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ABSTRACT
In peer-to-peer networks, finding the appropriate answer for an in-
formation request, such as the answer to a query for RDF(S) data,
depends on selecting the right peer in the network. We here inves-
tigate how social metaphors can be exploited effectively and effi-
ciently to solve this task. To this end, we define a method for query
routing, REMINDIN’, that lets (i) peers observe which queries are
successfully answered by other peers, (ii), memorizes this observa-
tion, and, (iii), subsequently uses this information in order to select
peers to forward requests to.

REMINDIN’ has been implemented for the SWAP peer-to-peer
platform as well as for a simulation environment. We have used
the simulation environment in order to investigate how successful
variations of REMINDIN’ are and how they compare to baseline
strategies in terms of number of messages forwarded in the network
and statements appropriately retrieved.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing—Abstracting methods; H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval—Selection pro-
cess; H.3.4 [Information Storage and Retrieval]: Systems and
Software—Information networks

General Terms
Algorithms, Experimentation, Performance

Keywords
Ontologies, Peer-to-Peer, Peer Selection, Query Routing

1. INTRODUCTION
In spite of the success of distributed systems like the World Wide

Web, a large share of today’s information available on computers
is not made available to the outside, but it remains secluded on
personal computers stored in files, emails and databases — infor-
mation that we will call PC data in the following. In theory, peer-
to-peer networks are ideally suited to facilitate PC data exchange
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between peers. In practice, however, there remain unsurmountable
obstacles:

1. PC data constitutes an open domain. Though one can de-
fine some core schema, e.g. as has been done for learning
object metadata (LOM1; [16]), the core schema needs to be
extended frequently.

2. Peers do not know where to find information.

3. Deciding what information about other peers to maintain is
difficult, because relevance of data is hard to assess and pos-
sibilities for duplication are limited.

For some of these individual problems solutions have been found:
For instance, haystack has shown that PC data can be nicely man-
aged via RDF as it supports a flexible semi-structured data model
[22]. Current search engines show how to find information. Cur-
rent applications, such as TAP [15] show how to handle text as well
as semi-structured data. Then, full text search indices can be main-
tained via centralized indices or through P2P exchange of indices
[8]. Also, for fixed schemata algorithms exist that allow the finding
of relevant information with only local knowledge [12].

Together, however, the requirements just given above overstretch
the possibilities that current peer-to-peer systems offer. Our con-
tribution described here is a peer-to-peer system that easily accom-
modates various semantic descriptions, that organizes itself in a
way such that local knowledge is sufficient to localize data sources
and that maintains its knowledge in a non-obtrusive manner based
on what is observed as answers by other peers.

In brief, what we have conceived is a query routing capability
that mimicks what a person is doing in a social network:

• she retains meta-information about what other peers know;

• she might not even ask the others about their knowledge, but
observe it from communication;

• she does not have a fixed schema, but easily builds up new
schematic or taxonomic knowledge structure;

• she then decides to ask one or a few peers based on how she
estimates their coverage and reliability of information about
particular topics.

1http://kmr.nada.kth.se/el/ims/md-lomrdf.html



To this end, we have implemented a general P2P platform, the
SWAP platform (Semantic Web And Peer-to-peer) and for this
platform we have developed an original algorithm, REMINDIN’
(Routing Enabled by Memorizing INformation about Distributed
INformation), that

1. Selects (at most) two peers from a set of known peers based
on a given triple query, hence avoids network flooding;

2. Forwards the query; and

3. Assesses and retains knowledge about which peer has an-
swered which queries successfully.

In contrast to, e.g., [2, 20], this is a lazy learning approach [3]
that does not advertise peer capabilities upfront, but that estimates
it from observation — the main advantage being that a dynamic
semantic topology is made possible by adapting to user queries.

We evaluate the algorithm on a simulation platform with a struc-
ture that is aligned to the structure of the original system. Thereby,
we evaluate the hypotheses that

1. REMINDIN’ is advantageous for effective query routing to
estimate capabilities from observation of queries. In partic-
ular, this effect is achieved as meta-information is accumu-
lated over time;

2. REMINDIN’ can accommodate for changes when the typical
information being available and queried changes;

3. REMINDIN’s use of background knowledge further improves
effectiveness.

We conclude with a survey of related work and an embedding of
our work into some overall objectives for self-organizing informa-
tion systems.

2. SCENARIOS
The EU IST project SWAP (Semantic Web And Peer-to-peer)

features two case studies. Both build on top of the SWAP platform
exploiting its principal features as outlined in Section 3.

The IBIT case study is about sharing of databases and documents
between cooperating tourism organization on the Baleares, a group
of Spanish islands in the Mediterranean. Some of the features of the
case study include that the definition of a unique global schema or
ontology is not possible, that their topics are under drift and that the
knowledge management support to be provided by the peer-to-peer
must deal with this flexibility.

In SWAP Bibliography case study, we will explore the sharing
of Bibtex information between peers of researchers. Bibtex will
be locally harvested from files and stored in the SWAP local node
repository. Then one may search on the own peer as well as in the
network in order to retrieve the appropriate bibliographic data. This
scenario is particularly interesting for further investigation, because
(i) it is small enough to be realistic and successful; (ii) bibtex data
have a stable interesting core, but also greatly varying additional
fields as each user may define his own bibtex entries; (iii) bibtex
data can never be fully captured in a centralized repository, because
one repository such as DBLP can only reflect a small set of topics
(e.g., databases and AI, but not organizational issues of knowledge
management).

