be described on
its property page but it cannot be modified or deleted.

SMW provides a number of datatypes that can be used with properties. Among
those are String (character sequences), Date (points in time), Geographic coordinate
(locations on earth), and the default type Page that creates links to other pages. Each
type provides own methods to process user input, and to display data values. SMW
supplies a modular Datatype API as shown in Figure 10.1 that can also be extended
by application-specific datatypes. Just like properties, types also have dedicated pages
within the wiki, and every type declaration creates a link to the according page. To
some extent, it is also possible to create new customized datatypes by creating new
type pages. These pages of course cannot define the whole computational processing of
a data value, but they can create parameterized versions of existing types. The main
application of this is to endow numerical types with conversion support for specific
units of measurement. For example, the property Area in Figure 10.2 (bottom) might
use a custom type that supports the conversion between km2 and square miles (as can
be seen in Figure 10.3). Unit conversion is of great value for consolidating annotations
that use different units, which can hardly be avoided in a larger wiki.

10.1.3 Mapping to OWL

The formal semantics of annotations in SMW, as well as their mapping for the later
export (see Section 10.2.3) is given via a mapping to the OWL ontology language.
Most annotations can easily be exported in terms of OWL, using the obvious mapping
from wiki pages to OWL entities: normal pages correspond to individuals, properties
in SMW correspond to OWL properties, categories correspond to OWL classes, and
property values can be abstract individuals or typed literals. Most annotations thus
are directly mapped to simple OWL statements.

OWL further distinguishes object properties, datatype properties, and annotation
properties. SMW properties may represent any of those depending on their type.
Types themselves do not have OWL semantics, but may decide upon the XML Schema
type used for literal values of a datatype property. Finally, containment of pages in
MediaWiki’s categories is interpreted as class membership in OWL.

SMW offers a number of built-in properties that may also have a special semantic
interpretation. The above property has type, for instance, has no equivalent in OWL
and is interpreted as an annotation property. Many properties that provide SMW-
specific meta-information (e.g. for unit conversion) are treated similarly. MediaWiki
supports the hierarchical organisation of categories, and SMW can be configured to
interpret this as an OWL class hierarchy (this may not be desirable for all wikis (Voss,
2006)). Moreover, SMW introduces a special property subproperty of that can be
used for property hierarchies. Overall, the schematic information representable in
SMW is intentionally shallow, since the wiki is not intended as a general purpose

173

Chapter 10 Collaborative ontology evaluation in Semantic MediaWiki

Figure 10.4: Inverse search in SMW, here giving a list of everyone born in London.

ontology editor that requires users to have specific knowledge about semantic tech-
nologies.

10.2 Exploiting semantics

However simple the process of semantic annotation may be, the majority of users will
neglect it as long as it does not bear immediate benefits. In the following we introduce
several features of SMW that show contributors the usefulness of semantic markup.

10.2.1 Browsing

As shown in Figure 10.3 the rendered page may include a so called factbox which is
placed at the bottom of the page to avoid disturbing normal reading. The factbox
summarizes the given annotations, provides feedback on possible errors, e.g. if a given
data value does not fit a property’s type, and offers links to related functions. Note
that most SMW instances do not display the factbox but rather choose to customize
the users experience by using inline queries to display the semantic data.

These links can be used to browse the wiki based on its semantic content. The page
title in the factbox heading leads to a semantic browsing interface that shows not only
the annotations within the given page, but also all annotations where the given page

174

10

10.2 Exploiting semantics

is used as a value. The magnifier icon behind each value leads to an inverse search
for all pages with similar annotations (Figure 10.4). Both of those user interfaces are
realized as special pages, architecturally similar to the special page OWL Export in
Figure 10.1. In addition, the factbox shows links to property pages, which in turn list
all annotations for a given property. All those browsing features are interconnected
by appropriate links, so that users can easily navigate within the semantic knowledge
base.

10.2.2 Querying

SMW includes a query language that allows access to the wiki’s knowledge. The query
language can be used in three ways: either to directly query the wiki via a special query
page, to add the answer to a page by creating an inline query (Figure 10.1), or by
using concepts.

Inline queries enable editors to add dynamically created lists or tables to a page,
thus making up-to-date query results available to readers who are not even aware of
the semantic capabilities of the underlying system. Figure 10.6 shows a query result
as it might appear within an article about Switzerland. Compared to manually edited
listings, inline queries are more accurate, easier to create, and easier to maintain.

Concepts are the intensional counterparts to MediaWiki’s extensional categories.
They occupy a new namespace (Concept:) and allow there to define a query that de-
scribes the class. Individual pages can not be tagged explicitly with a concept, instead
an individual instantiates a concept implicitly by fulfilling the query description. This
allows to define concepts such as ISWC Conference as
[[Category:Conference]] [[series::ISWC]]

All conferences that are properly annotated will then automatically be recognized as
ISWC conferences. Concepts can be used in queries just as normal categories, and
allow a higher abstraction than categories do.

The syntax of SMW’s query language is closely related to wiki text, whereas its
semantics corresponds to specific class expressions in OWL.3 Each query is a disjunc-
tion of conjunctions of conditions. Fundamental conditions are encoded as query atoms
whose syntax are similar to that of SMW’s annotations. For instance,
[[located in::England]]

is the atomic query for all pages with this annotation. Queries with other types of
properties and category memberships are constructed following the same principle.
Instead of single fixed values one can also specify ranges of values, and even specify
nested query expressions.

A simplified form of SMW’s query language is defined in Figure 10.5 (top). The
main control symbols used to structure queries are: OR and || as the disjunction

3SMW’s query language has never been officially named, but some refer to it as AskQL (Ell, 2009)

175

Chapter 10 Collaborative ontology evaluation in Semantic MediaWiki

QUERY ::= CONJ (’OR’ CONJ)*
CONJ ::= ATOM (ATOM)*
ATOM ::= SUB | PROP | CAT | PAGE
SUB ::= ’<q>’ QUERY ’</q>’
PROP ::= ’[[’ TITLE ’::’ VALUE (’||’ VALUE)* ’]]’
VALUE ::= ’+’ | SUB | ((’>’|’<’|’!’)? STR)
CAT ::= ’[[Category:’ TITLE (’||’ TITLE)* ’]]’
PAGE ::= ’[[:’ FULLTITLE (’||’ FULLTITLE)* ’]]’
QUERY ::= ’UnionOf(’ CONJ (CONJ)* ’)’
CONJ ::= ’IntersectionOf(’ ATOM (ATOM)* ’)’
ATOM ::= SUB | PROP | CAT | PAGE
SUB ::= QUERY
PROP ::= ’SomeValuesFrom(’ TITLE ’ UnionOf(’ VALUE (VALUE)* ’))’
VALUE ::= ’owl:Thing’ | SUB | (>=|<=|!=)? STR ’)’
CAT ::= ’UnionOf(’ TITLE (TITLE)* ’)’
PAGE ::= ’OneOf(’ FULLTITLE (FULLTITLE)* ’)’

Figure 10.5: Production rules for SMW queries (top) and according OWL descriptions
(bottom).

operators (depending on the context), <q> and </q> as (sub)query delimiters, + as
the empty condition that matches everything, and <, >, and ! to express comparison
operators ≤, ≥, and 6= (note that the given grammar assumes a way of expressing these
comparison on literal values directly in OWL, whereas they actually need to be defined
using appropriate concrete domain definitions). Some nonterminals in Figure 10.5 are
not defined in the grammar: TITLE is for page titles, FULLTITLE is for page titles with
namespace prefix, and STR is for Unicode strings. In those, we do not permit symbols
that could be confused with other parts of the query, e.g. page titles must not start
with <. SMW provides means to escape such characters.

The following is an example query for all cities that are located in an EU-country
or that have more than 500,000 inhabitants:

[[Category:City]]
<q>

[[located in::<q>[[Category:Country]] [[member of::EU]]</q>]]
||
[[population:: >500,000]]

</q>

The formal semantics of such queries is given by a mapping to class descriptions in
OWL, i.e. a query retrieves all inferred members of the according OWL class. It is

176

10

10.2 Exploiting semantics

not hard to see that every SMW query emerges from a unique sequence of production
steps, and we can follow the same steps in the grammar in the lower part of Figure 10.5.
The result is a complex class description. The given example is translated to:

1 UnionOf(
2 IntersectionOf(
3 UnionOf(City)
4 UnionOf(
5 SomeValuesFrom(located_in
6 UnionOf(
7 IntersectionOf(
8 UnionOf(Country)
9 SomeValuesFrom(member_of OneOf(EU)))))

10 SomeValuesFrom(population UnionOf(>=500,000)))))

The result is a syntactic form that is close to the functional style syntax used
in this thesis, but which is not fully correct OWL yet. It is not hard to obtain a
correct OWL class description from this expression. First, the identifiers used here
still correspond to names of wiki entities – for a formal interpretation, they must be
replaced by proper URIs. Second, the UnionOf descriptions in the lines 1, 3, 6, 8, and
13 contain only a single class description, and are thus not useful (and not allowed in
OWL). One can easily remove UnionOf in such cases. Third, the pseudo expression
(>=500,000) must be transformed into a valid OWL data range. This can be done by
using OWL’s DatatypeRestriction feature. In the case of object properties (SMW
properties of type Page), OneOf can be used instead. Moreover, the exact shape of the
relevant description also depends on the datatype used for a given data property, since
restrictions like “greater or equal” are realized by suitable facets of the according XML
Schema datatype (Motik et al., 2009b). We omit this easy but tedious description of
the formal details here.

Just like OWL, SMW’s query language does not support explicit variables, which
essentially disallows cross-references between parts of the query. This ensures that all
queries are tree-like. For instance, it is not possible to ask for all people who died in
the city they were born in. This restriction makes query answering tractable, which
is essential for SMW’s usage in large wikis. In contrast, when variables are allowed
querying is at least NP-hard, and it becomes harder still even for tractable fragments
of OWL 2 (Krötzsch et al., 2007a).

SMW queries as introduced above merely define a result set of pages. In order to
retrieve more information about those results, SMW allows so-called print requests as
parts of queries. For instance, adding ?has capital as a query parameter will cause all
values of the property has capital to be displayed for each result. Figure 10.6 shows

177

Chapter 10 Collaborative ontology evaluation in Semantic MediaWiki

Figure 10.6: A semantic query for all cantons of Switzerland, together with their cap-
ital, population, and languages. The data stems from an automatically
annotated version of Wikipedia.

a typical output for a query with multiple print requests. Using further parameters in
query invocation, result formatting can be controlled to a large degree. In addition to
tabular output, SMW also supports various types of lists and enumerations, interactive
timelines using SIMILE’s timeline code,4 and many further custom formats.

10.2.3 Giving back to the Web

The Semantic Web is all about exchanging and reusing knowledge, facilitated by stan-
dard formats that enable the interchange of structural information between producers
and consumers. Section 10.1.3 explained how SMW’s content is grounded in OWL,
and this data can also be retrieved via SMW’s Web interface as an OWL export. As
shown in Figure 10.1, this service is implemented as a special page. It can be queried
for information about certain elements. The link RDF feed within each factbox also
leads to this service (see Figure 10.3).

Exported data is provided in OWL/RDF encoding, using appropriate URIs as iden-
tifiers to prevent confusion with URLs of the wiki’s HTML documents. The semantic
data is not meant to describe the HTML-document but rather its (intended) subject.
The generated OWL/RDF is “browseable” in the sense that URIs can be used to
locate further resources, thus fulfilling the linked data principles (as described in Sec-
tion 4.1.1). All URIs point to a Web service of the wiki that uses content negotiation
to redirect callers either to the OWL export service or to the according wiki page.
Together with the compatibility to both OWL and RDF this enables a maximal reuse

4http://simile.mit.edu/timeline/

178

http://simile.mit.edu/timeline/

10

10.3 Related systems

of SMW’s data. Tools such as Tabulator (Berners-Lee et al., 2006a) that incrementally
retrieve RDF resources during browsing can easily retrieve additional semantic data
on user request. SMW furthermore provides scripts for generating the complete ex-
port of all data within the wiki, which is useful for tools that are not tailored towards
online operation such as the faceted browser Longwell.5 Sample files of such export
are found at http://semanticweb.org/RDF/.

SMW makes sure to generate valid URIs for all entities within the wiki. It does not
burden the user with following the rules and guidelines for “cool URIs” (Sauermann
and Cyganiak, 2008), but generates them automatically from the article name. Users
can at any time introduce new individuals, properties, or classes. Because of that
it does not make sense to use a hash namespace (see Section 4.1.2) as the returned
file would be an ever-growing and -changing list of entity names. Instead a slash
namespace is used, so that SMW can basically use the local name as a parameter in
creating the required export of data.

10.3 Related systems

Before SMW, some other semantic wikis have been created, but most of them have
been discontinued by now (Campanini et al., 2004; Souzis, 2005; Nixon and Simperl,
2006). Many of the early semantic wikis emphasized the semantic side and disregarded
some of the strengths of wikis such as their usability and low learning curve. One of the
major design paradigms of SMW have been that SMW is a wiki first, and a semantic
system second.

The most notable (and stable) related system currently is KiWi (Schaffert et al.,
2009), previously known as IkeWiki (Schaffert, 2006). KiWi is similar to SMW with
respect to the supported kinds of easy-to-use inline wiki annotations, and various
search and export functions. In contrast to SMW, KiWi introduces the concept of
ontologies and (to some extent) URIs into the wiki, which emphasizes use-cases of
collaborative ontology editing that are not the main focus of SMW. KiWi uses URIs
explicitly to identify concepts, but provides interfaces for simplifying annotation, e.g.
by suggesting properties.

Besides text-centered semantic wikis, various collaborative database systems have
appeared recently. Examples of such systems include OntoWiki (Auer et al., 2006),
OpenRecord,6 freebase,7 and OmegaWiki.8 Such systems typically use form-based edit-
ing, and are used to maintain data records, whereas SMW concentrates on text, the
main type of content in wikis. OntoWiki draws from concepts of semantic technolo-

5http://simile.mit.edu/wiki/Longwell
6http://www.openrecord.org
7http://www.freebase.com
8http://www.omegawiki.org

179

http://semanticweb.org/RDF/
http://simile.mit.edu/wiki/Longwell
http://www.openrecord.org
http://www.freebase.com
http://www.omegawiki.org

Chapter 10 Collaborative ontology evaluation in Semantic MediaWiki

gies and provides a built-in faceted (RDF) browser. The other systems have their
background in relational databases. There are two extensions to SMW that help with
making SMW more similar to such a form-based editing system, Semantic Forms de-
veloped by Yaron Koren9 and Halo developed by ontoprise.10

SMW has become the base for a number of further research works in the area of
semantic wikis. (Rahhal et al., 2009) describes a Peer2Peer extension of SMW that
allows the distributed editing of the semantic wiki. (Bao et al., 2009a) describes the
usage of SMW as a light weight application model, implementing two applications on
top of it. The MOCA extension (Kousetti et al., 2008) to SMW fosters the convergence
of the emerging vocabulary within an SMW instance. A convergent vocabulary is not
only a requirement for the proper usage of a semantic wiki, but also for the automatic
content checks described in Section 10.4.

10.4 Collaborative ontology evaluation

Semantic wikis have shown to be feasible systems to enable communities to collabo-
ratively create semantically rich content. They enable users to make the knowledge
within the wiki explicit. This also allows the wiki to automatically check and evaluate
the content. In this section we present a number of approaches in order to provide
facilities to ensure the content quality of a wiki, including the application of constraint
semantics and autoepistemic operators in ways that are easy accessible for the end user.
Wikis such as Wikipedia do not work solely because of their underlying software, but
due to their rather complex socio-technical dynamics that work due to often implicit
community processes and rules (Ayers et al., 2008). We first introduce a number of
technical implementation for some exemplary evaluations that can be performed auto-
matically on top of knowledge formalized within an SMW (Vrandečić, 2009c): concept
cardinality in Section 10.4.1, class disjointness in Section 10.4.2, and property cardi-
nality constraints in Section 10.4.3. We close this chapter with a discussion of the
social aspects of collaborative ontology evaluation in Section 10.4.4.

