Orel: Database-Driven Reasoning for OWL 2 Profiles

Markus Krotzsch, Anees ul Mehdi, and Sebastian Rudolph

Institute AIFB, Karlsruhe Institute of Technology, DE
{mak,ame, sru}@aifb.uni-karlsruhe.de

Abstract. We describe Orel, a reasoning system for an ontology language which
subsumes both the EL and the RL profile of the recently standardised nveb o
tology language OWL 2. Orel performs consequence-driven né@gmn the
database level which is always sound. It is guaranteed to be complegeoifitihi-

ogy is contained in one of the two profiles. We present the underlyingloalcu
the core algorithm, and initial evaluation results.

1 Introduction

With the standardisation of the Web Ontology Language OWL 2009 [1], the de-
velopment of theoretically well-studied and practicalgptbyable expressive ontology
languages for the Semantic Web has reached a new level ofitpafimong various
other improvements, the new version of OWL is the first thatjadéely addresses the
trade-df between logical expressivity and scalability that is irgmrto formal knowl-
edge representation by specifying additional light-weighguage profiles. The three
OWL 2 profiles EL, RL, and QL constitute sublanguages which #engtill sufficiently
expressive for many applications — exhibit a polynomialetiocomplexity for standard
reasoning tasks, and are therefore particularly suitaslevdrking with large ontologi-
cal descriptionsd].

The Orel software that is introduced in this system desongtrovides storage and
reasoning services for both OWL EL and RL. The specific featthrat set it apart from
existing implementations are twofold. First, its implertagion is tailored toward ma-
terialisation of entailments in a persistent storage badleeich as a relational database
management system (DBMS). Second, it realises a rule-lzgg@dach for implement-
ing both OWL RL and OWL EL inferencing in a single polytime aliglom.

Orel’'s approach to reasoning is to express inference task®WL 2 in terms of
inference tasks for the simple rule language dataBlgThe basis of this method is
an entailment-preserving translation of descriptiondedo datalog that has been intro-
duced in fl]. The latter approach has been presented for a hybrid aytelde language
that includes features which cannot be expressed in OWL 2. ilovides an interest-
ing path for extending Orel to also cover some of the expriagsif rule languages like
SWRL [5] or RIF-BLD [6], but the present paper focusses on the supported OWL 2
features only.

In Section2, we discuss Orel’s inferencing calculus, and present soptienza-
tions for data-centric processing. Thereafter, in Se@jame briefly highlight our basic
approach for extending this inferencing mechanisntlicient schema inferencing, and

PhD C AcademicDegree PostDoc C Jhas.PhD Graduate = dhas.AcademicDegree

PhD(x) — AcademicDegree(x) Graduate(x) — has(X, dinasap)
PostDoc(x) — has(X, danasphp) Graduate(x) — AcademicDegree(danasap)
PostDoc(X) — PhD(danasprp) has(x, y) A AcademicDegree(y) — Graduate(x)

Fig. 1. Example translation to datalog

in Sectiord, we recall the general techniques for adapting a rule-bealedlus for ex-
ecution in a relational DBMS. Sectidnprovides further details on the implementation
and initial evaluation results. We discuss related workent®n6 and give an outlook
to the future development of Orel in SectidrOrel is free software that can be obtained
athttp://code.google.com/p/orel/.

2 A Data-Driven Approach for Translating OWL into Datalog

The algorithms in4] extend to a first-order knowledge representation langdagéed

ELP that combines features of the description lagi€** [7], Description Logic Rules

[8], and DL-safe Rulesd]. Yet, the expressivity oELP has been restricted ficiently

to allow for polynomial-time reasoning. Instead of repegtihe formal details that can
readily be found in 4], we summarise the underlying approach by means of a brief
example, and provide more detailed descriptions of theritgos that are actually im-
plemented in Orel. Throughout this work, we use descrigtgit syntax for concisely
expressing the semantics of OWL 2 axioms.