To make such case studies realistic it is necessary to effectively
and efficiently locate the appropriate peer that can answer particu-
lar questions. In the following, we first survey the SWAP platform,
then we describe the algorithm we have conceived to solve the lo-
calization problem, viz. REMINDIN’.

Table 1: Data structures and parameters
Data structures

O Local node repository (ontology)
Q Query
MO Meta data object for a specific peer and

resource

Configuration Parameter
pmax ∈ N

+ The maximum number of peers selected
for query forwarding

hmax ∈ N
+ The maximum number of hops a query

is allowed to travel (the horizon of the
query)

µ ∈ R
+ ∧ µ ≥ 1 The mean of a distribution

σ ∈ R
+ ∧ σ ≥ 1 The standard deviation of a distribution

randomContri−
bution ∈ {0..1}

A proportion of peers which are selected
randomly instead of by the algorithm

tc ∈ {0..1} Parameter for contribution of the overall
confidence value to the overall rating

Parameters observed during runtime
P.OC Overall confidence into a peer
MO.RC Confidence into knowledge of a specific

peer about a specific resource
selectedPeersQ A set of peers to forward query Q to

3. SWAP PLATFORM
The SWAP platform is built on JXTA. It features (among others)

a set of modules for information extraction from the local peer, for
information storage and for query routing.

3.1 Information and Meta-information
Information at each peer is stored in a local node repository. In

our implementation these are RDF(S) statements in Sesame [4]. We
here recollect that each RDF(S) statement consists of a subject, a
predicate and an object. A statement may describe either data, e.g.
(TBL isAuthorOf WeavingTheWeb)2, or conceptual information,
e.g. (University subClassOf Organization).

The SWAP storage model3 (cf. [11]) does not just capture some
statement like the two examples just given, but it also provides
meta-information about these statements in order to memorize where
the statement came from and how much resource-specific confi-
dence and overall confidence is put into these statements and peers,
respectively. The SWAP model for meta-information consists of
two RDFS classes, namely Swabbi and Peer. For these classes,
several properties are defined to provide the basis for the social
metaphors outlined above and specified further below. Their corre-
sponding data structures are summarized in Table 1.

Swabbi (MO): Swabbi objects are used to capture meta-information
about statements and resources. They comprise the following prop-
erties:

• hasPeer (MO.peer) : This property is used to track which
peer this Swabbi object is associated with.

• Resource-specific Confidence (MO.RC): This confidence
value indicates how knowledgeable a peer is about a specific
resource on a scale from 0 to 1. High confidence is expressed

2For sake of simplicity we here do not spell out namespaces,
though they are very useful and indeed exploited in the SWAP plat-
form.
3http://swap.semanticweb.org/2003/01/
swap-peer#



by values near 1 and low or no confidence is expressed by
values near or equaling 0.

Thus, the Swabbi object can capture for each rdf:Resource how
much confidence one assigns to the remote peer concerning mat-
ters of the particular resource. The link between rdf:Resource
and Swabbi is given by property hasSwabbi. The reader may
note that when we speak about “confidence assigned to a remote
peer concerning a particular statement”, this is equivalent to the
longer formulation “confidence assigned to a remote peer concern-
ing the subject of a particular statement”. Thus, we gather con-
fidence meta-information around resources as anchors and avoid
inefficient reification.

Peer (P ): For each statement we have to memorize which peer
it originated from. Information about a peer, e.g. its name, is speci-
fied by instances of the class Peer. The Swabbi links via hasPeer
to Peer. In particular, each peer also memorizes and updates how
much he confides overall into the other one:

• Overall Confidence (P.OC): Some peers may be more
knowledgeable than others. This peer attribute is used to
measure the overall confidence on a scale from 0 to 1, with
1 indicating that the remote peer is knowledgable and 0 in-
dicating the opposite. Knowledgeable peers are the ones that
provide a lot of information in general.

3.2 Querying for Data
We here consider two querying modes of the SWAP platform.

First, we have a general query language, SeRQL [5], which was
conceived by Broekstra et al. and which combines advantages of
languages such as RQL [10], RDQL [17] and QEL [13]. Second, to
reduce complexity of the simulation and get a better experimental
grip at what peers do ask in the simulation environment, we have
restricted the general SeRQL queries to the parts that it consists of,
viz. queries for triples. Comparably to Tap [15], we query by

getData(s,p,o) (1)

With s, p, o being either concrete URIs or (for o only) literals. In
addition, s, p, o may be a wildcard ‘*’ with the intuitive meaning
that any URI or literal would match here. For instance,
getData(∗, uri2, ∗) would match triples like (uri−bill, uri2, uri−
hillary) and (uri− ronald, uri2, uri− nancy).

This is a reasonable simplification, as all SeRQL queries are
eventually compiled to sets of such triple queries and since even
such a simple querying mechanism allows comprehensive infor-
mation requests.

4. ALGORITHM

4.1 The Social Metaphors
Peer-to-peer system are computer networks. The decentralized

governing principles of peer-to-peer networks resemble social net-
works to a large extent. As mentioned before, a core task in such
a network is finding the right peer among the multitude of possi-
ble addressees such that this peer returns a good answer to a given
question. To do this effectively and efficiently, REMINDIN’ builds
on social metaphors of how such a human network works: We ob-
serve that a human who searches for answers to a question may
exploit the following assumptions4:

4We do not claim that these observations of social networks are in
any way exhaustive or without exceptions.