10.4.1 Concept cardinality

Concept cardinality states how many results a query within the wiki should have.
Besides exact numbers also minimal and maximal cardinalities are allowed. For the
description of the implementation we assume that the query is captured by a concept.
Then Template:Cardinality can be added to the concept page.

{{#ifeq:{{#ask:[[Concept:{{PAGENAME}}]]|format=count}}
|{{{1}}}|OK|Not OK}}

9http://www.mediawiki.org/wiki/Extension:Semantic_Forms
10http://smwforum.ontoprise.com

180

http://www.mediawiki.org/wiki/Extension:Semantic_Forms
http://smwforum.ontoprise.com

10

10.4 Collaborative ontology evaluation

The template assumes one parameter, the cardinality. Thus the template can be
instantiated on a concept page such as US states as follows:

{{Cardinality|50}}

The format count returns simply the number of results. The #ifeq MediaWiki
parser function checks if the first parameter, i.e. the query result, is equal to the
second parameter, i.e. the first parameter of the template call (in our example 50).
If they are equal, the third parameter will be returned (OK), otherwise the fourth
parameter will be printed (Not OK). In a production setting the resulting text should
be more refined to make sure that the user understands the raised issue.

In case we want not to check exact cardinality, but rather maximal or minimal cardi-
nality we can use the MediaWiki parser function #ifexpr that checks if an expression
is true or not.11

10.4.2 Class disjointness

Class disjointness states a page should not be categorized by the two specified cate-
gories at the same time. For this case we suggest the Template:Disjoint:

Testing {{{1}}} and {{{2}}} -
{{#ask: [[Category:{{{1}}}]] [[Category:{{{2}}}]]
|default=OK|Intro=Inconsistent individuals: }}

The triple-brackets are replaced with the first and second parameter to the template
call, respectively. The inline query will return OK, if no results exists, or the list of
individuals prepended with the Intro, as shown below. This template can be called
on any wiki page like this:

{{Disjoint|Man|Woman}}

The template call will result in a little report that could look like this:

Testing Man and Woman - Inconsistent individuals:
[[Hermes]], and [[Aphrodite]]

Since the inconsistent individuals are already linked, the user can quickly naviagte
to their pages and check them.

Note that the template is not necessary neither in this case nor in the previous. We
could simply add the query directly on any wiki page. The template is merely used to
allow other users to easily add tests to pages without having to understand how the
SMW query language works.
11http://www.mediawiki.org/wiki/Help:Extension:ParserFunctions#.23ifexpr

181

http://www.mediawiki.org/wiki/Help:Extension:ParserFunctions#.23ifexpr

Chapter 10 Collaborative ontology evaluation in Semantic MediaWiki

10.4.3 Property cardinality constraints

Property cardinalities are statements about how often a property should be used on a
specific page or point to a specific page. We can start with a similar approach as for
concept cardinalities, introducing Template:Property cardinality:

{{#ifexpr:{{#ask:[[{{{Property}}}::{{{Value}}}]]|format=count}}
<= {{{Maximal cardinality}}}|OK|Not OK}}

We could now call it for any page to check if that page’s individual fulfills the
constraint or not. The following template call checks if the individual Seth has indeed
a maximum of one father.

{{Property cardinality
|Property=Father
|Maximal cardinality=1
|Value=Seth
}}

We would prefer not to call this manually for every individual, but rather for all indi-
viduals of a category at once. To achieve this we can use the query format “template”.
It applies the given template on every query result. We first define the formatting tem-
plate Template:Property cardinality format:

{{{1}}} ({{Property cardinality
|Property=Father
|Maximal cardinality=1
|Value={{{1}}}
}})

The parameter {{{1}}} means the first parameter, in this case each result of the
query. Now we can use this template to format all results of a query, whereby it
evaluates the given cardinality restrictions. The query could look like this:

{{#ask:[[Category:Person]]
|link=none
|format=template
|template=Property cardinality format
|sep=, }}

This query will return a comma-separated list of all persons, followed by the evalu-
ation result for each person in brackets.

182

10

10.4 Collaborative ontology evaluation

Note that the expressivity of SMW itself is more restricted than OWL, but exports
from SMW have been used in combination with more expressive background ontologies
(as suggested in Section 9.2.1) and then evaluated by external OWL inference engines
(Vrandečić and Krötzsch, 2006). It has to be noted that the above checks do not
have the normal OWL semantics. Concept and property cardinality in SMW do not
relate to nominals and OWL property cardinalities, but follow rather the semantics
of autoepistemic operators as discussed in Section 9.2.3. Within the wiki, we assume
a closed world and unique names if not otherwise stated. The deviation from OWL
semantics has to be carefully considered when exporting data from the wiki.

Not all possible evaluations can be expressed within the wiki. For example, domain
and range constraints in the sense of Section 9.2.4 can not be obviously implemented
within SMW.12

10.4.4 Social and usability aspects

An evaluation framework such as the one available in SMW allows the organic growth
and addition of further content evaluations as deemed necessary by the wiki commu-
nity. We expect that some wikis will introduce specific evaluation approaches that
only apply to the domain at hand. Making the above constraints in the wiki must
be simple enough to allow contributors to actually apply these features. The given
selection is based on the fact that they can be represented within the wiki simply and
unambiguously, i.e. contributors will always know where to look for a specific piece of
information. This is a necessary requirement in order to keep a wiki maintainable.

This is not the case for the actual evaluations themselves. They can be put on any
page – in particular, users can create their own private pages where they define their
own evaluation criteria and run their own tests. Or they can be collaboratively run
and maintained on a more central page. This way each member of the wiki community
can decide on their own how and what part of the ontology to monitor.

A major decision embedded in the given ontology evaluation framework is to indeed
allow contributors to introduce inconsistencies. When a page is modified, the wiki
could check if that edit would turn it inconsistent and then cancel the edit. But
even disregarding if a real time check would be computationally feasible, this seems
to heavily conflict with the wiki paradigm. Instead of prohibiting edits that lead to
inconsistencies we introduce means to report discovered problems and allow to repair
them efficiently by linking to the respective pages.

Having all the evaluations in the wiki being implementable ad-hoc by any contrib-
utor, without the requirement of programming PHP and having access to the server

12 We currently assume that SMW together with parser functions is Turing-complete. If this is the
case, any evaluation that can be done automatically at all could be expressed within SMW. But it
can turn out that an actual implementation is too hard to be feasible. This is what we mean with
obviously implementable.

183

Chapter 10 Collaborative ontology evaluation in Semantic MediaWiki

and the underlying code, we expect numerous evaluations to bloom. The prize of this
freedom, though, is a high computational tax. Executing multiple intervowen layers of
template calls and inline queries by the MediaWiki parser is computationally expen-
sive. We expect that some template combinations will turn out to be both useful and
expensive, in which case new extensions can be written natively in PHP to replace
these template calls with calls to new parser functions. This has happened before
in Wikipedia with several features (Schindler and Vrandečić, 2010). We regard this
as a prime example for the Web Science process (Berners-Lee et al., 2006b), where
technological and social approaches interplay heavily with each other in order to come
up with a Web-based solution to a problem.

184

11

Chapter 11

Related work

Wanting connections, we found
connections – always,
everywhere, and between
everything. The world exploded
in a whirling network of kinships,
where everything pointed to
everything else, everything
explained everything else . . .

(Umberto Eco, b. 1932,
Foucault’s Pendulum

(Eco, 1988))

This thesis presents a framework for ontology evaluation. In this chapter we discuss
other frameworks with a similar intention, and relevant aspects in the creation of the
underlying framework in Section 11.1. We discuss further methods and approaches
to ontology evaluation in Section 11.2 and show how they fit into our framework.
We expect that future work – especially newly developed evaluation methods, further
implementations of existing methods, and evaluations regarding existing methods –
can be similarly integrated in our framework. Section 11.3 then closes this chapter by
discussing the corpora used for ontology evaluation within this thesis.

Note that the relation to our own previously published work is given in Section 1.4.

11.1 Frameworks and aspects

There are already a number of frameworks for ontology evaluation. The main goal of
the framework in this thesis is the assessment of the qualities of one given ontology.

185

Chapter 11 Related work

The other frameworks often have slightly different, although related goals. The most
common such goals are ontology ranking and ontology selection.

Ontology ranking has the goal of sorting a given set of ontologies based on some
criteria. Often these criteria can be parameterized with a context, usually a search
term. Ontology search engines such as FalconS (Cheng et al., 2008), Watson (d’Aquin
et al., 2007b), SWeSE (Harth et al., 2009), or Swoogle (Ding et al., 2004) have to
perform the task of ontology ranking when deciding which ontologies to display in what
order to the user who searched for ontologies. Other ontology ranking frameworks are
(Alani and Brewster, 2006) and (Tartir et al., 2005).

Ontology selection can be regarded as a specialization of ontology ranking as it
selects only a single result, often for being reused in an ontology engineering task.
The Cupboard system (d’Aquin and Lewen, 2009) presents a similar, though more
fine-grained approach that allows not the selection of whole ontologies but rather the
selection of single axioms. It incorporates a topic-specific open rating system (Lewen et
al., 2006) for assessing the ontologies and then provides further algorithms to present
the individual axioms, but the final decision lies with the ontology engineer who selects
the axioms to reuse.

The framework presented here differs from ranking and selection frameworks as it
does not regard and sort sets of given ontologies, but only assesses individual ontologies
by themselves. Many of the methods presented here can also be used in a ranking or
selection framework, but some have to be adopted: a number of the methods do not
yield a numerical score but rather a list of problematic parts of an ontology (such
as Method 1 on page 67 or Method 11 on page 86), others may yield a number but
this number is not simply proportional to ontology quality but may have a complex
relation to it (if at all – compare the metrics introduced in Method 12 on page 101).

Some ontology evaluation frameworks are based on defining several criteria or at-
tributes; for each criterion, the ontology is evaluated and given a numerical score.
Additionally a weight is also assigned (in advance) to each criterion, and an over-
all score for the ontology is then computed as a weighted sum of its per-criterion
scores. (Burton-Jones et al., 2005) proposes an approach of this type, with ten simple
evaluation methods (called attributes) such as lawfulness, interpretability, comprehen-
siveness, etc. The methods are grouped in so called metric suites, comparable to
ontology aspects in our framework. The four suites are syntax, semantics, pragmat-
ics, and social, but even though the names are partially equal, the metric suites do
not correspond to the individual aspects in our framework, i.e. they are differently
defined. (Burton-Jones et al., 2005) further assumes that every method is a metric
M : O → [0, 1]. Each metric suite is a weighted average of its attributes, and the
overall ontology quality is a weighted average over the results of the metric suites,
thus achieving a simple, overall quality measure for ontologies between 0 and 1, with
1 denoting the perfect ontology.

(Fox and Gruninger, 1998) proposes an alternative set of criteria for ontology evalua-

186

11

11.1 Frameworks and aspects

tion: functional completeness, generality, efficiency, perspicuity, precision granularity,
and minimality. These criteria can mostly be mapped to our catalog: functional
completeness is within completeness, generality in adaptability, efficiency within com-
putational efficiency, perspicuity in clarity, and minimality in conciseness. Precision
granularity asks: “Is there a core set of ontological primitives that are partitionable,
or do they overlap in meaning? Does the representation support reasoning at various
levels of abstraction and detail?” The further description of this criterion indicates
that this is overlapping with our criteria of accuracy, clarity, and completeness. The
set is fairly compatible to our set, the main difference being that the criteria in (Fox
and Gruninger, 1998) are not desiderata used to group evaluation methods, but fully
defined as reachable goals with a metric to measure them (and thus would rather be
methods in our framework than criteria really).

(Lozano-Tello and Gómez-Pérez, 2004) defines an even more detailed set of 117
criteria, organized in a three-level framework. The criteria cover various aspects of
the formal language used to describe the ontology, the contents of the ontology, the
methodology used, the costs (hardware, software, licensing, etc.) of using the ontology,
and the tools available.

Our methodology for selecting the ontology evaluation criteria is presented in Sec-
tion 3.6. For the selection of criteria for the ontology evaluation framework presented
in this thesis we have focused on ontology evaluation literature. There are a number
of related research fields, such as information and data quality, software engineering
(especially the evaluation of software architectures and software models), and database
engineering (especially in the field of database schemas and data modeling).

In systems engineering, quality attributes as non-functional requirements are some-
times called ilities due to the suffix many of the words share (Voas, 2004). In data and
information quality research many of theses ilities are regarded as quality attributes:
accessibility, accountability, accuracy, auditability, availability, credibility, compatibil-
ity, effectiveness, extensibility, etc. Data is defined as having a high quality “if they
are fit for their intended uses in operations, decision making and planning” (Juran
and Godfrey, 1999). A standard for data quality is being developed as ISO 8000,
currently covering the criteria conformance to a specification (ISO 8000-110, 2009),
vocabulary (ISO 8000-102, 2009), provenance (ISO 8000-120, 2009), accuracy (ISO
8000-130, 2009), and completeness (ISO 8000-140, 2009).

We regard the criteria catalog in Section 3.6 not as a fixed, unchanging list, but
as the current state of the art in ontology evaluation research based on our literature
survey. The criteria are used to categorize ontology evaluation methods and to help
users to find methods relevant for their tasks quickly. The list may be extended
or changed and thus may potentially include further relevant criteria originating in
related fields of studies or in further work in ontology evaluation.

As noted in Section 3.4 this thesis covers more the field of ontology verification (as

187

Chapter 11 Related work

opposed to ontology validation). A complementing work covering the area of ontology
validation is provided in (Obrst et al., 2007). It provides a concise overview of many
evaluation methods and techniques not discussed within this thesis. They are:1

• the evaluation of the use of an ontology in an application (see Section 11.2.2).

• the comparison against a source of domain data (see Section 11.2.3).

• assessment by humans against a set of criteria. Human experts are used to gauge
an ontology against a set of principles “derived largely from common sense”.

• natural language evaluation techniques. This evaluates the ontology within a
natural language processing application such as information extraction, question
answering or abstracting.

• using reality as a benchmark. Here the notion of a “portion of reality” (POR)
is introduced, to which the ontology elements are compared.

It is not claimed that the list of techniques is a complete list. We further point
out that the list is not even a list of techniques: one of the points describes a di-
mension of evaluation methods (whether the evaluation is performed automatically,
semi-automatically, or manually, i.e. by humans), one is a specialization of the other
(natural language evaluation techniques specialize the application-based evaluation),
and the last one is describing a methodological condition for ontology evaluation tech-
niques (using reality as a benchmark). As shown in Section 3.5 we do not commit
to a strong theory of reality, i.e. an accessible objective ideal that can be used to be
compared with an ontology. We furthermore do not think that ontologies should be
restricted in specifying conceptualizations of domains within reality, but should be
also allowed to specify conceptualizations of fictional domains, such as the family tree
of the mythological Greek gods, the history of Tolkien’s Middle-earth, or scientific
theories about the luminifereous aether.

Whereas we disagree with the framework described in (Obrst et al., 2007), we agree
that many of the listed methods and techniques are important for a comprehensive
ontology evaluation, especially for ontology validation. Ontology validation is usually
the only way to ensure the correctness of the knowledge encoded in the ontology.
But most validation approaches require the close cooperation of domain and ontology
engineering experts. Validation often can not be performed automatically. Since this
thesis focuses on automatic evaluation approaches, we leave it to (Obrst et al., 2007)
to provide an overview of validation approaches.

1 There is also a section on ontology accreditation, certification, and maturity model, but it is made
clear that this is a discussion about the future of ontology evaluation and not describing a technique
per se

188

11

11.1 Frameworks and aspects

between parameters, and the trade-offs needed when composing
principles with conflicting parameters. We also provide an
analytic case for a trade-off.
In Section 5, we draw some conclusions and sketch a picture of
our current and future work.

2. THEORETICAL BACKGROUND: O2
AND oQual

2.1 O2: a semiotic meta-ontology
We consider an ontology to be a semiotic object, i.e. an object
constituted by an information object and an intended
conceptualization established within a communication setting.
The basic intuition behind this proposal is that information is
equivalent to any pattern that is used to represent another
pattern, whereas that representation is interpretable by some
rational agent as an explanation, an instruction, a command, etc
(cf. [14]).