As an example, consider the set of OWL 2 axioms in Hidtop). Following a
strategy as in4], this knowledge base would be translated into the rulerséig. 1
(bottom). These rules are intended to be read as first-ondglications based on a
standard predicate logic semanticslote that the translation is faithful regarding the
signature: OWL classes are translated into unary predicatesOWL properties into
binary predicates. Thus it is not hard to see how axioms fieendriginal ontology
relate to implications in the translated datalog program.

While this translation is straightforward in many cases,ecsd approach is needed
to cover existential expressions a®ijectSomeValuesFrom. Since datalog does not
allow existential entailments, auxiliary constants ateoduced to represent additional
“anonymous” individuals the existence of which is requilgdthe ontology. Please
note that only a single constant is introduced ffieeted class expressions during the
translations. This limits the amount of additional indivads that need to be considered,
and it is vital to retain polytime complexity.

While the above translation is rather intuitive for the moattpthe presented en-
coding has several practical drawbacks that come to thexfoesm attempting an actual
implementation. In particular, the created rule set mayobee rather large; it grows
linearly with the size of the knowledge base. However, tgpld® engines exhibit far

1 Since we are only interested in positive entailments, assuming a non-mansgémantics for
datalog would not lead to flerent inference results. Sef} for details.

http://code.google.com/p/orel/

A(n) — inst(n,A) ACC
R(h,m) — triple(n,R m) AnBEC
JRSelf(n) — self(n,R)
JRACC — subSomeValues(R A, C) dRSelfCC
ACIdRB — someValues(A, R B, dire) |AC dRSelf +— impliesSelf(A, R)
ACVRB — allValuesFrom(A, R, B) AC<IRB - atMostOne(A, R, B)
RC T — subProperty(R T) Disj(R,S) + disjoint(R S)
RoSC T + subPropertyChain(R S, T) R CS +— subInverseOf(R S)
For each individual namein the ontology, add the faeiom(n) to the transformation.
For each class name or nomirfain the ontology, add the fastubClass(A, T).

subClass(A,C)
subIntersect(A B,C)

117

selfImplies(R C)

Fig. 2. Creating an initial fact base from DL axioms in Orel; for asd& defineC := n
if C = {n}is a nominal class, and := C if Cis a class namer, or L

better performance when more facts and less rules are @umilarly, DBMS can han-
dle large amounts of data while implications in the abovenfaation work on this data
and would thus correspond to database operations. Theewidrstherefore introduces
a modified approach that is taken in Orel. This observatidis &ar a different encod-
ing strategy, where ontological information (such as sagxtelationships) is stored as
facts, while logical ramifications are governed by “metkesii that resemble the rules
of a deduction calculus. Thereby, classes and properties tioabe treated as datalog
individuals. The above example might then be encoded byall@fing facts:

subClass(PhD, AcademicDegree)
someValues(PostDoc, Has, PhD, d3hasphp)
someValues(Graduate, Has, AcademicDegree, dinasap)
subSomeValues(Has, AcademicDegree, Graduate)

The predicate names used here hint at the intended intatiprebut are not formally re-
lated to the OWL 2 vocabulary. Note that the auxiliary constafaspnp @anddanasao
are already included in the above facts. Since we are ineztés a rule set without
function symbols (datalog), all required constant symhisst be explicitly created
beforehand. We now can encode the intended semantics iratieni rules such as the
following:
subClass(a,b) A inst(x,a) — inst(x, b)
someValues(a,r,b,d) A inst(x,a) — triple(x,r,d)
someValues(a,r,b,d) A inst(x,a) — inst(d,b)
subSomeValues(r,a,b) A triple(x,r,y) A inst(y,a) — inst(x,b),
Here we encode assertions about instances in the obviouwitvathe additional meta-
predicatesinst for class instances, and-iple for role assertions. All terms in the
above rules are variables, but here and below we uBerelnt letters for capturing the
underlying intuition:a, b, c for class names, s, t for role namesy, y, z for individual
names, and for auxiliary constants.