1. A question is asked to the person who one assumes that he
best answers the question.5

2. One perceives a person as knowledgeable in a certain domain
if he/she knew answers to our previous questions.

3. A general assumption is that if a person is well informed
about a specific domain, he/she will probably be well in-
formed about a similar, e.g. the next more general, topic, too.

4. To quite some extent, people are more or less knowledgeable
independently of the domain.

5. The profoundness of knowledge that one perceives in other
persons is not measured on an absolute scale. Rather, it is
often considered to be relative to one’s own knowledge.

REMINDIN’ builds on the metaphors of peer-to-peer networks
being like a human social network and adopts the above mentioned
assumptions in an algorithmic manner.

REMINDIN’ consists of three major phases realizing these as-
sumptions. Peer selection of REMINDIN’ is based on assumptions
(1) and (2). Query relaxation of REMINDIN’ weakens the con-
ditions that must be met such that we select a peer (assumption
(3)). Statement evaluation modifies our estimation of the general
profoundness of a peer’s knowledge (4) as well as its topic specific
profoundness (5). These phases are embedded in the following into
the overall, high level network protocol.

4.2 Protocol Scenario
REMINDIN’ consists of several steps executed locally and across

the network when forwarding as well as answering queries and
when receiving responses. Assuming the user of a peer issues a
query to the peer network, the query is evaluated:
Locally against the local node repository. Its answers are pre-
sented.
Across the network: Forwarding. Simultaneously, peer selection
(algorithm 1) is invoked to select a set of peers which appear more
promising than the others to answer the given query. If it cannot
select any peers for the given query, the query relaxation (algo-
rithm 3) will be used to broaden the query until either all peers can
be selected or eventually all known peers are returned. The origi-
nal query is then send to a subset of the selected peers according to
their strength. The message containing the query has a unique id
and stores the id’s of visited peers (message path) to avoid cycles.
Across the network: Answering Queries. When a peer receives
a query, it will try to answer it and it will store an instance of Peer
in its local repository referencing the querying peer. A meta object
is created for each resource the query was about. The answer is
returned directly to the querying peer. We just return an answer if it
is not empty. However, for the peers selected by the querying peer
the peer rating algorithm is invoked even if they have no answers. If
the number of maximum hops is not reached yet, the query will be
forwarded to a selected set of peers — using the same peer selection
described before.
Receiving Responses. On the arrival of answers at the querying
peer, relevant answers are selected with the statement selection al-
gorithm and included into the repository. The answering peer and
the included statements are rated according to the statement evalu-
ation (algorithm 4).

We here briefly survey the just mentioned algorithms, before we
go into more details in Sections 4.3 to 4.5.
5‘Best’ in our current terms only means that he has the most knowl-
edge. In future versions one may consider properties like latency,
costs, etc.



Peer selection (algorithm 1): As motivated in Section 4.1, peer
selection is based on observations of remote peers’ knowl-
edge. Statements from the local node repository that match
the query constitute the basis yielding meta-information about
where they came from. Thus, these statements help to iden-
tify the set of most knowledgeable peers.

Often, this procedure alone does not result in a sufficient
number of peers to forward the query to. Then, the query
relaxation algorithm is applied to the query.

Based on the resulting set of statements and peers, we com-
bine the P.OC value into each peer as well as the MO.RC
values, which may vary for each statement and peer, in order
to derive a ranking according to algorithm 2. The result of
algorithm 1 is an ordered set of peers to forward a query to
(see Section 4.3 for details).

Query relaxation (algorithm 3): As just outlined, a query to the
local node repository may not directly match any of its state-
ments. Following observation (3), REMINDIN’ relaxes the
given query subsequently targeting peers with similar knowl-
edge (see Section 4.4 for details).

Statement selection: Often the answer of a query contains more
information than one wants to retain in the local node repos-
itory. Then, the user must either manually determine which
information to store or the system must provide an automatic
mechanism. Currently SWAP supports only manual state-
ment selection. For evaluation of REMINDIN’in our simu-
lation, we have not retained any statement of any answer at
all in order to test REMINDIN’with the worst-case assump-
tion.

Update overall (P.OC) and resource-specific (MO.RC) confi-
dence values (algorithm 4): The P.OC and MO.RC val-
ues a peer assigns to remote peers and its associated state-
ments are updated separately on the basis of the received
answers. The number of statements returned is measured
against the statements matching the original query already
known by the querying peer. This measure is combined with
the existing ratings in order to adjust the P.OC andMO.RC
values according to algorithm 4 (see Section 4.5 for details).

4.3 Peer selection algorithm
Evaluating a query against the local node repository returns a set

of statements matching the query. For each statement we retrieve
its meta data, viz. a set of meta objects which comprise resource-
specific confidence values for each peer’s knowledge about the par-
ticular statement and overall confidence values for each peer.

The remote peers (local peer is omitted) are sorted according to
their strength. Up to pmax best rated peers are returned as targets
for the query. If REMINDIN’ was not able to select suitable remote
peers until then, REMINDIN’ would relax the query and repeat the
procedure. Algorithm 1 formalizes this procedure. It is called with
the ontology O of the peer considering the query for forwarding,
a query queue Q containing only the given query Q as an and an
empty queue. Algorithm 1 uses Algorithm 2 as subroutine. Table 2
summarizes all auxiliary functions and procedures.

4.4 Query relaxation algorithm
Relaxation of a query can be achieved in a number of ways. We

exploit the following considerations, which are also summarized in
Table 3.