This intuition is formalized by applying an ontology design
pattern called Information↔Description [3], and it originates a
new pattern called O2 (because it is a “meta-ontology”). O2, in
turn, formalizes the following specification:
a) an ontology is information of a special kind; b) its patterns
are graph-like structures; c) they express intended
conceptualizations, i.e. internal representations (by a rational
agent) of entity types.
In O2 (Fig.1) an ontology graph has an intended
conceptualization and a formal semantic space admitted by the
conceptualization. The graph and the conceptualization are
‘kept together’ by a rational agent who encodes/interprets the
graph, while internally representing its intended
conceptualization. An agent can also provide a profile
containing metadata that express a “description” of the
ontology, e.g. a method to measure the structural or functional
properties of an ontology graph, its resulting attributes, its
possible quality criteria and values, as well as its lifecycle
annotations, such as provenance and informal annotations. A
good profile typically enhances or enforces the usability of an
ontology.

Fig. 1 A UML class diagram depicting the main notions from O2: ontology graphs, profiles, descriptions, measures, etc.

2.2 oQual: an ontology of ontology evaluation
and selection
We model ontology evaluation as a diagnostic task over
ontology elements, processes and attributes. This task is based
on ontology descriptions which make explicit those knowledge
items that are crucial for evaluating and selecting ontologies. In
more detail, the oQual ontology involves:

• Quality-Oriented Ontology Descriptions (qoods), which are a
type of ontology description (Fig.1), that provide the roles and
tasks of, respectively, the elements and processes from/on an
ontology, and have elementary qoods (called principles) as
parts. For example, a type of qood is retrieve, which formalizes
the requirement to be able to answer a certain competency
question. In Fig. 2, the retrieve type is instantiated as a
requirement for the ontology to be able to retrieve the “family

Figure 11.1: UML diagram of the main notions from O2 (from Gangemi et al., 2005).

As discussed in Chapter 3, our framework is strongly influenced by the O2 framework
presented in (Gangemi et al., 2005; Gangemi et al., 2006a; Gangemi et al., 2006b).
Figure 11.1 gives an overview of the O2 ontology. Here we specify the main differences
of our framework given in Section 3.1 on page 37) compared to O2: O2 does not use
the term ontology explicitly but rather assumes that the ontology graph equals
the ontology. This leads to a number of ambiguities regarding the proposed metrics
in (Gangemi et al., 2005), exemplarily discussed in depth in Section 6.1.2. Since in
O2 an ontology is an ontology graph, it also consists of ontology elements that
are graphs as well (i.e. nodes and arcs). In our framework an ontology is structurally
defined as a set of axioms, and the possible axioms and their constituents are fully
described in the meta-ontology, which is not the case in O2. Semantic space in O2

corresponds to model in our framework. O2 does not include evaluation methods
explicitly. And ontology description in O2 corresponds to ontology evaluation
in our framework. Furthermore, every ontology description is expressed by an
ontology profile which in turn is an ontology, i.e. an ontology measure expresses
its result as metadata in an ontology about the measured ontology. Although this
has a number of advantages, we consider this as too restrictive. In our framework,
descriptions may be expressed as ontologies, but this is not required (see Section 3.1
for an example).

189

Chapter 11 Related work

11.2 Methods and approaches

Work in ontology evaluation has grown considerably during the last few years, also
due to two workshops on ontology evaluation (Vrandečić et al., 2006a; Vrandečić et al.,
2007a). Even though we already included numerous methods within our framework
in Chapters 4–9, the list cannot be exhaustive. We hope that future work will regard
this framework as an orientation and localize new methods within the framework. In
the following, we regard a number of methods that have not been mentioned explicitly
in this thesis and are here placed within our framework, defining the two dimensions
of aspects and criteria for each of the methods.

A major line of research that has been hardly discussed in this thesis is the logical
consistency or satisfiability of an ontology and the debugging of inconsistencies
(Parsia et al., 2005). Other papers extend the notion of satisfiability. For example,
(Gómez-Pérez, 2004) defines that class hierarchy cycles or partition problems also
mean inconsistent ontologies. Such issues are often addressed by specific ontology
repair tools such as SWOOP2 or ODEval.3 Inconsistency explanation (Ji et al.,
2009) deals with the issue of creating user-understandable explanations of inconsisten-
cies so that the user can deal with the given problem. Satisfiability is an issue of the
representation aspect, and is covered by the criteria consistency and computational
efficiency.

Integrity constraints are extended on top of Section 6.3.4 in (Briggs, 2008; Sirin
and Tao, 2009) and can also be regarded as extending the definition of satisfiable
ontologies. They often belong to the context aspect since they add the integrity con-
straints as an external artifact, and further the accuracy and consistency criteria.

Some newer ontology engineering methodologies such as DILIGENT (Tempich et
al., 2005) and HCOME (Kotis et al., 2005) take into account the fundamental role
of discourse and agreement between different stakeholders. They identify the
sharedness of the ontology as an explicit value and provide processes to guarantee
that sharedness is achieved. Even though we do not regard sharedness as an ontology
quality criterion (Section 3.6) of its own, it is an integral part of our conceptualization
(Section 3.5). Sharedness regards the aspect of semantics and touches a number of
criteria: accuracy, clarity, and organizational fitness.

The larger a group that commits to an ontology (and the shared conceptualization
it purports), the harder it is to reach a consensus – but also the larger the potential
benefit. Thus the status of the ontology with regards to relevant standardization bodies
in the given domain is a major criteria when evaluating an ontology. Ontologies may
be standardized or certified by a number of bodies such as W3C, Oasis, IETF, and
other organizations that may standardize ontologies in their area of expertise (Obrst

2http://www.mindswap.org/2004/SWOOP/
3http://minsky.dia.fi.upm.es/odeval

190

http://www.mindswap.org/2004/SWOOP/
http://minsky.dia.fi.upm.es/odeval

11

11.2 Methods and approaches

et al., 2007) – or just a group of peers that declare an ontology to be a standard (see
the history of RSS (Beged-Dov et al., 2000) or FOAF (Brickley and Miller, 2005) for
examples). In certain cases, adoption by relevant peers (especially business partners)
may be even more important than standardization. Tools like Swoogle (Ding et al.,
2004) allow to check how often an ontology is instantiated, and thus to measure the
adoption of the ontology on the Web. The standardization refers to the vocabulary
aspect and the criterion of organizational fitness.

A related question is the grounding of the terms in an ontology (Jakulin and
Mladenić, 2005), i.e. how will the terms in the ontology be understood by the users
of the ontology (either directly, or via a certain tool). Since there is no way to encode
the meaning of a term (besides the very weak understanding of meaning as the model-
theoretic formal semantics) we need to make sure that a term such as foaf:Person
is well grounded, usually through the documentation and shared understanding. In
certain cases, the meaning can be completely grounded in a computer: since computers
are able to recognize and handle XML files, for example, the XML file class can be
fully “understood” by the computer (Oberle et al., 2006). But for classes relating
to the world outside of the computer this often remains a challenge. Evaluating the
grounding is an evaluation of the vocabulary aspect addressing the criterion of clarity.

In (Stojanović, 2004) the theory and practice of ontology evolution is discussed.
Ontology change operations and ontology evolution strategies are introduced. Based
on this, (Haase and Stojanović, 2005) extends this work for OWL DL ontologies, and
investigates the evolution of ontologies with regards to consistency, implemented in
the so called evOWLution framework. As the theoretical work allows generic and user
defined consistency checks, the ideas presented here could be regarded as a number of
ways to formalize further aspects of the ontology, and enable more expressive consis-
tency checks beyond simple logical satisfiability. This way we can extend the evolution
framework over all aspects of the ontology, clearly improving the adaptability of the
ontology.

The most widely evaluated aspect in current research is the context aspect. Fre-
quently ontologies are paired with a context and then evaluated with regards to this
context. In the survey of ontology evaluation methods provided by (Brank et al., 2005)
the evaluation methods are classified into four approaches:

• comparing the ontology to a golden standard,

• task-based ontology evaluation, i.e. using the ontology with an application and
evaluating the application

• data-driven ontology evaluation, and

• evaluations performed by humans against a set of predefined criteria, standards
or requirements.

191

Chapter 11 Related work

We think that the last point does not belong to this list as it describes a dimension
of the ontology evaluation method independent of the other approaches. The other
approaches, though, are all part of what the framework in this thesis defines as being
an evaluation of the context aspect, with the context being a golden standard, a task
or application, or a set of external data respectively. In the following, we will regard
evaluation methods that belong to these three categories of context.

11.2.1 Golden standard – similarity-based approaches

The evaluation based on a golden standard builds on the idea of using similarity
measures to compare an ontology with an existing ontology that serves as a reference.
This approach is particularly useful to evaluate automatically learned ontologies with a
golden standard. The similarity between ontologies can be calculated using similarity
functions (Ehrig et al., 2005). A similarity function for ontologies is a real-valued
function

sim : O ×O → [0, 1]

measuring the degree of similarity between two ontologies. Typically, such measures
are reflexive and symmetric. The similarity function to compare the ontologies can be
used directly as the evaluation function, if we keep one of the arguments – the golden
standard GS – fixed.

(Ehrig et al., 2005) shows how similarity functions for ontologies based on individual
similarity measures for specific aspects and elements of the ontologies can be defined.
We present specific similarity measures for some aspects of an ontology in the following.

On the vocabulary aspect, the similarity between two strings can be measured by the
Levenshtein edit distance (Levenshtein, 1966), normalized to [0, 1]. A string matching
measure between two sets of strings is then defined by taking each string of the first
set, finding its similarity to the most similar string in the second set, and averaging
this over all strings of the first set. In an evaluation setting, the second set is a “golden
standard” set of strings that are considered a good representation of the classes of the
problem domain under consideration. The golden standard could be another ontology,
as in (Maedche and Staab, 2002), based on a document-corpus, or provided by experts.

The vocabulary can also be evaluated using precision and recall, as known in infor-
mation retrieval. In this context, precision is the fraction of the labels that also appear
in the golden standard relative to the total number of labels. Recall is the percentage
of the golden standard lexical entries that also appear as labels in the ontology, rel-
ative to the total number of golden standard lexical entries. A disadvantage of these
definitions is that they are strict with respect to spelling (e.g. different use of hyphens
in multi-word phrases would not match, etc.).

(Velardi et al., 2005) describes an approach for the evaluation of an ontology learning
system which takes a body of natural-language text and tries to extract from it relevant

192

11

11.2 Methods and approaches

domain-specific classes (terms and phrases), and then find definitions for them (using
Web searches and WordNet entries) and connect some of the classes by subsumptions.
Part of their evaluation approach is to generate natural-language glosses for multiple-
word terms. The glosses are of the form “x y = a kind of y, definition of y, related
to the x, definition of x”, where y is typically a noun and x is a modifier such as
an adjective. A gloss such as this would then be shown to human domain experts,
who would evaluate it to see if the word sense disambiguation algorithm selected the
correct definitions of x and y. An advantage of this kind of approach is that domain
experts might be unfamiliar with formal languages in which ontologies are commonly
described, and thus it might be easier for them to evaluate the natural-language glosses.
Of course, the disadvantage of this approach is that it nevertheless requires a lot of
work on part of the domain experts. The precision of this disambiguations defines the
ontology evaluation function.

(Maedche and Staab, 2002) proposes several measures, such as the semantic cotopy
of two hierarchies, for comparing the structural aspect of two ontologies. With a
golden standard, these measures can be used for ontology evaluation.

Given a golden standard, evaluation of an ontology on the semantic aspect can
also be based on precision and recall measures, just like on the lexical layer. (Spyns,
2005) discusses an approach for automatically extracting a set of lexons, i.e. triples
of the form (term1 property term2) from natural-language text. The result can be
interpreted as an ontology, with terms corresponding to classes or individuals.

11.2.2 Task-based evaluations

The output of an ontology-based application, or its performance on a given task, will be
better or worse depending on the utility of the ontology used in it. Often ontologies
are tightly interwoven with an application, so that the ontology cannot be simply
exchanged. It may drive parts of the user interface, the internal data management,
and parts of it may be hard-coded into the application. On the other hand, the user
never accesses an ontology directly but always through some application. Often the
application needs to be evaluated with the ontology, regarding the ontology as merely
another component of the used tool. Such a situation has the advantage that well-
known software evaluation methods can be applied, since the system can be regarded
as an integrated system where the fact that an ontology is used is of less importance.

A utility-based evaluation is presented in (Porzel and Malaka, 2004). There a sce-
nario is described where the ontology is used primarily to determine how closely related
the meaning of two classes is. The task is a speech recognition problem, where there
may be several hypotheses about what a particular word in the sentence really means;
a hypotheses should be coherent, which means that the interpretations of individual
words should be classes that are relatively closely related to each other. Thus the
ontology is used to measure distance between classes and thereby to assess the coher-

193

Chapter 11 Related work

ence of hypotheses (and choose the most coherent one). The correctness of the results
directly maps to the quality of the ontology with regards to its use in this scenario.

The evaluation function presented in (Haase and Sure, 2005) captures the intuition
that the quality of an ontology built for searching is determined by how efficiently it
allows the users to obtain relevant individuals. To measure the efficiency, a cost model
is introduced to allow us to quantify the user effort necessary to arrive at the desired
information. For the case of navigating a class graph, this cost is determined by the
complexity of the hierarchy in terms of its breadth and depth. The breadth here means
the number of choices (sibling nodes of the correct class) the user has to consider to
decide for the right branch to follow: The broader the hierarchy, the longer it takes
to make the correct choice. The depth means, how many links does the user need to
follow to arrive at the correct class, under which the desired individual is classified:
The deeper the hierarchy, the more “clicks” need to be performed. To minimize the
cost, both depth and breadth need to be minimized, i.e. the right balance between
them needs to be found.

(Sabou et al., 2007) create custom-tailored ontologies on the fly from the formulation
of a task (Alani, 2006) and evaluate them afterwards. Several problems are encoun-
tered, ranging from broken links to incompatible axioms due to different contexts and
points of views.

Utility-based approaches often have drawbacks:

• They allow one to argue that the ontology is good or bad when used in a par-
ticular way for a particular task, but it is difficult to generalize this observation
(what if the ontology is used for a different task, or differently for the same task?)

• the evaluation may be sensitive in the sense that the ontology could be only a
small component of the application and its effect on the outcome may be rela-
tively small (or depend considerably on the behavior of the other components)

• if evaluating a large number of ontologies, they must be sufficiently compatible
that the application can use them all (or the application must be sufficiently
flexible)

11.2.3 Data-driven evaluation – fitting the data set

An ontology may also be evaluated by comparing it to existing data about the domain
to which the ontology refers. This can, e.g., be a collection of text documents. For
example, (Jakulin and Mladenić, 2005) proposed the ontology grounding process based
on the data representing individuals within the ontology classes. A set of errors in
ontology grounding is shown to the user to help in the ontology refinement process.
Ontology grounding can be used in the construction of a new ontology or in the data
driven ontology evaluation.

194

11

11.2 Methods and approaches

Domain completeness is given when an ontology covers the complete domain of in-
terest. This can be only measured automatically if the complete domain is accessible
automatically and can be compared to the ontology. A way to assess the completeness
of an ontology with respect to a certain text corpus is to use natural language pro-
cessing techniques to detect all relevant terms in a corpus (Velardi et al., 2005). The
learned terms are then compared to the evaluated ontology to measure the coverage
of the corpus i.e. the domain.

(Patel et al., 2003) proposed an approach to determine if the ontology refers to a
particular topic, and to classify the ontology into a directory of topics: one can extract
textual data from the ontology (such as names of classes and properties, and other
suitable natural-language strings) and use this as the input to a text classification
model. The model itself can be trained by standard machine learning algorithms from
the area of text classification; a corpus of documents on a given subject can be used
as the input to the learning algorithm.