As in the above example, most features of OWL EL and RL can bpastgd by
suitable meta-rules based on the datalog translatiod].if-pr the most prominent fea-
tures of the two profiles, the translation of axioms to metatd is specified in Fig,
and the according materialisation rules are presentedjirBFT he translation assumes

) nom(x) — inst(x, x)

(2) nom(X) A triple(x,r,X) — self(x,r)

3) subClass(a, b) A inst(x,a) — inst(x, b)

(4) subIntersect(a,b,Cc) A inst(x,a) A inst(x,b) — inst(X,c)

(5) subSomeValues(r,a,c) A triple(X,r,y) A inst(y,a) — inst(x,C)

(6) someValues(a, p,b,d) A inst(x,a) — triple(x, p,d)
@) someValues(a, p,b,d) A inst(x,a) — inst(d,b)

(8) selfImplies(r,c) A self(x,r) — inst(x,c)

9) impliesSelf(a,r) A inst(x,a) — self(xr)

(10) impliesSelf(a,r) A inst(x,a) — triple(X,r, X)
(11) subProperty(r,t) A triple(x,r,y) — triple(x,t,y)
(12) subProperty(r,t) A self(x,r) — self(x,t)

(13) subPropertyChain(r, s,t) A triple(x,r,y) A triple(y, s 2) — triple(x.t,2)
(14) disjoint(r,s) A triple(x,r,y) A triple(X, s,y) — inst(x, 1)
(15) inst(X,y) A nom(y) — inst(y, X)

(16) inst(X,y) A nom(y) — nom(Xx)

(a7) triple(xL,r,y) A inst(x2,y) A nom(y) — triple(xd,r, x2)
(18) allvaluesFrom(a,r, b) A nom(X) A nom(y) A

triple(X,r,y) A inst(x,a) — inst(y, b)
(19) atMostOne(a,r, b) A nom(x) A nom(y;) A nom(yz) A inst(x,a) A
triple(X,r,y1) A inst(ys, b) A triple(X,r,Y¥,) A inst(y,, b) — inst(yl,y2)
(20) subInverseO£f(r, s) A nom(X) A nom(y) A triple(x,r,y) — triple(y, s X)

Fig. 3. Inference rules for deriving entailments in Orel

that all axioms have first been decomposed into a simplifiechabform that does not
use more than one concept operator per concept expressigmplify the presenta-

tion, we use the names of classes, roles, and individualgekhas T and L as constant

symbols in the database instead of assigning numericatifides to such names as
done in the actual implementation.

Regarding the rules of Fi@®, we can observe that the rules only derive new facts
for the predicatesnst, triple, andself that correspond to assertional axioms, as
well as for the auxiliary predicateom. To see the purpose of the latter, first note that
a special simplification of the rule set is achieved by usimg s¢ame identifiers for
individual names and for nominal classes containing only idividual. Constants
that can be considered as nominal classes are markedhawitlso that the rule (1) of
Fig. 3 generates tautological assertions of the f¢mn). It is not hard to see that all
equality statements that can be derived in OWL EL must invatieast one individual
name, and can thus be expressed by a class assertion axiamdarinal class. These
observations allow us to simplify the equality theory 4fffo rules (15)—(17) of Fig3.

All rules that relate to features that are specific to OWL RLrasdricted to individ-
uals innom. This corresponds to the restriction of DL-safety that hesrbalso used in
[4]. As noted there, the relevant entailments of an OWL RL omjploan be obtained
when restricting reasoning tmamed individuals. Anonymous individuals, in contrast,
cannot be inferred to existin OWL RL and are only relevantlier EL part of a knowl-
edge base. As discussed #,[the DL-safe combination of EL and RL features not
only captures all entailments that would be expected fralreelanguage in isolation,

but also allows some semantic interactions between the dawgulages. In this case,
however, the above inferencing algorithm is not guarantegoduce all entailments
—indeed, a polynomial time algorithm cannot achieve thiel.go

Features that are missing in Fig.and 3 are only OWL EL's restricted form of
property ranges, the universal role, and concrete domdata fanges). Orel interprets
all property ranges as OWL RL axioms of the formc YR.C, and does not currently
support the universal role. Concrete domains, howevesgrported and the according
rules are omitted here for reasons of space. Various othaurkes, such as assymmetry
of roles, that have been omitted above can readily be exguteéasterms of the given
features.