Table 2: Auxiliary Functions and Procedures
Algorithm 1

performQuery(O,Q)
→ S

Evaluate getData(Q) on local node
repository O returning statements S

retrieveMetadata(O,S, P )
→MO

Retrieves from the local repository the
meta data object for the subject of the
specific statement S and peer P ; if the
subject does not have a Swabbi at-
tached, retrieveMetadata queries the
object for hasSwabbi

retrieveAllMetadata(O,S)
→ MO

Generalizes retrieveMetadata to all
peers and returns sets of metadata, too

rankPeers(selectedPeers)
→ rankedPeers

Algorithm 2 rates each peer P that is
found on the queue selectedPeers in a
pairing with confidence values and re-
turns the ranked queue rankedPeers

Algorithm 3
determineState(Q)

→ state
Returns the current state of the query
according to table 3

newQuery(O,Q, state)
→ Q

Returns queue of relaxed queries

Algorithm 4
update(µ, σ, v)

→ [0, 1]
v ∈ R

+, u ∈ [0..1] Update map a
given value v onto a value between 0
and 1. The actual outcome depends on
the function used in update

invUpdate(µ, σ, v)
→ iu

v ∈ [0, 1], iu ∈ R
+ invUpdate

reverses the mapping done by Up-
date. The mapping is a means
to keep the overall/resource-specific
confidence value between 0..1

1. A peer might be knowledgeable about a particular query, if
one knows he had statements about the same subject-object
combination, but with other predicates (states 1-3).

2. A peer might be knowledgeable about a subject-predicate
combination, if one knows he had statements about the same
subject alone, but maybe with other predicates (state 4).

3. A peer might be knowledgeable about an object, if one knows
he had statements about the object, but where the object ap-
peared in the subject position (state 5).

4. A peer might be knowledgeable about a property, if one knows
he had statements about the superproperty (state 6).

5. A peer might be knowledgeable about a subject, if either

(a) the subject is a class and one knows the peer was knowl-
edgeable about the superclass (state 7a), or

(b) the subject is an instance and one knows the peer was
knowledgeable about a class the subject is an immedi-
ate instance of (state 7b).

6. A query for everything or the ROOT concepts or properties
(i.e. in RDF these are rdf:resource, rdfs:class, rdfs:property,
rdf:type, etc.) cannot be relaxed further.

Algorithm 3 implements these considerations. It exploits Table 3
in order to derive a(n often single-element) set of relaxed queries.
One may note in particular: (i), multiple relax queries exist when
one asks for superproperties of a given property or immediate types



Algorithm 1 Peer Selection: peerSelection(O,Q, A)

Require: LocalNodeRepository O, Queue of Queries Q, Queue
of peers A

1: Qrelaxed := ∅
2: Queue selectedPeers:= ∅
3: for all Q ∈ Q do
4: SQ :=performQuery(O,Q)
5: for all S ∈ SQ do
6: MO :=retrieveAllMetadata(O, S)
7: for allMO ∈ MO do
8: selectedPeers.push((MO.peer,MO.RC))
9: end for

10: end for
11: Qrelaxed := Qrelaxed+relaxQuery(O,Q)
12: end for
13: A := A.append(rankPeers(selectedPeers))
14: if |A| < pmax then
15: A :=peerSelection(O,Qrelaxed, A)
16: end if
17: return A

Algorithm 2 Peer Rating: rankPeers(selectedPeers)

Require: Queue of pairs selectedPeers
1: Set P := {P |∃RC : (P,RC) ∈ selectedPeers} =

{P1 . . . Pn}
2: for all P ∈ P do
3: RC := {RC|(P,RC) ∈ selectedPeers}
4: for all RC ∈ RC do
5: strength(P ) := tc ·P.OC+(1− tc) · 1

|RC|
∑

RC∈RC RC
6: end for
7: end for
8: Queue rankedPeers := (P1, . . . , P|P|),

where strength(P1) ≥ . . . ≥ P|P|
9: RETURN rankedPeers

of a subject; (ii), implicitly this relaxation is recursively applied in
Algorithm 1; and, (iii), there remain other options for query relax-
ation; first tests revealed that the ones above give quite good results
for later-on selecting an appropriate peer to send the original query
to. In general, however, further exploration and optimization of the
current design choices are desirable.

Table 3: Query relaxation order
State Query Relaxed Query

1 (s, p, o) (s, ∗, o)
2 (s, p, ∗) (s, ∗, ∗)
3 (∗, p, o) (∗, ∗, o)
4 (s, ∗, o) (s, ∗, ∗)
5 (∗, ∗, o) (o, ∗, ∗)
6 (∗, p, ∗) (∗, super(p), ∗)
7a (s, ∗, ∗) (super(s), ∗, ∗)
7b (s, ∗, ∗) (class(s), ∗, ∗)
8 (∗, ∗, ∗) ∨ (ROOT , ∗, ∗)∨

(∗,ROOT , ∗)

4.5 Update resource-specific and overall con-
fidence values

The algorithm updateValues updates the overall confidence val-
ues one memorizes about a peer P (P.OC), and it updates the

Algorithm 3 Query Relaxation: relaxQuery(O,Q)