(Brewster et al., 2004) suggested using a data-driven approach to evaluate the degree
of structural fit between an ontology and a corpus of documents. (1) Given a corpus
of documents from the domain of interest, a clustering algorithm is used to determine
a probabilistic mixture model of hidden “topics” such that each document can be
modeled as having been generated by a mixture of topics. (2) Each class C of the
ontology is represented by a set of terms including its name in the ontology and the
hypernyms of this name, taken from WordNet. (3) The probabilistic models obtained
during clustering can be used to measure, for each topic identified by the clustering
algorithm, how well the class C fits that topic. (4) At this point, if we require that each
class fits at least some topic reasonably well, we obtain a technique for lexical-layer
evaluation of the ontology. Alternatively, we may require that classes associated with
the same topic should be closely related in the ontology. This would indicate that the
structure of the ontology is reasonably well aligned with the hidden structure of topics
in the domain-specific corpus of documents.

In the case of more extensive and sophisticated ontologies that incorporate a lot of
factual information such as Cyc (Lenat, 1995), the corpus of documents could also be
used as a source of “facts” about the external world, and the evaluation measure is the
percentage of these facts that can also be derived from information in the ontology or
that are consistent with the axioms of the ontology.

Many techniques for the automated generation of ontologies, e.g. ontology learning
algorithms, provide different kinds of evidences with respect to the correctness and
the relevance of ontology elements for the domain in question. For instance, in order
to learn subsumptions, Text2Onto (Cimiano and Völker, 2005) applies a variety of
algorithms exploiting the hypernym structure of WordNet (Fellbaum, 1998), matching
Hearst patterns (Hearst, 1992) in the corpus, and applying linguistic heuristics (Velardi
et al., 2005). Based on the evidences one can compute confidences which model the
certainty about whether a particular axiom holds for a certain domain.

195

Chapter 11 Related work

11.3 Watson corpus

For a number of experiments throughout this thesis we have used corpora derived from
the Watson collection. This section describes the corpora and how we created them.

In order to test our approach on a realistic corpus of Web ontologies we have created
and made available a corpus of ontologies based on the Watson corpus. Watson is a
search engine developed by the Knowledge Media Institute (d’Aquin et al., 2007b).
The complete corpus is simply called the Watson corpus and contains roughly 130,000
ontologies. It is available as part of the Billion Triple Challenge corpus. We used the
2008 edition.4 We have further sampled randomly two subcorpora. Each ontology
has a name based on a hash-sum of the ontology’s URI. We defined two subcorpora
based on these names: the Watson EA corpus (all ontologies where the hash started
with EA) and the Watson 130 corpus (all ontologies where the hash started with 130).
Watson 130 contains 35 ontologies, Watson EA 515 ontologies.

Some of the evaluations are based on an earlier corpus. We received an early copy of
the Watson corpus in spring 2007, containing 5873 files. We filtered these ontologies to
receive only valid OWL DL ontologies, so that only 1331 ontologies remained (checking
using KAON2 (Motik, 2006)). These ontologies are made available online,5 including
metadata about the ontologies extracted during the experiments.6 The set of valid
OWL ontologies is called the Watson OWL corpus.

The ontologies were given short labels for easier reference (A00 to N30). All ontolo-
gies can be retrieved in order to examine the results in this thesis within the context of
the complete ontology. The metadata about the ontologies offers several key metrics
about the ontology, e.g. the number of class names, the number of axioms, etc. Using
the metadata file one can easily filter and select ontologies with specific properties.
This corpus is by no means meant to be a full view of the Semantic Web, but just a
partial, representative snapshot that should allow us to draw conclusions about cur-
rent OWL DL ontology engineering practice on the Web. We assume that Watson is
a random sample of the Web

The experiments were partially run using the RDFlib7 Python library in version
2.4.0 instead of KAON2 that was used for DL checking. As of now, the KAON2
SPARQL engine allows only for conjunctive queries on the ABox of the ontology, but
does not allow to query the TBox. Since most, though not all, ontology engineering
patterns are indeed expressed in the TBox we had to resort to another SPARQL engine
for some of the experiments.

4http://challenge.semanticweb.org/
5http://www.aifb.uni-karlsruhe.de/WBS/dvr/research/corpus
6http://www.aifb.uni-karlsruhe.de/WBS/dvr/research/corpus/meta.rdf
7Available from http://rdflib.net/

196

http://challenge.semanticweb.org/
http://www.aifb.uni-karlsruhe.de/WBS/dvr/research/corpus
http://www.aifb.uni-karlsruhe.de/WBS/dvr/research/corpus/meta.rdf
http://rdflib.net/

12

Chapter 12

Conclusions

Uh huh. Uh huh. Okay. Um,
can you repeat the part of the
stuff where you said all about
the. . . things. Uh. . . the
things?

(Homer Simpson
The Simpsons,

Season 7, Episode 17
(Swartzwelder, 1996))

When we started with this thesis, we had the näıve goal of achieving a simple, fully
automatically computable, real-valued quality function:

Q : O → [0, 1]

Given two ontologies O1 and O2 we wanted to be able to use the measure, get results
such as Q(O1) = 0.73 and Q(O2) = 0.62, and thus not only being able to state that
one ontology is better than the other, but also how much better it is.

As said, it was a näıve goal. In (Burton-Jones et al., 2005) such a measure is indeed
defined, but there are so many shortcomings with a measure like this: can a simple
measure really capture the many dimensions of an ontology? How does this number
help in engineering and maintaining ontologies? Just having this number does not tell
us how to improve the ontology, nor does it point out to the problems an ontology may
have. We had to redefine our goal: instead of such a measure we aimed for methods
that help us tell how good an ontology is, to assess the quality of an ontology.

But also this quest for quality did not lead to a satisfying result, especially since
“Quality cannot be defined” (Pirsig, 1984). So once again we changed our goal: instead
of aiming for evaluation methods that tell us if an ontology is good, we settled for the

197

Chapter 12 Conclusions

goal of finding ontology evaluation methods that tell us if an ontology is bad, and if so,
in which way. This turned out to be the most useful approach in order to get closer to
our goals: improving the quality of ontologies on the Web in general and thus gaining
advantages from better ontologies, increasing the availability of ontologies by providing
usable methods to test ontologies before release, and lower the maintenance costs for
ontologies by providing methods that point out possible errors well in advance. But
now it should be clear that none of the methods, neither alone nor in combination,
can guarantee a good ontology.

This final chapter summarizes the achievements of this thesis in Section 12.1 and
lists the many open research questions and development challenges in Section 12.2.

12.1 Achievements

The result of this thesis is a comprehensive framework for the evaluation of ontologies.
The framework organizes ontology evaluation methods in two dimensions: ontology
quality criteria (accuracy, adaptability, clarity, completeness, computational efficiency,
conciseness, consistency, and organizational fitness) and ontology aspects (vocabulary,
syntax, structure, semantics, representation, and context). For all criteria and for
all aspects we presented methods to evaluate the given criteria or aspect. We added
a number of new techniques to the toolbox of an ontology engineer, such as stable
metrics, XML based ontology validation, reasoning over a meta-ontology, and others.

Unlike other evaluation frameworks and methods we separated an ontology into the
given aspects, thus making it clear what is actually being evaluated. A common error
in current research is to mix up semantics and structure. Chapters 6–8 show how
to keep these levels separate, and offers the tool of normalization in order to assess
exactly what the metrics engineer claims to assess. This will clarify the conceptualiza-
tion surrounding the evaluation of ontologies, and help with describing new ontology
evaluation methods and what their benefits will be.

The framework in this thesis is also novel as far as it puts some emphasis on the
evaluation of the “lower aspects” of the ontology, i.e. vocabulary, syntax, and structure
(Chapters 4–6). Only recently, with the strong shift towards Linked Data, have these
lower levels gained increased scrutiny. This is not yet reflected so much in research
work but rather in informal groups such as the Pedantic Web.1 Other evaluation
frameworks in published research almost exclusively focus on the aspects of semantics
and context. But our extensive survey of existing ontological data shows that many
ontologies have easily reparable issues on those low levels already. Without means to
evaluate those aspects it is hard to fix them. We hope that our framework will show to
be a more comprehensive and inclusive framework that takes into account both parts
of ontology evaluation, and will ultimatively help with improving the overall quality

1http://pedantic-web.org

198

http://pedantic-web.org

12

12.2 Open questions

of ontologies on the Web. This will hopefully not only improve the availability and
usefulness of semantic data on the Web, but also point out a path to reconcile the two
research streams on linked data and expressive ontologies, highlighting the mutual
benefit they can gain from each other.

12.2 Open questions

In the following we list a number of open questions and research challenges raised by
this thesis. Many of the methods have their own, specific list of open issues: XML
schema validation can be extended with more powerful schema languages, normal-
ization may offer benefits in other areas besides ontology evaluation, and it would be
interesting to investigate if it is possible to define a method that turns a normal metric
into a stable metric. We pointed out to specific research questions throughout this
thesis. Here we will list more general research questions that pertain to the framework
as a whole.

It is obvious that a domain- and task-independent verification, as discussed here,
provides some common and minimum quality level, but can only go so far. In order to
properly evaluate an ontology, the evaluator always needs to come up with methods
appropriate for the domain and task at hand, and decide on the relative importance
of the evaluation criteria. But the minimum quality level discussed here will at least
provide the ontology engineer with the confidence that they eliminated many errors
and can publish the ontology. Providing a framework for creating and understanding
domain- and task-aware evaluation methods, integrating the rich work in this field,
remains an open issue.

As we have seen, numerous quality evaluation methods have been suggested in lit-
erature. But only few of them have been properly designed, defined, implemented,
and experimentally verified. The relation between evaluation methods and ontology
quality criteria is only badly understood and superficially investigated, if at all. For
example, (Gangemi et al., 2005) discusses a number of quality criteria and how some
of the metrics may serve as indicators for certain criteria, either positive or negative.
But they do not report any experiments investigating the correlations between the
results of the methods and the criteria. Recent experiments in turn point to some in-
deed counterintuitive relations: a higher tangledness actually increases efficiency when
using the ontology in a browsing task (Yu et al., 2007). This contradicts the more in-
tuitive relationship described in (Gangemi et al., 2005) where tangledness is a negative
indicator for cognitive ergonomics, which includes exploitability of the ontology by the
user. The lack of experimental evaluations matching methods and criteria will hinder
meaningful ontology evaluations. A better understanding of the connection between
the features of an ontology and quality criteria remains easily the most important
open research challenge in ontology evaluation. Also evaluations using scientific tools

199

Chapter 12 Conclusions

from the field of psychology are expected to further show their usefulness in evaluating
ontologies. (Yamauchi, 2007) provides an example, where the difference between two
possibilities to represent formal models is evaluated, but we expect this to be merely
the beginning towards a better understanding of human conceptualizations, which, in
the end, form the foundation for every ontology.

Most of the presented methods in this thesis are only prototypically implemented,
be it as tools of their own (like the XML schema-based validation) or be it as part
of a toolset (like the structural metrics implemented in the KAON2 OWL tools).
What this thesis did not achieve is the implementation of a comprehensive application
that applies the various described evaluation methods and provides a summarizing
report, either as a part of an ontology development environment or as a stand-alone
application. We expect such a validation tool to be of great use. Also many of the
current implementations are not efficient. We have defined the results formally, but
for a number of our prototypical implementations we do not expect them to scale
to realistically sized ontologies. We expect that future research will realize efficient
implementations of those methods that have proven useful.

We have implemented a number of the evaluation methods within a collaborative
semantic authoring system, Semantic MediaWiki. SMW was developed and imple-
mented during the creation of this thesis. We expect the field of collaborative ontol-
ogy evaluation to become an increasingly important topic for collaborative knowledge
construction. But what we see today is just the beginning of this interesting, new
research track. We expect the close future to show hitherto unknown levels of cooper-
ation between groups of humans and federations of machine agents, working together
to solve the wicked problems we face today.

200

Part IV

Appendix

List of Methods 203

List of Tables 205

List of Figures 207

Bibliography 209

Full Table of Contents 230

14

List of Methods

1 Check used protocols . 67
2 Check response codes . 69
3 Look up names . 71
4 Check naming conventions . 73
5 Metrics of ontology reuse . 74
6 Check name declarations . 75
7 Check literals and data types . 78
8 Check language tags . 79
9 Check labels and comments . 81
10 Check for superfluous blank nodes . 82
11 Validating against an XML schema . 86
12 Ontology complexity . 101
13 Searching for Anti-Patterns . 114
14 OntoClean meta-property check . 125
15 Ensuring a stable class hierarchy . 140
16 Measuring language completeness . 141
17 Explicitness of the subsumption hierarchy 145
18 Explicit terminology ratio . 146
19 Checking competency questions against results 154
20 Checking competency questions with constraints 155
21 Unit testing with test ontologies . 157
22 Increasing expressivity . 160
23 Inconsistency checks with rules . 161

203

14

List of Tables

1.1 Namespace declaration in this thesis 18

2.1 Semantics of OWL axioms. Axiom types noted with * may hold more
than the given parameters. 34

2.2 Semantics of OWL expressions using object properties (datatypes prop-
erties are analogous). Expression types with * may hold more parameters. 35

4.1 An overview of what different response codes imply for the resolved
HTTP URI reference U. I is the information resource that is returned,
if any. L is the URI given in the location field of the response. The
table covers the most important responses only, the others do not imply
any further facts. 68

4.2 The five hash and slash namespaces with the biggest number of names. 71

6.1 Constraint Violations for Manual Taggings. The lower part of the table
shows constraint violations based on taggings from the inter-annotater
agreed sets, e.g. A2 / A3 shows the number of violations based on only
the taggings where annotator A2 and A3 agreed on. 123

6.2 Constraint Violations for Automatic Taggings 124

7.1 Class and property assertions to calculate the language completeness of
the example ontology. 142

205

14

List of Figures

3.1 Framework for ontology evaluation. The slashed arrow represents the
expresses relation. 38

3.2 A subsumption axiom (on the left) and its reification. Dotted lines
represent instantiation, slashed lines annotations, circles individuals,
and squares classes. 40

3.3 The semantic spectrum for ontologies. 45
3.4 Two agents X and Y and their conceptualizations of domain d (the

tree), each other, and their respective conceptualizations. 51
3.5 Three agents and an ontology. Y ’s conceptualization is omitted for

space reasons. Z internalizes ontology O, thus connecting it to or cre-
ating its own conceptualization CZ of domain d, in this case, the tree. 52

4.1 Distribution of the HTTP response codes on the HTTP URIs from the
Watson EA corpus. The left hand side shows the slash URIs, the right
hand side hash URIs. 69

4.2 The fifteen most often used data types in the Watson corpus. Note the
logarithmic scale. 77

6.1 Example for a circular hierarchy path. 103
6.2 Two class hierarchies with identical semantics. Semantic similarity mea-

sure ssm of C1 and C3 is lower in the left ontology than in the right
one. 106

6.3 The partition pattern: class A is partitioned into the subclasses B1 . . . Bn108
6.4 The upper levels of the time ontology. Note that ProperInterval and

Instant are declared disjoint even though they are not sibling classes. 114

8.1 A simple taxonomy before (left) and after (right) normalization. The
arrows denote subsumption. 144

9.1 Example class hierarchy. 153

10.1 Architecture of SMW’s main components in relation to MediaWiki. . . 168
10.2 Source of a page about London in MediaWiki (top) and in SMW (bottom).171
10.3 A semantic view of London. 172

207

List of Figures

10.4 Inverse search in SMW, here giving a list of everyone born in London. 174
10.5 Production rules for SMW queries (top) and according OWL descrip-

tions (bottom). 176
10.6 A semantic query for all cantons of Switzerland, together with their cap-

ital, population, and languages. The data stems from an automatically
annotated version of Wikipedia. 178

11.1 UML diagram of the main notions from O2 (from Gangemi et al., 2005). 189

208

14

Bibliography

Harith Alani and Christopher Brewster. Metrics for ranking ontologies. In Denny
Vrandečić, Mari del Carmen Suárez-Figueroa, Aldo Gangemi, and York Sure, ed-
itors, Proceedings of the 4th International Workshop on Evaluation of Ontologies
for the Web (EON2006) at the 15th International World Wide Web Conference
(WWW 2006), pages 24–30, Edinburgh, Scotland, May 2006.