Require: O,Q
state := determineState(Q)
Q := newQuery(O,Q, state)
return Q

resource-specific confidence valuesMO.RC one memorizes about
a pair of a peer P and a resource. The algorithm consists of three
major parts. First, it quantifies what the local peer knows in O
about the original query Q in the measure localAnswer and it
quantifies what the remote peer P knows about the same query
Q in the measure remoteAnswer (lines 1 to 3). Second it com-
pares the ratio remoteAnswer

localAnswer
with different numbers that depend

on the mean µ and standard deviation σ of all statements with
regard to the ‘average’ query (lines 6,10,14,18). Thereby, µ and
σ have been found by counting results of observed queries and
assuming a Gaussian distribution. Correspondingly, in the third
step, one increases or decreases or does not touch the P.OC values
(lines 9,13,17,21,24,25) and the MO.RC values attached to sub-
jects (or objects, if subjects are not found inO) of statements (lines
8,12,16,20,26-33). The size of the modifications depend in partic-
ular on the size of the result set as compared to the local result.

An interesting special case happens, when a remote peer has
been asked directly by the local peer, but when it has not returned
an answer.6 REMINDIN’ then assumes after a certain time that the
queried peer has no answer at all and correspondingly, the P.OC
and MO.RC values are downgraded. Thus, even if the remote
peer is very knowledgeable, but unwilling to answer or overfreight
with queries, the remote peer will be considered as a less worthy
candidate for querying — hence, a simple form of load balancing
will be achieved, too.

5. EVALUATION SETTING
Though our plans for the SWAP bibliography case study will in-

volve the participation of several dozens and up to 100 researchers
(cf. Section 2), even this number will be too small to actually
evaluate REMINDIN’. In addition, it will be difficult to investi-
gate crucial parameters of REMINDIN’ without jeopardizing the
running of the overall network. Hence, we opted for evaluating
REMINDIN’ by simulating a peer-to-peer network with plausible
datasets of statements and query routing by REMINDIN’.

To this end, we here discuss the data source on which we have
based the local node repositories of the individual peers, viz. the
DMOZ open directory and its RDF dump7 (Section 5.1). We briefly
discuss the assignment of statements to peers — mostly modeling
human editors of DMOZ as peers (Section 5.2). We describe the
queries that are generated and sent around (Section 5.3), the ini-
tial configuration of the peer-to-peer network (Section 5.4), and the
evaluation measures (Section 5.5) we consider subsequently to as-
sess REMINDIN’.

5.1 Data source characteristics
DMOZ, the open directory project, manually categorizes Web

pages of general interest into a topic hierarchy. For each topic one
or several editors are responsible to define subtopics or related top-
ics and to contribute links to outside Web pages to the topic pages of
DMOZ. For this semi-structured data source, there exists an RDF
dump comprising a small schema and many instances. The main
classes of the DMOZ data set are Topic, Alias, and ExternalPage:
6This is not observed if the remote peer has been asked indirectly.
7http://rdf.dmoz.org/



Algorithm 4 Update overall/resource-specific confidence:
updateValues(O,P,Q,S, µ, σ)

Require: O,P,Q,S, µ, σ
1: localAnswer := |performQuery(O,Q)| + 1
2: remoteAnswer := |S| + 1
3: cover := remoteAnswer

localAnswer
4: COVER := σ

µ
+ 1

5: // Compute changes to resource/overall confidence
6: if cover > COVER2 then
7: // Large increase of resource/overall confidence
8: updateV alueRC := COVER ∗ cover
9: updateV alueOC := COVER

10: else if cover > COVER then
11: // Moderate increase of resource/overall confidence
12: updateV alueRC := cover
13: updateV alueOC := 1
14: else if cover > 1

COVER then
15: // Do nothing, no definitive conclusion for this range!
16: updateV alueRC := 0
17: updateV alueOC := 0
18: else
19: // Decrease of resource/overall confidence
20: updateV alueRC := −cover−1

21: updateV alueOC := −1
22: end if
23: // Update resource and overall confidence values for peer P
24: P.OC :=
25: update(invUpdate(P.OC) + updateV alueOC)
26: for all S ∈ S do
27: if S ∈ O then
28: MO :=retrieveMetadata(O, S, P )
29: MO.RC :=
30: update(invUpdate(µ, σ,MO.RC)+
31: updateV alueRC)
32: end if
33: end for

Topic The resource Topic has properties for link8, containing a
reference to an ExternalPage and to an editor, viz. an editor
of the topic. The properties related , symbolic and narrow
describe relations to other topics and aliases.

Alias The resource Alias has properties for Title and Target. Tar-
get is a relation to another Topic.

ExternalPage has the properties Title and Description

The data source has some interesting properties rendering it ad-
equate for our evaluation purposes: (1) There are many relations
other than taxonomic ones between the topics — in contrast to
many other datasets. (2) Each topic has at least one editor, many
have several — implying a natural way to assign statements to
peers. (3) Topics are ‘populated’ with many links.

The DMOZ hierarchy is available in pure RDF only. To enhance
its semantic description, we have converted it to RDFS. We con-
verted the topics to instances of rdfs:class. narrow and nar-
row1 were converted into rdfs:subClassOf. The properties
link were interpreted as rdf:type of the topics they belong to.
For instance, http://www.w3.org/People/Berners-Lee/
8Actually, DMOZ distinguishes important and less important links
by categorization into link, link1, link2. We have merged these
three again into one property. The analogous case is true for sym-
bolic, etc.