Harith Alani. Position paper: ontology construction from online ontologies. In Les
Carr, David De Roure, Arun Iyengar, Carole A. Goble, and Michael Dahlin,
editors, Proceedings of the 15th international conference on World Wide Web
(WWW2006), pages 491–495, Edinburgh, Scotland, May 2006. ACM.

Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid
Fiksdahl-King, and Shlomo Angel. A Pattern Language. Oxford University Press,
New York, NY, 1977.

Dean Allemang and James Hendler. Semantic Web for the Working Ontologist: Effec-
tive Modeling in RDFS and OWL. Morgan Kaufman, San Francisco, CA, 2008.

Aristotle. Metaphysics. Oxford University Press, 330 BC. translated by W. D. Ross.

Sören Auer and Jens Lehmann. What have Innsbruck and Leipzig in common? Ex-
tracting semantics from wiki content. In Enrico Franconi, Michael Kifer, and
Wolfgang May, editors, Proc. 4th European Semantic Web Conference (ESWC),
2007.

Sören Auer, Sebastian Dietzold, and Thomas Riechert. OntoWiki – A tool for social,
semantic collaboration. In Yolanda Gil, Enrico Motta, Richard V. Benjamins,
and Mark Musen, editors, Proc. 5th Int. Semantic Web Conference (ISWC’05),
number 4273 in LNCS, pages 736–749. Springer, 2006.

Phoebe Ayers, Charles Matthews, and Ben Yates. How Wikipedia works. No Starch
Press, San Francisco, CA, October 2008.

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The description logic handbook: theory, implementation,
and applications. Cambridge University Press, New York, NY, USA, 2003.

209

BIBLIOGRAPHY

Jie Bao, Li Ding, Rui Huang, Paul Smart, Dave Braines, and Gareth Jones. A semantic
wiki based light-weight web application model. In Proceedings of the 4th Asian
Semantic Web Conference, pages 168–183, 2009.

Jie Bao, Sandro Hawke, Boris Motik, Peter F. Patel-Schneider, and Axel Polleres.
rdf:PlainLiteral: A Datatype for RDF Plain Literals, 2009. W3C Recommenda-
tion 27 October 2009, available at http://www.w3.org/TR/rdf-text/.

Daniel J. Barret. MediaWiki. O’Reilly, 2008.

Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L. McGuin-
ness, Peter F. Patel-Schneider, and Lynn Andrea Stein. OWL Web Ontology
Language Abstract Reference, 2004. W3C Rec. 10 February 2004.

Kent Beck. Extreme Programming. Addison-Wesley, Reading, MA, 1999.

Dave Beckett and Jeen Broekstra. SPARQL Query Results XML Format. W3C
Recommendation 15 January 2008, 2008. available at http://www.w3.org/TR/
rdf-sparql-XMLres/.

Dave Beckett. RDF/XML syntax specification (revised). W3C Recommendation,
February 2004.

Gabe Beged-Dov, Dan Brickley, Rael Dornfest, Ian Davis, Leigh Dodds, Jonathan
Eisenzopf, David Galbraith, R.V. Guha, Ken MacLeod, Eric Miller, Aaron Swartz,
and Eric van der Vlist. RDF site summary (RSS) 1.0, December 2000. Available
at http://web.resource.org/rss/1.0/spec.

V. Richard Benjamins, Pompeu Casanovas, Jesús Contreras, José Manuel López Cobo,
and Lisette Lemus. Iuriservice: An intelligent frequently asked questions system
to assist newly appointed judges. In V.R. Benjamins, P. Casanovas, A. Gangemi,
and B. Selic, editors, Law and the Semantic Web, LNCS, Berlin Heidelberg, 2005.
Springer.

Tim Berners-Lee, Larry Masinter, and Mark McCahill. Universal Resource Locators
(URL). Technical Report 1738, Internet Engineering Task Force, December 1994.

Tim Berners-Lee, Jim Hendler, and Ora Lassila. The seman-
tic web. Scientific American, 2001(5), 2001. available at
http://www.sciam.com/2001/0501issue/0501berners-lee.html.

Tim Berners-Lee, Roy Fielding, and Larry Masinter. Uniform Resource Identifier
(URI): Generic Syntax. Technical Report 3986, Internet Engineering Task Force,
June 2005. RFC 3986 (available at http://www.ietf.org/rfc/rfc3986.txt).

210

http://www.w3.org/TR/rdf-text/
http://www.w3.org/TR/rdf-sparql-XMLres/
http://www.w3.org/TR/rdf-sparql-XMLres/
http://web.resource.org/rss/1.0/spec
http://www.ietf.org/rfc/rfc3986.txt

14

BIBLIOGRAPHY

Tim Berners-Lee, Yuhsin Chen, Lydia Chilton, Dan Connolly, Ruth Dhanaraj, James
Hollenbach, Adam Lerer, and David Sheets. Tabulator: Exploring and analyzing
linked data on the Semantic Web. In Lloyd Rutledge, m.c. schraefel, Abraham
Bernstein, and Duane Degler, editors, Proceedings of the Third International Se-
mantic Web User Interaction Workshop SWUI2006 at the International Semantic
Web Conference ISWC2006, 2006.

Tim Berners-Lee, Wendy Hall, James A. Hendler, Kieron O’Hara, Nigel Shadbolt,
and Daniel J. Weitzner. A framework for web science. Foundations and Trends
in Web Science, 1(1):1–130, 2006.

Tim Berners-Lee. Cool URIs don’t change. W3C Style, 1998. available at
http://www.w3.org/Provider/Style/URI.html.

Tim Berners-Lee. Notation 3 - a readable language for data on the web, 2006. available
at http://www.w3.org/DesignIssues/Notation3.

Diego Berrueta and Jon Phipps. Representing classes as property values on the se-
mantic web, 2005. W3C Working Group Note 5 April 2005, avail. at http:
//www.w3.org/TR/swbp-vocab-pub/.

Diego Berrueta and Jon Phipps. Best practice recipes for publishing RDF vocabularies,
2008. W3C Working Group Note 28 August 2008, avail. at http://www.w3.org/
TR/swbp-vocab-pub/.

Janez Brank, Marko Grobelnik, and Dunja Mladenić. A survey of ontology evaluation
techniques. In Proceedings of 8th International Multi-Conference of the Informa-
tion Society, pages 166–169, 2005.

Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin. Namespaces in XML
1.0 (second edition), 2006. W3C Recommendation 16 August 2006, available at
http://www.w3.org/TR/REC-xml-names/.

Tim Bray, Jean Paoli, C. Michael Sperberg-McQueen, Eve Maler, and Francois
Yergeau. Extensible markup language (XML) 1.0 (fifth edition). W3C Recommen-
dation 26 November 2008, 2008. available at http://www.w3.org/TR/REC-xml.

Christopher Brewster, Harith Alani, Srinandan Dasmahapatra, and Yorick Wilks.
Data-driven ontology evaluation. In Proceedings of the Language Resources and
Evaluation Conference (LREC 2004), pages 164–168, Lisbon, Portugal, 2004. Eu-
ropean Language Resources Association.

Dan Brickley and Libby Miller. The Friend Of A Friend (FOAF) vocabulary specifi-
cation, July 2005.

211

http://www.w3.org/DesignIssues/Notation3
http://www.w3.org/TR/swbp-vocab-pub/
http://www.w3.org/TR/swbp-vocab-pub/
http://www.w3.org/TR/swbp-vocab-pub/
http://www.w3.org/TR/swbp-vocab-pub/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml

BIBLIOGRAPHY

Thomas Henry Briggs. Constraint Generation and Reasoning in OWL. PhD thesis,
University of Maryland, 2008.

Saartje Brockmans and Peter Haase. A Metamodel and UML Profile for Rule-
extended OWL DL Ontologies –A Complete Reference. Technical report, Univer-
sität Karlsruhe, March 2006. http://www.aifb.uni-karlsruhe.de/WBS/sbr/
publications/owl-metamodeling.pdf.

Andrew Burton-Jones, Veda C. Storey, Vijayan Sugumaran, and Punit Ahluwalia. A
semiotic metrics suite for assessing the quality of ontologies. Data and Knowledge
Engineering, 55(1):84–102, October 2005.

Stefano Emilio Campanini, Paolo Castagna, and Roberto Tazzoli. Towards a seman-
tic wiki wiki web. In Giovanni Tummarello, Christian Morbidoni, Paolo Puliti,
Francesco Piazza, and Luigi Lella, editors, Proceedings of the 1st Italian Semantic
Web Workshop (SWAP2004), Ancona, Italy, December 2004.

Pompeu Casanovas, Núria Casellas, Marta Poblet, Joan-Josep Vallbé, York Sure, and
Denny Vrandečić. Iuriservice II ontology development. In Pompeu Casanovas, ed-
itor, Workshop on Artificial Intelligence and Law at the XXIII. World Conference
of Philosophy of Law and Social Philosophy, May 2005.

Pompeu Casanovas, Nuria Casellas, Christoph Tempich, Denny Vrandečić, and
Richard Benjamins. OPJK and DILIGENT: ontology modeling in a distributed
environment. Artificial Intelligence and Law, 15(1), 2 2007.

Werner Ceusters and Barry Smith. A realism-based approach to the evolution of
biomedical ontologies. In Proceedings of the AMIA 2006 Annual Symposium,
November 2006.

Gong Cheng, Weiyi Ge, and Yuzhong Qu. FALCONS: Searching and browsing entities
on the semantic web. In Proceedings of the the World Wide Web Conference, 2008.

Philipp Cimiano and Johanna Völker. A framework for ontology learning and data-
driven change discovery. In Proceedings of the 10th International Conference on
Applications of Natural Language to Information Systems (NLDB’2005), 2005.

Philipp Cimiano, Günter Ladwig, and Steffen Staab. Gimme the context: Context-
driven automatic semantic annotation with C-PANKOW. In Allan Ellis and
Tatsuya Hagino, editors, Proceedings of the 14th World Wide Web Conference,
pages 332 – 341, Chiba, Japan, MAY 2005. ACM Press.

James Clark and Makoto Murata. RELAX NG Specification, December 2001. OASIS
committee specification.

212

http://www.aifb.uni-karlsruhe.de/WBS/sbr/publications/owl-metamodeling.pdf
http://www.aifb.uni-karlsruhe.de/WBS/sbr/publications/owl-metamodeling.pdf

14

BIBLIOGRAPHY

Kendall Grant Clark, Lee Feigenbaum, and Elias Torres. Serializing SPARQL Query
Results in JSON. W3C Working Group Note 18 June 2007, 2007. available at
http://www.w3.org/TR/rdf-sparql-json-res/.

James Clark. XSL Transformations (XSLT). W3C Recommendation 16 November
1999, 9 1999. available at http://www.w3.org/TR/1999/REC-xslt-19991116.

John Cowan and Richard Tobin. XML information set (second edition). W3C
Recommendation 4 February 2004, 2004. available at http://www.w3.org/TR/
xml-infoset/.

Anne Cregan, Malgorzata Mochol, Denny Vrandečić, and Sean Bechhofer. Pushing the
limits of OWL, Rules and Protégé – A simple example. In Bernardo Cuenca Grau,
Ian Horrocks, Bijan Parsia, and Peter Patel-Schneider, editors, OWL: Experiences
and Directions, Galway, Ireland, 11 2005.

Mathieu d’Aquin and Holger Lewen. Cupboard – a place to expose your ontologies
to applications and the community. In The Semantic Web: Research and Appli-
cations, 6th European Semantic Web Conference, ESWC 2009, Heraklion, Crete,
Greece, May 31-June 4, 2009, Proceedings, volume 5554 of Lecture Notes in Com-
puter Science, pages 913–918. Springer, Mai 2009.

Mathieu d’Aquin, Claudio Baldassarre, Larian Gridinoc, Sofia Angeletou, Marta
Sabou, and Enrico Motta. Characterizing knowledge on the semantic web with
Watson. In Denny Vrandečić, Raúl Garćıa-Castro, Asunción Gómez-Pérez, York
Sure, and Zhisheng Huang, editors, Proceedings of the Workshop on Evalua-
tion of Ontologies and Ontology-based tools, 5th International EON Workshop
(EON2007) at ISWC/ASWC’07, pages 1–10, Busan, Korea, November 2007.

Mathieu d’Aquin, Claudio Baldassarre, Laurian Gridinoc, Marta Sabou, Sofia An-
geletou, and Enrico Motta. Watson: Supporting next generation semantic web
applications. In WWW/Internet conference, Vila real, Spain, 2007.

Frank Dawson and Tim Howes. vCard MIME Directory Profile. RFC 2426, Internet
Engineering Task Force, 9 1998.

Tom DeMarco. Controlling Software Projects: Management, Measurement & Estima-
tion. Yourdon Press, New York, 1982.

Rose Dieng and Olivier Corby, editors. Proceedings of the 12th International Confer-
ence on Knowledge Engineering and Knowledge Management: Methods, Models,
and Tools (EKAW 2000), volume 1937 of Lecture Notes in Artificial Intelligence
(LNAI), Juan-les-Pins, France, 2002. Springer.

213

http://www.w3.org/TR/rdf-sparql-json-res/
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xml-infoset/

BIBLIOGRAPHY

Li Ding, Tim Finin, Anupam Joshi, Rong Pan, R. Scott Cost, Yun Peng, Pavan Red-
divari, Vishal Doshi, and Joel Sachs. Swoogle: a search and metadata engine
for the semantic web. In CIKM ’04: Proceedings of the thirteenth ACM inter-
national conference on Information and knowledge management, pages 652–659,
New York, NY, USA, 2004. ACM.

Francesco M. Donini, Daniele Nardi, and Riccardo Rosati. Description logics of min-
imal knowledge and negation as failure. ACM Transactions on Computational
Logic, 3(2):177–225, 2002.

Umberto Eco. Foucault’s Pendulum. Secker & Warburg, London, 1988.

Marc Ehrig, Peter Haase, Nenad Stojanović, and Mark Hefke. Similarity for ontologies
- a comprehensive framework. In 13th European Conf. on Information Systems,
2005.

Basil Ell. Integration of external data in semantic wikis. Master thesis, Hochschule
Mannheim, December 2009.

Michael Erdmann and Rudi Studer. How to structure and access XML documents
with ontologies. Data Knowl. Eng., 36(3):317–335, 2001.

Oren Etzioni, Michael Cafarella, Doug Downey, Stanley Kok, Ana-Maria Popescu,
Tal Shaked, Stephen Soderland, Daniel S. Weld, and Alexander Yates. Web-
scale information extraction in KnowItAll (preliminary results). In Proceedings of
the 13th International Conference on the World Wide Web (WWW 2004), pages
100–109, 2004.

Ronald Fagin, Joseph Halpern, Yoram Moses, and Moshe Vardi. Reasoning about
Knowledge. MIT Press, Cambridge, MA, USA, 2003.

David C. Fallside and Priscilla Walmsley. XML schema part 0: Primer second edition,
2004. W3C Rec. 28 October 2004.

Adam Farquhar, Richard Fikes, and James Rice. The Ontolingua Server: A tool for
collaborative ontology construction. In Proceedings of the 10th Banff Knowledge
Acquisition for KnowledgeBased System Workshop (KAW’95), Banff, Canada,
November 1996.

Christine Fellbaum. WordNet: An Electronic Lexical Database (Language, Speech, and
Communication). MIT Press, May 1998.

Mariano Fernández-López and Asunción Gómez-Pérez. The integration of OntoClean
in WebODE. In Proceedings of the EON2002 Workshop at 13th EKAW, 2002.

214

14

BIBLIOGRAPHY

Mariano Fernández-López, Asunción Gómez-Pérez, Juan Pazoz Sierra, and Alejan-
dro Pazoz Sierra. Building a chemical ontology using Methontology and the On-
tology Design Environment. IEEE Intelligent Systems, 14(1), January/February
1999.

Roy Fielding, James Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul
Leach, and Tim Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC
2616, June 1999.

Mark S. Fox and Michael Gruninger. Enterprise modeling. AI Magazine, 19:109–121,
Fall 1998.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Elements of Reusable Object-Oriented Software. Addison Wesley, Reading, Mas-
sachusetts, 1995.

Aldo Gangemi, Nicola Guarino, Claudio Masolo, Alessandro Oltramari, and Luc
Schneider. Sweetening ontologies with DOLCE. In A. Gómez-Pérez and V. R.
Benjamins, editors, Proceedings of the 13th International Conference on Knowl-
edge Engineering and Knowledge Management: Ontologies and the Semantic Web
(EKAW 2002), volume 2473 of Lecture Notes in Artificial Intelligence (LNAI),
pages 166–181, Siguenza, Spain, 2002. Springer.

Aldo Gangemi, Carola Catenacci, Massimiliano Ciaramita, and Jens Lehmann. On-
tology evaluation and validation: an integrated formal model for the quality di-
agnostic task. Technical report, Laboratory of Applied Ontologies – CNR, Rome,
Italy, 2005. http://www.loa-cnr.it/Files/OntoEval4OntoDev_Final.pdf.

Aldo Gangemi, Carola Catenacci, Massimiliano Ciaramita, and Jos Lehman. Mod-
elling ontology evaluation and validation. In Proceedings of the Third European
Semantic Web Conference (ESWC), Budva, Montenegro, 2006.

Aldo Gangemi, Carola Catenaccia, Massimiliano Ciaramita, and Jos Lehmann. Qood
grid: A metaontology-based framework for ontology evaluation and selection. In
Denny Vrandečić, Mari del Carmen Suárez-Figueroa, Aldo Gangemi, and York
Sure, editors, Proceedings of the 4th International Workshop on Evaluation of
Ontologies for the Web (EON2006) at the 15th International World Wide Web
Conference (WWW 2006), volume 179 of CEUR-WS, pages 8–15, Edinburgh,
Scotland, May 2006.

Aldo Gangemi. Ontology design patterns for semantic web content. In Yolanda Gil,
Enrico Motta, V. Richard Benjamins, and Mark A. Musen, editors, Proceedings
of the 4th International Semantic Web Conference (ISWC2005), volume 3729 of
LNCS. Springer Verlag Berlin-Heidelberg, November 2005.

215

http://www.loa-cnr.it/Files/OntoEval4OntoDev_Final.pdf

BIBLIOGRAPHY

Asunción Gómez-Pérez, Mariano Fernández-López, and Oscar Corcho. Ontological
Engineering. Advanced Information and Knowlege Processing. Springer, 2003.

Asunción Gómez-Pérez. Ontology evaluation. In Steffen Staab and Rudi Studer, edi-
tors, Handbook on Ontologies, First Edition, chapter 13, pages 251–274. Springer,
2004.

Jan Grant and Dave Beckett. RDF test cases. W3C Recommendation, February 2004.

Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan Parsia, Peter Patel-
Schneider, and Ulrike Sattler. OWL 2: The next step for OWL. Web Semantics:
Science, Services and Agents on the World Wide Web, 6(4):309–322, 2008.

Stephan Grimm and Boris Motik. Closed world reasoning in the semantic web through
epistemic operators. In Bernardo Cuenca Grau, Ian Horrocks, Bijan Parsia, and
Peter Patel-Schneider, editors, Second International Workshop on OWL: Experi-
ences and Directions (OWLED 2006), Galway, Ireland, 2005.

Benjamin Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description Logic
Programs: Combining Logic Programs with Description Logic. In Proceedings of
the Twelfth International World Wide Web Conference, WWW2003, Budapest,
Hungary, 20-24 May 2003, pages 48–57. ACM, 2003.

William E. Grosso, Henrik Eriksson, Ray W. Fergerson, Samson W. Tu, and Mark A.
Musen. Knowledge modeling at the millennium: the design and evolution of
PROTEGE-2000. In Proceedings of the 12th International Workshop on Knowl-
edge Acquisition, Modeling and Mangement (KAW-99), Banff, Canada, October
1999.

Thomas R. Gruber. Towards principles for the design of ontologies used for knowledge
sharing. International Journal of Human-Computer Studies, 43(5/6):907–928,
1995.

Michael Grüninger and Mark S. Fox. Methodology for the design and evaluation
of ontologies. In IJCAI95 Workshop on Basic Ontological Issues in Knowledge
Sharing, Montreal, 1995.

Nicola Guarino and Christopher Welty. A formal ontology of properties. In Dieng and
Corby (2002), pages 97–112.

Nicola Guarino and Christopher Welty. Evaluating ontological decisions with Onto-
Clean. Communications of the ACM, 45(2):61–65, February 2002.

Nicola Guarino and Chris A. Welty. An overview of OntoClean. In Steffen Staab
and Rudi Studer, editors, Handbook on Ontologies in Information Systems, First
Edition, pages 151–172. Springer, 2004.

216

14

BIBLIOGRAPHY

Nicola Guarino. Ontology of information objects. FOFIS Deliverable 2, Istituto di
Scienze e Tecnologie della Cognizione del Consiglio Nazionale delle Ricerche, Mar
2006.

Peter Haase and Guilin Qi. An analysis of approaches to resolving inconsistencies
in DL-based ontologies. In Proceedings of International Workshop on Ontology
Dynamics (IWOD’07), pages 97–109, June 2007.

Peter Haase and Ljiljana Stojanović. Consistent evolution of OWL ontologies. In
Asunción Gómez-Pérez and Jérôme Euzenat, editors, Proceedings of the Second
European Semantic Web Conference, volume 3532, pages 182–197, Heraklion,
Crete, Greece, 2005. Springer.

Peter Haase and York Sure. Usage tracking for ontology evolution. SEKT Deliverable
D3.2.1, Institute AIFB, University of Karlsruhe, June 2005.

Peter Haase, Frank van Harmelen, Zhisheng Huang, Heiner Stuckenschmidt, and York
Sure. A framework for handling inconsistency in changing ontologies. In Y. Gil,
E. Motta, V. R. Benjamins, and M. A. Musen, editors, Proceedings of the Fourth
International Semantic Web Conference (ISWC2005), volume 3729 of LNCS,
pages 353–367. Springer, November 2005.

Andreas Harth, Aidan Hogan, Jürgen Umbrich, and Stefan Decker. SWSE: Object be-
fore documents! In Amit P. Sheth, Steffen Staab, Mike Dean, Massimo Paolucci,
Diana Maynard, Tim Finin, and Krishnaprasad Thirunarayan, editors, Proceed-
ings of the 7th International Semantic Web Conference, Semantic Web Challenge
2008, volume 5318 of LNCS, Karlsruhe, Germany, October 2009. Springer.

Jens Hartmann, York Sure, Peter Haase, Raul Palma, and Mari del Carmen Suárez-
Figueroa. OMV – Ontology Metadata Vocabulary. In Chris Welty, editor, Ontol-
ogy Patterns for the Semantic Web Workshop, Galway, Ireland, 2005.

Patrick Hayes. RDF Semantics. W3C Recommendation 10 February 2004, 2004.
available at http://www.w3.org/TR/rdf-mt/.

Marti A. Hearst. Automatic acquisition of hyponyms from large text corpora. In
Proceedings of the 14th International Conference on Computational Linguistics,
pages 539–545, 1992.

Pascal Hitzler and Denny Vrandečić. Resolution-based approximate reasoning for
OWL DL. In Yolanda Gil, Enrico Motta, V. Richard Benjamins, and Mark A.
Musen, editors, Proceedings of the Fourth International Semantic Web Conference
(ISWC’05), volume 3729 of LNCS. Springer Verlag Berlin-Heidelberg, November
2005.

217

http://www.w3.org/TR/rdf-mt/

BIBLIOGRAPHY

Pascal Hitzler, Markus Krotzsch, and Sebastian Rudolph. Semantic Web Foundations.
Springer, 2009.

Jerry R. Hobbs and Feng Pan. An ontology of time for the semantic web. ACM
Transactions on Asian Language Information Processing (TALIP), 3(1):66–85,
2004.

Masahiro Hori, Jérôme Euzenat, and Peter F. Patel-Schneider. OWL Web Ontology
Language XML presentation syntax, 2003. W3C Note 11 June 2003.

Matthew Horridge, Nick Drummond, John Goodwin, Alan Rector, Robert Stevens,
and Hai Wang. The manchester owl syntax. In OWLED2006 Second Workshop
on OWL Experiences and Directions, Athens, GA, USA, 2006.

Matthew Horridge. The Protégé OWL unit test framework, 2005. Website at http:
//www.co-ode.org/downloads/owlunittest/.

Ian Horrocks and Peter F. Patel-Schneider. Reducing OWL Entailment to Description
Logic Satisfiability. Journal of Web Semantics, 1(4):7–26, 2004.

Ian Horrocks, Frank van Harmelen, Peter Patel-Schneider, Tim Berners-Lee, Dan
Brickley, Dan Connolly, Mike Dean, Stefan Decker, Dieter Fensel, Richard Fikes,
Pat Hayes, Jeff Heflin, James A. Hendler, Ora Lassila, Deborah L. McGuinness,
and Lynn Andrea Stein. DAML+OIL (March 2001), 2001. Joint Committee,
http://www.daml.org/2001/03/daml+oil-index.

Ian Horrocks, Peter Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof, and
Mike Dean. SWRL: a semantic web rule language combining OWL and RuleML,
2003.

ISO 15924. Codes for the representation of names of scripts. Technical report, Inter-
national Standard ISO, 2004.

ISO 2108. Information and documentation – International standard book number
(ISBN). Technical report, International Standard ISO, 2005.

ISO 24824. ISO/IEC 24824-1 (Fast Infoset). Technical report, International Standard
ISO, 2007.

ISO 3166. Codes for the representation of names of countries and their subdivisions.
Technical report, International Standard ISO, 1999.

ISO 639-1. Codes for the representation of names of languages – Part 1: Alpha-2 code.
Technical report, International Standard ISO, 2002.

218

http://www.co-ode.org/downloads/owlunittest/
http://www.co-ode.org/downloads/owlunittest/

14

BIBLIOGRAPHY

ISO 639-2. Codes for the representation of names of languages – Part 2: Alpha-3 code.
Technical report, International Standard ISO, 1998.

ISO 8000-102. Data quality – Part 102: Master data: Exchange of characteristic data:
Vocabulary. Technical report, International Standard ISO, 2009.

ISO 8000-110. Data quality – Part 110: Master data: Exchange of characteristic data:
Syntax, semantic encoding, and conformance to data specification. Technical
report, International Standard ISO, 2009.

ISO 8000-120. Data quality – Part 120: Master data: Exchange of characteristic data:
Provenance. Technical report, International Standard ISO, 2009.

ISO 8000-130. Data quality – Part 130: Master data: Exchange of characteristic data:
Accuracy. Technical report, International Standard ISO, 2009.

ISO 8000-140. Data quality – Part 140: Master data: Exchange of characteristic data:
Completeness. Technical report, International Standard ISO, 2009.

Ian Jacobs and Norman Walsh. Architecture of the World Wide Web Vol. 1, 2004.
W3C Recommendation 15 December 2004, avail. at http://www.w3.org/TR/
webarch/.

Aleks Jakulin and Dunja Mladenić. Ontology grounding. In Proceedings of 8th Inter-
national Multi-Conference Information Society IS-2005, pages 170–173, 2005.

Qiu Ji, Peter Haase, Guilin Qi, Pascal Hitzler, and Steffen Stadtmüller. RaDON
– repair and diagnosis in ontology networks. In Eero Hyvönen, Robert Stevens,
Siegfried Handschuh, Peter Haase, Brian Davis, Kim Viljanen, Christian Meilicke,
Enrico Motta, Wolfgang Nejdl, and Heiner Stuckenschmidt, editors, Proceedings
of the 6th European Semantic Web Conference (ESWC 2009), pages 863–867,
Heraklion, Greece, June 2009.

Joseph M. Juran and A. Blanton Godfrey. Juran’s Quality Handbook. McGraw-Hill,
5th edition, 1999.

Aditya Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca Grau, and James
Hendler. Swoop: A web ontology editing browser. Journal of Web Semantics:
Science, Services and Agents on the World Wide Web, 4(2):144–153, June 2006.

Brian W. Kernighan and P.J. Plauger. The Elements of Programming Style. McGraw-
Hill, 2nd edition, 1978.

Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-oriented
and frame-based languages. Journal of the ACM, 42:741–843, 1995.

219

http://www.w3.org/TR/webarch/
http://www.w3.org/TR/webarch/

BIBLIOGRAPHY

Graham Klyne and Jeremy Carroll. Resource Description Framework (RDF): Con-
cepts and abstract syntax. W3C Recommendation 10 February 2004, 2004.

Andrew Koenig. Patterns and antipatterns. Journal of Object-Oriented Programming,
8(1):46–48, March 1995.

Konstantinos Kotis, George A. Vouros, and Jerónimo P. Alonso. HCOME: A tool-
supported methodology for engineering living ontologies. Semantic Web and
Databases, pages 155–166, 2005.

Chrysovalanto Kousetti, David Millard, and Yvonne Howard. A study of ontology
convergence in a semantic wiki. In Ademar Aguiar and Mark Bernstein, editors,
WikiSym 2008, September 2008.

Markus Krötzsch, Denny Vrandečić, and Max Völkel. Wikipedia and the semantic web
– the missing links. In Proceedings of Wikimania 2005 – The First International
Wikimedia Conference, Frankfurt, Germany, July 2005. Wikimedia Foundation.

Markus Krötzsch, Pascal Hitzler, Denny Vrandečić, and Michael Sintek. How to reason
with OWL in a logic programming system. In Thomas Eiter, Enrico Franconi,
Ralph Hodgson, and Susie Stephens, editors, Proceedings of the 2nd Interna-
tional Conferenc on Rules and Rule Markup Languages for the Semantic Web
(RuleML2006), pages 17–26, Athens, GA, USA, 11 2006. IEEE Computer Soci-
ety.

Markus Krötzsch, Denny Vrandečić, and Max Völkel. Semantic MediaWiki. In Is-
abel Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel Schwabe, Peter
Mika, Mike Uschold, and Lora Aroyo, editors, Proceedings of the 5th International
Semantic Web Conference (ISWC2006), volume 4273 of LNCS, pages 935–942,
Athens, GA, USA, November 2006. Springer.

Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. Conjunctive queries for a
tractable fragment of OWL 1.1. In Karl Aberer, Key-Sun Choi, and Natasha Noy,
editors, Proc. 6th Int. Semantic Web Conf. (ISWC’07). Springer, 2007.

Markus Krötzsch, Sebastian Schaffert, and Denny Vrandečić. Reasoning in semantic
wikis. In Grigoris Antoniou, Uwe Assmann, Cristina Baroglio, Stefan Decker,
Nicola Henze, Paula-Lavinia Patranjan, and Robert Tolksdorf, editors, Proceed-
ings of the 3rd Reasoning Web Summer School, volume 4636 of LNCS, pages
310–329, Dresden, Germany, September 2007. Springer.

Markus Krötzsch, Denny Vrandečić, Max Völkel, Heiko Haller, and Rudi Studer. Se-
mantic wikipedia. Journal of Web Semantics, 5:251–261, September 2007.

220

14

BIBLIOGRAPHY

Joey Lam. Methods for resolving inconsistencies in ontologies. PhD thesis, University
of Aberdeen, 2007.

Cindy Lauper and Rob Hyman. Time after time. In She’s So Unusual. Epic Records,
1983.

Douglas B. Lenat. CYC: A large-scale investment in knowledge infrastructure. Com-
munications of ACM, 38(11):32–38, November 1995.

Vladimir Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

Holger Lewen, Kaustubh Supekar, Natalya F. Noy, and Mark A. Musen. Topic-specific
trust and open rating systems: An approach for ontology evaluation. In Proceed-
ings of the 4th International Workshop on Evaluation of Ontologies for the Web
(EON2006) at the 15th International World Wide Web Conference (WWW 2006),
Edinburgh, UK, Mai 2006.