Table 4: Survey of DMOZ Open Directory structure realized
as RDF schema and instances

DMOZ RDF(S)
entity

Example Num-
ber

Schema

Topic Class Top/Arts 1657
Property Property symbolic, related 16

Property domain
Topic a class Top/Arts 1657

Property range
Topic,
Alias

a class Top/Arts 1657

Instances

link rdf:type “http://www.
w3.org/People/
Berners-Lee/” rdf:type
“Top/Computers/Internet/”

45347

symbolic,
related

symbolic,
related

“Top/Arts/” re-
lated “Top/Business/
Arts and Entertainment”

3520

narrow,
narrow1

subClassOf “Top/Arts/Movies” sub-
ClassOf “Top/Arts”

1952

editor Peer 1100

Table 5: Major statistical parameters
Property Mean Standard

deviation
No. of topics / editor 4 5,4

No. of links / topic 27 35,2
No. of links / editor 53 69,1

No. of queries 1657
Expected no. of answers / query / peer 13 23,1

is then an instance of http://dmoz.org/Computers/
Internet/History/People/Berners-Lee,_Tim/.

In order to handle the sheer size of the DMOZ hierarchy, we
included only the first three levels of the hierarchy in our experi-
ments. The properties of the remaining data source are summarized
in table 4.

5.2 Distribution of Statements
All of the 1657 topics in the first three levels of the DMOZ hi-

erarchy have one or more editors assigned to them. Everybody can
become an editor of a category in DMOZ. DMOZ encourages users
to “choose a topic you know something about and join”. Hence,
we assume that editors who edit a topic (which became classes
in RDF(S)) also store links they have assigned to a topic locally.
Since, a topic can have more than one editor, not all of the links
need to come from one editor alone. Finally, editors may also add
links to other topics. Thus, they are probably also informed about
the related topic but to a lesser extent.

These assumptions have led us to the following distribution of
instances in our simulation. We represent one editor by one peer,
thus we have 1100 peers. Assuming that an editor is not the source
of all instances within ‘his’ topic (‘his’ class) we choose randomly
70% of the direct instances within ‘his’ class and assigned them
to the peer’s local node repository. In addition, we considered all
classes directly related to ‘his’ class (via subClassOf, via related,
etc.) and we randomly assigned 12% of the direct instances of these
directly related classes to the peer’s local node repository. Thus, all



peers were assigned their local node repository.
To give a further impression of the resulting information distri-

bution, we list the number of topics which have i editors. 755
topics have 1 editor; 333 topics have 2 editors; 204 topics have 3
editors; . . . ; 44 topics have 6 editors; . . . ;14 topics have 10 editors
;1 topic has 32 editors.

5.3 Generation of queries in experiment
Queries are generated in the experiments by instantiating the

blueprint (∗, < rdf : type >, topic), with topics arbitrarily cho-
sen from the set of topics that had at least one instance. Thus,
generated queries retrieved all instances of a topic — considering
also the transitivity of the subclassOf-relationship to subtopics. I.e.
we generated 1657 different queries.

We had two different scenarios for evaluating the effectiveness of
REMINDIN’. In the first set of scenarios, we continuously choose
from the 1657 queries and evaluated right away the results. In the
second set of scenarios, we partitioned the set of 1657 queries into
two sets of equal size. There were two phases. First, there was a
‘learning phase’ where the peer network was confronted with the
first set 828 queries. Then, there was an explicit ‘test phase’, in
which one could observe how the peer network would re-adjust to
the second set of queries.

5.4 Initial configuration of peer-to-peer net-
work simulation

The simulation is initialized with a network topology which re-
sembles the JXTA network. 10 peers connect to 1 rendezvous peer
randomly and the rendezvous peers connect to the central JXTA
peer9. Hence, in the beginning the only remote peer visible to
the peers is its rendezvous peer. During the simulation any peer
can become visible to any other peer in the network if it knows its
unique identifier. The identifiers are propagated with the queries10.
This assumption is valid, since we focus on the semantic routing of
queries rather than the technical routing. In the simulation, peers
were chosen randomly and they were given a randomly selected
query to question the remote peers in the network. The peers de-
cided on the basis of their local node repository which remote peers
to send the query to. Each peer used REMINDIN’ to select up to
pmax = 2 peers to send the query to. As a baseline we compared
REMINDIN’ to a naive algorithm. In this case a peer selected ran-
domly up to pmax peers to send the query to. A peer that received
a query tried to answer the query. Each query stores the path that
it is forwarded along and if a peer had appeared in this path, it
was deselected. In some evaluation scenarios, we have integrated
a randomContribution. The randomContribution percentage of
selected peers were randomly exchanged again randomly selected
ones known by the querying peer. Each query was forwarded until
the maximal number of hops (hmax) is reached. In our experi-
ments, we have not considered the leaving or joining of nodes, so
far.

5.5 Evaluation measures
There are many criteria to evaluate algorithms for peer-to-peer

systems. In [9] we summarize many of them. For our evaluation
we rely on two major measures.

Recall R. Recall is a standard measure in information retrieval.
In our setting, it describes the proportion between all relevant state-
ments in the peer network and the retrieved ones.

9The IP numbers of central JXTA and rendezvous peers can be
downloaded from Suns servers in the initialization phase of a peer

10In our setting “being visible”, “being known” and “being a possi-
ble direct addressee of a query” a synonymous to each other

Table 6: Standard parameter in evaluation
Parameter Value
µ 20
σ 10
pmax 2
hmax 7
tc 0.1
randomContribution 0.0
Peers 1100

R = |retrieved|
|relevant|

We use recall to assess the effectiveness of REMINDIN’, i.e. to
measure to which extent one may retrieve statements from the peer-
to-peer network based only on local knowledge about possibly rel-
evant peers.