Rhys Lewis. Dereferencing HTTP URIs, 2007. Draft TAG Finding 31 August
2007, avail. at http://www.w3.org/2001/tag/doc/httpRange-14/2007-08-31/
HttpRange-14.html.

Uta Lösch, Sebastian Rudolph, Denny Vrandečić, and Rudi Studer. Tempus fugit –
towards an ontology update language. In Lora Aroyo et al., editors, Proceedings
of the 6th European Semantic Web Conference (ESWC 2009), volume 5554 of
Lecture Notes in Computer Science (LNCS). Springer-Verlag Berlin Heidelberg,
6 2009.

Adolfo Lozano-Tello and Asunción Gómez-Pérez. OntoMetric: A method to choose the
appropriate ontology. Journal of Database Management Special Issue on Ontolog-
ical analysis, Evaluation, and Engineering of Business Systems Analysis Methods,
15(2), 2004.

Adolfo Lozano-Tello. Métrica de idoneidad de ontoloǵıas. PhD thesis, Universidad de
Extremadura, 2002.

Alexander Maedche and Steffen Staab. Measuring similarity between ontologies. In
Proc. Of the European Conference on Knowledge Acquisition and Management
- EKAW-2002. Madrid, Spain, October 1-4, 2002, volume 2473 of LNCS/LNAI.
Springer, 2002.

René Magritte. The treachery of images, 1929.

Deborah L. McGuiness. Ontologies come of age. In Dieter Fensel, Jim Hendler,
Henry Lieberman, and Wolfgang Wahlster, editors, Spinning the Semantic Web:
Bringing the World Wide Web to Its Full Potential. MIT Press, 2003.

221

http://www.w3.org/2001/tag/doc/httpRange-14/2007-08-31/HttpRange-14.html
http://www.w3.org/2001/tag/doc/httpRange-14/2007-08-31/HttpRange-14.html

BIBLIOGRAPHY

Alistair Miles and Sean Bechhofer. SKOS Simple Knowledge Organization System
Reference, 2009. W3C Recommendation 18 August 2009, available at http:
//www.w3.org/TR/skos-reference/.

Malgorzata Mochol, Anne Cregan, Denny Vrandečić, and Sean Bechhofer. Exploring
owl and rules: a simple teaching case. International Journal of Teaching and Case
Studies (IJTCS), 1(4):299–318, 11 2008.

Boris Motik and Ian Horrocks. Problems with OWL syntax. In OWLED2006 Second
Workshop on OWL Experiences and Directions, Athens, GA, USA, 2006.

Boris Motik, Denny Vrandečić, Pascal Hitzler, York Sure, and Rudi Studer. dlpconvert
- Converting OWL DLP statements to logic programs. In Heiner Stuckenschmidt,
editor, Poster and Demonstration Proceedings of the ESWC 2005, 5 2005.

Boris Motik, Peter F. Patel-Schneider, and Bernardo Cuenca Grau. OWL2 Web
Ontology Language: Direct semantics, 2009. W3C Recommendation 27 October
2009, available at http://www.w3.org/TR/owl2-semantics/.

Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia. OWL2 Web Ontology Lan-
guage: Structural specification and functional-style syntax, 2009. W3C Recom-
mendation 27 October 2009, available at http://www.w3.org/TR/owl2-syntax/.

Boris Motik. Reasoning in Description Logics using Resolution and Deductive
Databases. PhD thesis, Universität Fridericiana zu Karlsruhe (TH), Germany,
2006.

Boris Motik. On the properties of metamodeling in OWL1. Journal of Logic and
Computation, 17(4):617–637, 2007.

Lyndon J. B. Nixon and Elena Paslaru Bontas Simperl. Makna and MultiMakna:
towards semantic and multimedia capability in wikis for the emerging web. In
Sebastian Schaffert and York Sure, editors, Proc. Semantics 2006. Österreichische
Computer Gesellschaft, 2006.

Natalya F. Noy, R. Fergerson, and Mark Musen. The knowledge model of Protégé-
2000: Combining interoperability and flexibility. In Dieng and Corby (2002),
pages 17–32.

Daniel Oberle, Steffen Lamparter, Stephan Grimm, Denny Vrandečić, Steffen Staab,
and Aldo Gangemi. Towards ontologies for formalizing modularization and com-
munication in large software systems. Applied Ontology, 1(2):163–202, 2006.

Leo Obrst, Werner Ceusters, Inderjeet Mani, Steve Ray, and Barry Smith. The eval-
uation of ontologies. In Christopher J.O. Baker and Kei-Hoi Cheung, editors,

222

http://www.w3.org/TR/skos-reference/
http://www.w3.org/TR/skos-reference/
http://www.w3.org/TR/owl2-semantics/
http://www.w3.org/TR/owl2-syntax/

14

BIBLIOGRAPHY

Revolutionizing Knowledge Discovery in the Life Sciences, chapter 7, pages 139–
158. Springer, 2007.

Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Debugging OWL ontologies. In
Proceedings of the 14th World Wide Web Conference (WWW2005), Chiba, Japan,
May 2005.

Blaise Pascal. Pensées. 1670.

Chintan Patel, Kaustubh Supekar, Yugyung Lee, and E. K. Park. OntoKhoj: a seman-
tic web portal for ontology searching, ranking and classification. In Proceedings of
Fifth ACM International Workshop on Web information and data management,
pages 58–61, New York, NY, USA, 2003.

Peter F. Patel-Schneider and Boris Motik. OWL2 Web Ontology Language: Mapping
to RDF graphs, 2009. W3C Recommendation 27 October 2009, available at
http://www.w3.org/TR/owl-mapping-to-rdf/.

Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL Web On-
tology Language Semantics and Abstract Syntax, 2004. W3C Recom-
mendation 10 February 2004, available at http://www.w3.org/TR/2004/
REC-owl-semantics-20040210/.

Addison Phillips and Mark Davis. Matching of Language Tags. Technical Report RFC
4647, Internet Engineering Task Force, September 2006. RFC 4647 (available at
http://www.ietf.org/rfc/rfc4647.txt).

Addison Phillips and Mark Davis. Tags for Identifying Languages. Technical Report
RFC 4646, Internet Engineering Task Force, September 2006. RFC 4646 (available
at http://www.ietf.org/rfc/rfc4646.txt).

Robert M. Pirsig. Zen and the Art of Motorcycle Maintenance: An Inquiry into Values.
Bantam, 1984.

Plato. Phaedrus. Oxford University Press, 370 BC. translated by Benjamin Jowett.

Jeffery T. Pollock. Semantic Web for Dummies. Wiley, 2009.

Robert Porzel and Rainer Malaka. A task-based approach for ontology evaluation. In
Paul Buitelaar, Siegrfried Handschuh, and Bernardo Magnini, editors, Proceedings
of ECAI 2004 Workshop on Ontology Learning and Population, Valencia, Spain,
August 2004.

Neil Postman. Language education in a knowledge context. ETC: A Review of General
Semantics, 37(1):25–37, 1980.

223

http://www.w3.org/TR/owl-mapping-to-rdf/
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/
http://www.ietf.org/rfc/rfc4647.txt
http://www.ietf.org/rfc/rfc4646.txt

BIBLIOGRAPHY

Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for RDF. W3C
Recommendation 15 January 2008, January 2008. available at http://www.w3.
org/TR/rdf-sparql-query/.

Charbel Rahhal, Hala Skaf-Molli, Pascal Molli, and Stéphane Weiss. Multi-
synchronous collaborative semantic wikis. In Gottfried Vossen, Darrell D. E.
Long, and Jeffrey Xu Yu, editors, Proceedings of the International Conference
on Web Information Systems Engineering (Wise 2009), volume 5802 of LNCS,
Poznan, Poland, October 2009.

Eric Raymond. The Cathedral and the Bazaar. O’Reilly, Sebastapol, CA, re-
vised edition, January 2001. Available at http://catb.org/~esr/writings/
cathedral-bazaar/.

Alan Rector. Representing specified values in OWL: ”value partitions” and ”value
sets”. W3C Working Group Note, May 2005. available at http://www.w3.org/
TR/swbp-specified-values/.

Sebastian Rudolph, Johanna Völker, and Pascal Hitzler. Supporting lexical ontology
learning by relational exploration. In Uta Priss, Simon Polovina, and Richard
Hill, editors, Proceedings of the Conference on Conceptual Structures: Knowledge
Architectures for Smart Applications (ICCS 2007), volume 4604 of LNAI, pages
488–491, Sheffield, UK, July 2007. Springer.

Marta Sabou, Jorge Gracia, Sofia Angeletou, Mathieu d’Aquin, and Enrico Motta.
Evaluating the semantic web: A task-based approach. In Karl Aberer, Key-
Sun Choi, Natasha Fridman Noy, Dean Allemang, Kyung-Il Lee, Lyndon J. B.
Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard, Riichiro Mizoguchi, Guus
Schreiber, and Philippe Cudré-Mauroux, editors, Proceedings of the 6th Inter-
national Semantic Web Conference and 2nd Asian Semantic Web Conference
(ISWC2007+ASWC2007), volume 4825 of Lecture Notes in Computer Science,
pages 423–437, Busan, South Korea, November 2007. Springer.

Leo Sauermann and Richard Cyganiak. Cool URIs for the semantic web, March 2008.
W3C Interest Group Note, available at http://www.w3.org/TR/cooluris/.

Andrea Schaerf. Reasoning with individuals in concept languages. Data and Knowledge
Engineering, 13(2):141–176, September 1994.

Sebastian Schaffert, Julia Eder, Szaby Grünwald, Thomas Kurz, Mihai Radulescu, Rolf
Sint, and Stephanie Stroka. KiWi - a platform for semantic social software. In
Christoph Lange, Sebastian Schaffert, Hala Skaf-Molli, and Max Völkel, editors,
4th Workshop on Semantic Wikis (SemWiki2009) at the European Semantic Web

224

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://catb.org/~esr/writings/cathedral-bazaar/
http://catb.org/~esr/writings/cathedral-bazaar/
http://www.w3.org/TR/swbp-specified-values/
http://www.w3.org/TR/swbp-specified-values/
http://www.w3.org/TR/cooluris/

14

BIBLIOGRAPHY

Conference (ESWC 2009, volume 646 of CEUR-WS, Herakleion, Greece, June
2009.

Sebastian Schaffert. IkeWiki: A semantic wiki for collaborative knowledge manage-
ment. In Robert Tolksdorf, Elena Simperl, and Klaus Schild, editors, 1st Interna-
tional Workshop on Semantic Technologies in Collaborative Applications (STICA
2006) at the 15th IEEE International Workshops on Enabling Technologies: In-
frastructures for Collaborative Enterprises (WETICE 2006), pages 388–396, June
2006.

Mathias Schindler and Denny Vrandečić. Introducing new features to Wikipedia: Case
studies for Web Sience. IEEE Intelligent Systems, 2010. to appear.

Toby Segaran, Jamie Taylor, and Colin Evans. Programming the Semantic Web.
O’Reilly, July 2009.

William Shakespeare. Romeo and Juliet. John Danter, London, 1597.

Evren Sirin and Jiao Tao. Towards integrity constraints in OWL. In Peter Patel-
Schneider and Rinke Hoekstra, editors, Proceedings of the Workshop OWL Ex-
periences and Directions 2009 (OWLED 2009) at the 8th International Semantic
Web Conference (ISWC 2009), October 2009.

Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden
Katz. Pellet: A practical OWL-DL reasoner. Journal of Web Semantics, 5(2):51–
53, June 2007.

Barry Smith and Christopher Welty. FOIS introduction: Ontology—towards a new
synthesis. In Proceedings of the 2nd international conference on Formal Ontology
in Information Systems 2001 (FOIS 2001), pages III–IX, Ogunquit, ME, October
2001. ACM Press.

Michael K. Smith, Chris Welty, and Deborah McGuinness. OWL Web Ontology Lan-
guage Guide, February 2004. W3C Recommendation 10 February 2004, available
at http://www.w3.org/TR/owl-guide/.

Adam Souzis. Building a semantic wiki. IEEE Intelligent Systems, 20(5):87–91,
September / October 2005.

Peter Spyns. EvaLexon: Assessing triples mined from texts. Technical Report 09, Star
Lab, Brussels, Belgium, May 2005.

Steffen Staab, Michael Erdmann, and Alexander Maedche. Engineering ontologies
using semantic patterns. In Alun Preece and Daniel O’Leary, editors, Proceedings
of the Workshop on E-Business & the Intelligent Web at the International Joint
Conference on Artificial Intelligence (IJCAI 2001), Seattle, WA, August 2001.

225

http://www.w3.org/TR/owl-guide/

BIBLIOGRAPHY

Ljiljana Stojanović. Methods and Tools for Ontology Evolution. PhD thesis, Universität
Karlsruhe (TH), Karlsruhe, Germany, August 2004.

Peter F. Strawson. Entity and identity. In Hywel David Lewis, editor, Contemporary
British Philosophy Fourth Series. Allen and Unwin, London, England, 1976.

York Sure and Rudi Studer. On-To-Knowledge methodology. In John Davies, Dieter
Fensel, and Frank van Harmelen, editors, On-To-Knowledge: Semantic Web en-
abled Knowledge Management, chapter 3, pages 33–46. J. Wiley and Sons, Novem-
ber 2002.

York Sure, Jürgen Angele, and Steffen Staab. OntoEdit: Multifaceted inferencing
for ontology engineering. In Stefano Spaccapietra, Salvatore March, and Karl
Aberer, editors, Journal on Data Semantics I, volume 2800 of LNCS, pages 128–
152. Springer, October 2003.

York Sure, Christoph Tempich, and Denny Vrandečić. SEKT methodology: Final
description including guidelines, best practices, and lessons learned. SEKT De-
liverable 7.2.2, Institute AIFB, University of Karlsruhe, January 2007.

Vojtech Svatek. Design Patterns for Semantic Web Ontologies: Motivation and Discus-
sion. In Witold Abramowicz, editor, Proceedings of the 7th International Confer-
ence on Business Information Systems (BIS 2004), Poznan, Poland, April 2004.

John Swartzwelder. Homer the Smithers. The Simpsons, 7(17), February 1996.

Samir Tartir, I. Budak Arpinar, Michael Moore, Amit P. Sheth, and Boanerges
Aleman-Meza. OntoQA: Metric-based ontology quality analysis. In Doina
Caragea, Vasant Honavar, Ion Muslea, and Raghu Ramakrishnan, editors, Pro-
ceedings of IEEE Workshop on Knowledge Acquisition from Distributed, Au-
tonomous, Semantically Heterogeneous Data and Knowledge Sources at Fifth
IEEE International Conference on Data Mining (ICDM 2005), pages 45–53,
November 2005.

Christoph Tempich, Helena Sofia Pinto, York Sure, and Steffen Staab. An argu-
mentation ontology for DIstributed, Loosely-controlled and evolvInG Engineer-
ing processes of oNTologies (DILIGENT). In Asunción Gómez-Pérez and Jérôme
Euzenat, editors, Proceedings of the Second European Semantic Web Conference
(ESWC 2005), volume 3532 of LNCS, pages 241–256, Heraklion, Greece, May /
June 2005.

Ivan Terziev, Atanas Kiryakov, and Dimitar Manov. Base upper-level ontology
(BULO) guidance. SEKT deliverable 1.8.1, Ontotext Lab, Sirma AI EAD (Ltd.),
July 2005.

226

14

BIBLIOGRAPHY

Barbara Tillett. What is FRBR? – A conceptual model for the bibliographic universe.
The Australian Library Journal, 54(1), February 2005.

Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner: System de-
scription. In Ulrich Furbach and Natarajan Shankar, editors, Proceedings of the
Third International Joint Conference on Automated Reasoning (IJCAR 2006),
volume 4130 of LNAI, pages 292–297, Seattle, WA, August 2006. Springer.

UN M.49. Standard Country or Area Codes for Statistical Use, Revision 4. Technical
Report 98.XVII.9, United Nations Statistics Division UNSD, 1998.

The Unicode Consortium. The Unicode Standard, Version 5.0.0. Addison-Wesley,
Boston, MA, November 2006.

Michael Uschold and Michael Gruninger. Ontologies and semantics for seamless con-
nectivity. SIGMOD Record, 33(4):58–64, December 2004.

Paola Velardi, Roberto Navigli, Alessandro Cucchiarelli, and Francesca Neri. Evalua-
tion of OntoLearn, a methodology for automatic population of domain ontologies.
In Paul Buitelaar, Philipp Cimiano, and Bernardo Magnini, editors, Ontology
Learning from Text: Methods, Applications and Evaluation, volume 123 of Fron-
tiers in Artificial Intelligence and Applications, pages 92–106. IOS Press, July
2005.

Jeffrey Voas. Software’s secret sauce: The ”-ilities”. IEEE Software, 21(6):14–15,
November / December 2004.

Max Völkel, Markus Krötzsch, Denny Vrandečić, Heiko Haller, and Rudi Studer. Se-
mantic Wikipedia. In Les Carr, David De Roure, Arun Iyengar, Carole A. Goble,
and Michael Dahlin, editors, Proceedings of the 15th international conference on
World Wide Web (WWW2006), pages 491–495, Edinburgh, Scotland, May 2006.
ACM.

Johanna Völker, Denny Vrandečić, and York Sure. Automatic evaluation of ontologies
(AEON). In Yolanda Gil, Enrico Motta, V. Richard Benjamins, and Mark A.
Musen, editors, Proceedings of the Fourth International Semantic Web Conference
(ISWC 2005), volume 3729 of LNCS, pages 716–731, Galway, Ireland, November
2005. Springer.

Johanna Völker, Denny Vrandečić, York Sure, and Andreas Hotho. Learning disjoint-
ness. In Enrico Franconi, Michael Kifer, and Wolfgang May, editors, Proceedings
of the 4th European Semantic Web Conference (ESWC 2007), volume 4519 of
LNCS, pages 175–189, Innsbruck, Austria, June 2007. Springer.

227

BIBLIOGRAPHY

Johanna Völker, Denny Vrandečić, Andreas Hotho, and York Sure. AEON - an ap-
proach to the automatic evaluation of ontologies. Applied Ontology, 3(1-2):41–62,
January 2008.

Jakob Voss. Collaborative thesaurus tagging the Wikipedia way. CoRR, ab-
s/cs/0604036, April 2006. Available at http://arxiv.org/abs/cs/0604036.

Denny Vrandečić, H. Sofia Pinto, York Sure, and Christoph Tempich. The DILIGENT
knowledge processes. Journal of Knowledge Management, 9(5):85–96, October
2005.

Denny Vrandečić and Aldo Gangemi. Unit tests for ontologies. In Mustafa Jarrar,
Claude Ostyn, Werner Ceusters, and Andreas Persidis, editors, Proceedings of
the 1st International Workshop on Ontology content and evaluation in Enterprise
(OntoContent 2006) at On the Move Federated Conferences (OTM2006), volume
4278 of LNCS, pages 1012–1020, Montpellier, France, October 2006. Springer.

Denny Vrandečić and Markus Krötzsch. Reusing ontological background knowledge in
semantic wikis. In Max Völkel, Sebastian Schaffert, and Stefan Decker, editors,
Proceedings of the 1st Workshop on Semantic Wikis – From Wikis to Semantics
(SemWiki2006) at the 3rd European Semantic Web Conference (ESWC 2006),
volume 206 of CEUR-WS, June 2006.

Denny Vrandečić and York Sure. How to design better ontology metrics. In Enrico
Franconi, Wolfgang May, and Michael Kifer, editors, Proceedings of the 4th Eu-
ropean Semantic Web Conference (ESWC 2007), volume 4519 of LNCS, pages
311–325, Innsbruck, Austria, June 2007. Springer.

Denny Vrandečić, Mari del Carmen Suárez-Figueroa, Aldo Gangemi, and York Sure,
editors. Proceedings of the 4th International Workshop on Evaluation of Ontolo-
gies for the Web (EON2006) at the 15th International World Wide Web Confer-
ence (WWW 2006), volume 179 of CEUR-WS, Edinburgh, Scotland, May 2006.

Denny Vrandečić, York Sure, and Christoph Tempich. SEKT methodology: Initial
lessons learned and tool design. SEKT Deliverable 7.2.1, Institute AIFB, Univer-
sity of Karlsruhe, January 2006.

Denny Vrandečić, Johanna Völker, Peter Haase, Duc Thanh Tran, and Philipp Cimi-
ano. A metamodel for annotations of ontology elements in OWL DL. In York
Sure, Saartje Brockmans, and Jürgen Jung, editors, Proceedings of the Second
Workshop on Ontologies and Meta-Modeling, Karlsruhe, Germany, October 2006.
GI Gesellschaft für Informatik.

228

http://arxiv.org/abs/cs/0604036

14

BIBLIOGRAPHY

Denny Vrandečić, Raúl Garćıa-Castro, Asunción Gómez-Pérez, York Sure, and
Zhisheng Huang, editors. Proceedings of the 5th International Workshop on Eval-
uation of Ontologies for the Web (EON2007) at the 6th International Semantic
Web Conference (ISWC 2007), volume 329 of CEUR-WS, Busan, South Korea,
November 2007.

Denny Vrandečić, York Sure, Raul Palma, and Francisco Santana. Ontology reposi-
tories and content evaluation. Knowledge Web Deliverable D1.2.10v2, Institute
AIFB, University of Karlsruhe, June 2007.

Denny Vrandečić, Frank Dengler, Sebastian Rudholph, and Michael Erdmann. RDF
syntax normalization using XML validation. In Lalana Kagal, Ora Lassila, and
Tim Finin, editors, Proceedings of the Workshop Semantics for the Rest of Us
2009 (SemRUs 2009) at the 8th International Semantic Web Conference (ISWC
2009), Chantilly, VA, November 2009.

Denny Vrandečić. Explicit knowledge engineering patterns with macros. In Chris
Welty and Aldo Gangemi, editors, Proceedings of the Ontology Patterns for the
Semantic Web Workshop (OPSW2005) at the 8th International Semantic Web
Conference (ISWC 2005), Galway, Ireland, November 2005.

Denny Vrandečić. Knowledge leveraging and repair – early prototypes. ACTIVE
Deliverable D1.4.1, Institute AIFB, University of Karlsruhe, March 2009.

Denny Vrandečić. Ontology evaluation. In Rudi Studer and Steffen Staab, editors,
Handbook on Ontologies, 2nd edition, chapter 13. Springer, August 2009.

Denny Vrandečić. Towards automatic content quality checks in semantic wikis. In
Mark Greaves, Li Ding, Jie Bao, and Uldis Bojars, editors, Social Semantic Web:
Where Web 2.0 Meets Web 3.0, AAAI Spring Symposium 2009, Stanford, CA,
March 2009. AAAI Press.

Laurence Wachowski and Paul Wachowski. Matrix Revolutions. Warner Bros., USA,
November 2003.

Taowei David Wang and Bijan Parsia. Ontology performance profiling and model
examination: First steps. In Karl Aberer, Key-Sun Choi, Natasha Fridman
Noy, Dean Allemang, Kyung-Il Lee, Lyndon J. B. Nixon, Jennifer Golbeck, Peter
Mika, Diana Maynard, Riichiro Mizoguchi, Guus Schreiber, and Philippe Cudré-
Mauroux, editors, Proceedings of the 6th International Semantic Web Confer-
ence and 2nd Asian Semantic Web Conference (ISWC2007+ASWC2007), volume
4825 of Lecture Notes in Computer Science, pages 595–608, Busan, South Korea,
November 2007. Springer.

229

BIBLIOGRAPHY

Taowei David Wang, Bijan Parsia, and James A. Hendler. A survey of the web ontology
landscape. In Isabel Cruz, Stefan Decker, Dean Allemang Chris Preist, Daniel
Schwabe, Peter Mika, Michael Uschold, and Lora Aroyo, editors, Proceedings of
the Fifth International Semantic Web Conference (ISWC’06), volume 4273 of
Lecture Notes in Computer Science, pages 682–694, Athens, Georgia, November
2006. Springer.

Roger Waters and David Gilmour. Wish You Were Here. In Pink Floyd – Wish You
Were Here. Harvest Records, September 1975.

Chris Welty. OntOWLClean: Cleaning OWL ontologies with OWL. In Brandon
Bennet and Christiane Fellbaum, editors, Proceedings of the Fourth Interna-
tional Conference on Formal Ontologies in Information Systems (FOIS 2006),
volume 150 of Frontiers in Artificial Intelligence and Applications, Baltymore,
MD, November 2006. IOS Press.

Takashi Yamauchi. The semantic web and human inference: A lesson from cognitive
science. In Karl Aberer, Key-Sun Choi, Natasha Fridman Noy, Dean Allemang,
Kyung-Il Lee, Lyndon J. B. Nixon, Jennifer Golbeck, Peter Mika, Diana May-
nard, Riichiro Mizoguchi, Guus Schreiber, and Philippe Cudré-Mauroux, editors,
Proceedings of the 6th International Semantic Web Conference and 2nd Asian Se-
mantic Web Conference (ISWC2007+ASWC2007), volume 4825 of LNCS, pages
609–622, Busan, South Korea, November 2007. Springer.

Jonathan Yu, James A. Thom, and Audrey Tam. Ontology evaluation using Wikipedia
categories for browsing. In Alberto H. F. Laender, André O. Falcāo, Øystein Haug
Olsen, Mário J. Silva, Ricardo Baeza-Yates, Deborah L. McGuinness, and Bjorn
Olstad, editors, Proceedings of the ACM Sixteenth Conference on Information and
Knowledge Management (CIKM), pages 223–232, Lisboa, Portugal, November
2007. ACM.

Evgeny Zolin. Complexity of reasoning in description logics. http://www.cs.man.
ac.uk/~ezolin/dl/, 2010. Last accessed: 14 January 2010.

230

http://www.cs.man.ac.uk/~ezolin/dl/
http://www.cs.man.ac.uk/~ezolin/dl/

14

Full Table of Contents

Acknowledgements 5

Abstract 7

I Foundations 11

1 Introduction 13
1.1 Motivation . 14

1.1.1 Advantages of better ontologies 15
1.1.2 Increasing ontology availability 15
1.1.3 Lower maintenance costs . 16

1.2 Contribution . 16
1.2.1 A framework for ontology evaluation 16
1.2.2 Methods for ontology evaluation 17
1.2.3 Implementation . 17

1.3 Readers’ guide . 18
1.3.1 Foundations . 18
1.3.2 Aspects . 19
1.3.3 Application . 20

1.4 Relation to previous publications . 20

2 Terminology and Preliminaries 23
2.1 Ontologies . 23
2.2 Axioms . 25

2.2.1 Facts . 25
2.2.2 Class axioms . 26
2.2.3 Property axioms . 28
2.2.4 Annotations . 29

2.3 Entities . 29
2.3.1 Individuals . 30
2.3.2 Classes . 30
2.3.3 Properties . 30
2.3.4 Ontologies . 31

2.4 Semantics . 31

231

Full Table of Contents

3 Framework 37
3.1 Overview . 37
3.2 Meta-ontology . 39

3.2.1 Reifying ontologies . 39
3.2.2 Reifying URIs . 41
3.2.3 Advantages of a meta-ontology 41

3.3 Types of ontologies . 42
3.3.1 Terminological ontology . 42
3.3.2 Knowledge base . 43
3.3.3 Semantic spectrum . 44
3.3.4 Classification example . 47

3.4 Limits . 48
3.5 Conceptualizations . 49
3.6 Criteria . 53

3.6.1 Accuracy . 56
3.6.2 Adaptability . 56
3.6.3 Clarity . 57
3.6.4 Completeness . 57
3.6.5 Computational efficiency . 58
3.6.6 Conciseness . 58
3.6.7 Consistency . 59
3.6.8 Organizational fitness . 59

3.7 Methods . 60
3.8 Aspects . 61

II Aspects 63

4 Vocabulary 65
4.1 URI references . 65

4.1.1 Linked data . 66
4.1.2 Hash vs slash . 70
4.1.3 Opaqueness of URIs . 72
4.1.4 URI reuse . 73
4.1.5 URI declarations and punning 75

4.2 Literals . 75
4.2.1 Typed literals and datatypes 76
4.2.2 Language tags . 78
4.2.3 Labels and comments . 80

4.3 Blank nodes . 81

232

14

Full Table of Contents

5 Syntax 83
5.1 Syntactic comments . 84
5.2 Qualified names . 85
5.3 XML validation . 85

5.3.1 Example . 87
5.3.2 Motivation . 89
5.3.3 Normalizing the serialization 92
5.3.4 Creation of compliant schemas 93
5.3.5 Implementation . 95
5.3.6 Related approaches . 96
5.3.7 Open questions for XML schema-based RDF validation 98

6 Structure 99
6.1 Structural metrics in practice . 100

6.1.1 Maximum depth of the taxonomy 102
6.1.2 Class / relation ratio . 104
6.1.3 Relationship richness . 104
6.1.4 Semantic similarity measure . 106

6.2 SPARQL for finding patterns . 107
6.2.1 Translating patterns from OWL to RDF 107
6.2.2 Querying with SPARQL . 110
6.2.3 Ontology normalization . 110
6.2.4 Incomplete searches . 111
6.2.5 Querying for anti-patterns . 113

6.3 The AEON approach . 115
6.3.1 OntoClean in theory . 117
6.3.2 OntoClean meta-properties . 118
6.3.3 OntoClean constraints . 119
6.3.4 Constraint checking . 120
6.3.5 Analysis and Examples . 122

7 Semantics 127
7.1 Normalization . 128

7.1.1 First normalization . 130
7.1.2 Second normalization . 131
7.1.3 Third normalization . 132
7.1.4 Fourth normalization . 133
7.1.5 Fifth normalization . 134
7.1.6 Examples of normalization . 134

7.2 Stability . 136
7.3 Language completeness . 141

233

Full Table of Contents

8 Representation 143
8.1 Ontological metrics . 143
8.2 Maximum depth of the taxonomy . 145
8.3 Class / relation ratio . 146
8.4 Relationship richness . 147
8.5 Semantic similarity measure . 149

9 Context 151
9.1 Unit tests . 152

9.1.1 Formalized competency questions 154
9.1.2 Affirming derived knowledge 156
9.1.3 Asserting agnosticism . 158

9.2 Increasing expressivity for consistency checking 158
9.2.1 Expressive consistency checks 159
9.2.2 Consistency checking with rules 160
9.2.3 Use of autoepistemic operators 161
9.2.4 Domain and ranges as constraints 163

III Application 165

10 Collaborative ontology evaluation in Semantic MediaWiki 167
10.1 Annotation of wiki pages . 169

10.1.1 Content structuring in MediaWiki 169
10.1.2 Semantic annotations in SMW 170
10.1.3 Mapping to OWL . 173

10.2 Exploiting semantics . 174
10.2.1 Browsing . 174
10.2.2 Querying . 175
10.2.3 Giving back to the Web . 178

10.3 Related systems . 179
10.4 Collaborative ontology evaluation . 180

10.4.1 Concept cardinality . 180
10.4.2 Class disjointness . 181
10.4.3 Property cardinality constraints 182
10.4.4 Social and usability aspects . 183

11 Related work 185
11.1 Frameworks and aspects . 185
11.2 Methods and approaches . 190

11.2.1 Golden standard – similarity-based approaches 192

234

14

Full Table of Contents

11.2.2 Task-based evaluations . 193
11.2.3 Data-driven evaluation – fitting the data set 194

11.3 Watson corpus . 196

12 Conclusions 197
12.1 Achievements . 198
12.2 Open questions . 199

IV Appendix 201

List of Methods 203

List of Tables 205

List of Figures 207

Bibliography 209

Full Table of Contents 230

235

	Acknowledgements
	Abstract
	Foundations
	Introduction
	Terminology and Preliminaries
	Framework

	Aspects
	Vocabulary
	Syntax
	Structure
	Semantics
	Representation
	Context

	Application
	Collaborative ontology evaluation in Semantic MediaWiki
	Related work
	Conclusions

	Appendix
	List of Methods
	List of Tables
	List of Figures
	Bibliography
	Full Table of Contents