Network load. This figure can be measured with different sub-
parameters. Messages per query traces to what extent the network
is being flooded by one query. The number of average hops can
indicate how goal-oriented a query is routed and how fast a answer
may be returned. We use the network load, and messages per query
in particular, to assess the efficiency of our approach.

6. RESULTS
Our simulations show that REMINDIN’ reaches a significant

higher recall than the naive baseline. In particular, peer selection is
improved by query relaxation and some random selection of peers.
Before we present the final evaluation results, we here summarize
the major hypotheses we wanted to investigate.

6.1 Hypotheses

1. The proposed algorithm provides better results in terms of
recall than the naive algorithm.

2. The network load needed to reach a specific recall decreases
over time, such as measured in terms of messages per query
and number of hops.

3. The peers adapt quickly to new requirements expressed by
new queries.

4. Using our query relaxation mechanism is better than consid-
ering just the original query to select peers.

5. The parameters of the algorithm have an effect on the effec-
tiveness of the peer selection.

6. Some randomness contributing to peer selection helps to es-
cape over fitting.

6.2 Evaluation
In Table 2 we define the different parameters of the algorithm. In

case we did not state otherwise, they were set to the values given in
Table 6. In the naive approach the peer has used the same param-
eters as REMINDIN’ — except that all the peers were chosen ran-
domly. Points in all the graphs represent averages for 1000 queries.

Hypothesis 1: Figure 1 summarizes the comparison between RE-
MINDIN’ and the naive approach. In this scenario we used 20.000
queries and 50% of all queries. The naive approach produced an
average of 600 messages per query and had a constant recall of
approximately 20%. The recall of REMINDIN’ without random
contribution increases steadily over time and reaches a recall of
50% after all queries. Note that 20.000 queries in total result in just
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Figure 1: The proposed algorithm provides better results in
terms of recall than the baseline.
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Figure 2: The number of messages decreases over time (with
standard parameter setting). The recall increases with time for
all numbers hmax from 3 to 7. The contribution of additional
recall is highest for hmax between 3 and 4.

about 18 queries per peer, a fairly low number. REMINDIN’ with a
little random contribution to the peer selection produces even better
results. After 20.000 queries it reaches a recall of almost 80%.

Hypothesis 2: Figure 2 illustrates a simulation run for REMINDIN’
with a random contribution of 20%. Note that we plot the number
of queries on the left hand side against the average recall and on the
right hand side against the number of messages per query. Figure
2 depicts the number of messages needed to reach the recall, in av-
erage 200. Hence REMINDIN’ increases the recall by 300% while
requiring only one third of the messages per query as compared to
the baseline of approx. 600.

We observe that the recall contribution decreases with the num-
ber of hops. The recall increases by a large margin from three hops
to four hops accounting for 25% of the total recall, while the recall
increases only 7% from six to seven hops. This suggests that one
could decrease the number of hmax from seven to five without sig-
nificantly changing the overall recall, but producing less network
load.

Intriguingly, the overall recall increases over time while the num-
ber of messages per query remains about the same. The number of
messages comes down when the peers have built up their model,
since they agree then who is knowledgable about which topic.

Hypothesis 3: We cannot confirm hypothesis three, at least not
for the basic algorithm without random contribution. As figure 3
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Figure 4: Peer selection based on overall confidence only is less
effective mixed accounts of overall and resource confidence.

demonstrates for different parameters µ and σ, the recall degrades
to 20% when we introduce new queries after 30.000 queries (cf.
the second scenario for generating queries in Section 5.3). How-
ever, we note that the introduction of completely new queries rarely
happens in real world applications.

Then, Figure 4 is more promising. Here, peer selection was ran-
domized to 20%. The result was that the recall retains 27% and the
adaptation occurs rather quickly. It seems that the random contri-
bution helps to avoid overfitting!

Hypothesis 4: Figure 3 nicely exemplifies the effect of the query
relaxation algorithm. In the beginning the peer selection without
relaxation works almost as good as with relaxation. When new
queries arise, REMINDIN’ with relaxation performs significantly
better than without.

Hypothesis 5: Figure 3 contrasts the effects of different param-
eters and query relaxation algorithm on the peer selection. The
hypothesis is confirmed. However, the consequence of the param-
eters are less severe than the application of the query relaxation
algorithm. In particular the simulation runs suggest, that within
certain ranges they do no harm. As expected a setting with COVER
not matching the actual distribution (13;533 ⇒ COVER = 2.7)
as in case (40; 100 ⇒ COVER = 1.25) rates peers with minor
knowledge to good and thus hinders the identification of the real
champions.



Figure 4 concentrates on parameter tc, the contribution of the
overall confidence value to the overall peer rating during peer se-
lection. This figure is of particular interest, because one could argue
to store only the information if a peer is knowledgeable or not. As
we can see from the diagram the inclusion of the confidence rat-
ing increases the achievable recall and adapts better to new queries.
This test was performed with a 20% random contribution. Never-
theless, it is still interesting to note that overall confidence alone
does not fare too bad, either.

REMINDIN' with Random Selection
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recall.

Hypothesis 6: Most of our hypotheses were supported with most
strength when we combined our algorithm with a proportion of ran-
domly selected peers. To motivate this result we want to recall an
observation from human interaction. It happens sometimes that we
meet a previously unknown person and she provides us with a yet
new view on the world or on a certain topics. Figure 5 analyzes
the observation in more detail. We put side by side the average re-
call with and without random contribution (20%), which we have
averaged over the first and last 5.000 messages. It is obvious that
the achievable recall of REMINDIN’ without random contribution
reaches a certain level and does not increase further. Note that in
average just 87 messages per peer were needed to get to this recall.
The difference is yet more obvious in the case of the last 5.000
messages then the first 5.000. However, with the introduction of
randomness the recall can be enhanced substantially!

7. RELATED WORK
We consider three areas of research related to our work. The first

is the general research in peer-to-peer systems. The second area
deals with semantic peer-to-peer systems and the third area of re-
lated work is chosen with respect to our query relaxation algorithm.

General research in peer-to-peer system concentrates either on
efficient topologies for these networks or on distribution of docu-
ments. The small-world-effect (cf. [2]) is one example how those
topologies can be exploited to establish a connection between two
nodes efficiently. In contrast to our work the content of a node is
advertised to all neighbors, and thus needs updates when a nodes
content changes. The algorithm ensures that a given query is for-
warded to a node with the most neighbors. There are a number of
other P2P research system which are related to the question of how
to allocate documents within a peer-to-peer network. They mostly
require equally shaped keys for nodes and their contents [24] [26],
thus once a key for the searched content has been created, the ad-
dress and thus the root to the target peer can be easily found. One
problem with this system is, that it generates a substantial overhead

when nodes join and leave the network. In [1] an algorithm is pro-
posed which replicates documents on different peers in a way that
joining and leaving produces less overhead, but efficient structured
search for documents is still possible. In contrast to our work they
examine how a known resource can be found with least possible
messages. They do not provide a solution how a relevant resource
can be found in the first place. This is the question examined by the
second group of related works.

EDUTELLA [13] is a peer-to-peer system based on the JXTA
platform, which offers very similar base functionality as the SWAP
system. In [20] they propose a query routing mechanism based on
super peers. Peers which have topics in common are arranged in
a hypercube topology. This topology guarantees that each node is
queried exactly once for each query. Our algorithm is not based on
an explicit topology, thus it does not generate any overhead to es-
tablish it. Our simulations illustrate that we need much less queries
than the number of peers to reach most knowledgable peers. Fur-
thermore most information is in the reach of four to five hops which
is advantageous in terms of expected response time. They do not
provide any test on the performance of their algorithm. Within the
proposed hypercube topology all peers are equal, while we can dis-
tinguish between more or less knowledgeable peers.

In [7] a Semantic Overlay Network (SON) is introduced. Re-
sources are clustered into a topic hierarchy and peers subsequently
join a SON. The SONs a peer joins depend on the clustering re-
sult of the local knowledge. In contrast to our work a peer actively
joins peers which have assigned themselves to a certain SON. We
establish connections to remote peers based on the queries. While
in our case resources are organized in a graph they use a hierarchy.
Hence, they cannot exploit other relations than hierarchical ones to
find other promising peers. They do not weight the connections.

In [27] an algorithm is presented which concentrates on load
balancing between the peers. While they are interested in query-
ing peers equally often we concentrate on the selection of the most
knowledgeable peers. However, our algorithm adapts in a self or-
ganizing way to peer overloading, while they use leading nodes to
calculate different measures and reassign categories depending on
results of their algorithm.

Regarding our query relaxation algorithm, a lot of research has
been done in the field of query relaxation in the context of cooper-
ative databases (cf. [6, 19]). In those contexts queries are relaxed
according to a similarity function in case a given query does not
result in answers when posted to a database. In [23] the similarity
of two concepts is determined by the length of the shortest path be-
tween them, which is interesting for non hierarchical taxonomies
with multiple concept inheritance. We exploit the relations of the
knowledge structure to find relevant peers rather than map a query
between different schema. To our knowledge this approach has not
yet been applied to peer-to-peer networks.

8. CONCLUSION
The principle of self-organization has been discussed for a long

time as a paradigm for introducing order into complex systems
without centralized control. In recent years one could see that
this principle has found its entry into different types of engineer-
ing applications (cf., e.g., [25]) — in particular ones that involve
the Web, such as identification of communities for better harvest-
ing and classification of information [14] or ones that use self-
organization in peer-to-peer networks [1]. In theory, the possibili-
ties of self-organizing appear to be open-ended with ideas ranging
up to social systems of human and machine agents that form net-
works with enormously effective communication structures — as
one knows, e.g., from Milgram’s experiment on six degree’s of sep-



aration in 1967 [18]. Though the idea of transferring such commu-
nication principles from the original social networks to comparable
technical networks like Peer-to-Peer networks has been ventilated
for some time (cf. [21]), corresponding research has not taken a se-
rious stance at it.11 To this end, we have devised REMINDIN’, a
highly original algorithm to find peers in a semantic peer-to-peer
network based on social metaphors. The algorithm comprises a
peer selection algorithm based on confidence ratings, query relax-
ation and observation of useful responses given by other peers. The
algorithm provides significantly better results than its naive coun-
terpart. Our experiments with REMINDIN’ have shown intrigu-
ing results: (1), some randomness in peer selection helps escape
overfitting and improves effectiveness of REMINDIN’, (2) self-
organized learning by the network reduces the network load over
time, and, (3), parameter settings play a role, but the behaviour of
REMINDIN’, is rather elastic to their setting.
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