Finally, it should be observed that the given inferencesdie not materialise facts
that can be concluded if the knowledge base is inconsidtlentever, it is ensured that
inconsistencies lead to derivations of the foimst(n, L) for some constanh. Orel
checks for this condition for being able to return correctveers without explicitly
materialising all possible inferences in the database.

3 Schema Reasoning with Orel

The calculus that has been introduced above is able to dessertional axioms such
as the instances of an atomic concept. For complex conc@pessions, it might be
required to first extend the knowledge base with auxiliarpias and to (re)complete
the materialisation process thereafter. Such auxiliaigrag, however, are hardly af-
fecting the semantics of the knowledge base since they patsely extend it, and

hence many such checks can safely be performed withoutirgstite database.

The matter is diferent when checking for the entailment of schema axioms such
as concept subsumption. Indeed, there are practically ritapoontologies such as
SNOMED CT which do not contain any individual names, and fbiol concept sub-
sumption is the chief inferencing problem. It is well knowrat this problem can be
reduced to instance retrieval: for checking if an axiénz B is entailed, a new “test”
individual c is introduced into the knowledge base together with therisaeA(c). If
this impliesB(c) then the subsumption is concluded.

Unfortunately, this approach to testing does not preséeeeémantics of the knowl-
edge base. Indeed, assert&(@) may even lead to a global inconsistency (in which case
B(c) and thusA C B is also entailed). Thus, test assertions disallow the raévallel
execution of many queries that could be considered typarah fdatabase system, and
they require possibly expensive deletion operations dfftertest is finished. While it
is of course possible to execute each test on a separate ttm database — possibly
realised by marking facts in the database as belonging taiaydar test instead of sep-
arating databases on the DBMS layer — this approach mebiptie data that has to be
stored at each time, and reduces the performance gains there-use of persistently
stored previous computations.

The problem is less severe when restricting to smaller laggs than OWL EL.
For example, the algorithm described 0] computes all concept subsumptions of an
ELH knowledge base in parallel without executing separate feseach. WhileS LH
allows for this mode of reasoning, it is not clear how to elisatsuch an algorithm for

EL™. In particular, the original algorithm as proposed 7Thik incomplete. The glitch
can be fixed, but only at the price of specifying the subsuompgixiom the entailment
of which is to be tested before running the algorithm, thugireng many runs instead
of one. We conjecture that this is unavoidable.

Due to these diiculties, Orel uses a mixed approach for finding concept supsu
tions. The calculus uses the simple rules that have beesdinted above when this is
guaranteed to yield correct results, but it creates additioopies of axioms when the
computation results in derivations that cannot be handigtiis manner. The goal of
our approach is to avoid the significant overhead that isiredun the general case
whenever possible, but tuning the calculus for this purp@sebject of ongoing work.
Currently, Orel's schema inferencing is mofii@ent when ontologies do not contain
nominal classes (in certain problematic contexts), anddteses in performance when
combinations of nominals, existential quantifiers, and OWLf&tures occur.

4 Applying Derivation Rules on RDBMS

Relational database management systems (RDBMS) areethitoward the process-
ing of large amounts of data, and th@&&ent manipulation of such data. As such they
appear to be well-suited for implementing materialisationa persistent storage sys-
tem. However, inferencing operations are often still ratitgpical for RDBMS since
they involve large inner joins over all entries in a table.r®wver, RDBMS provide
elaborate functions such as transaction management thatoamrequired by typical
inferencing scenarios but that can significantly slow dowarations. For this reason,
various optimisations are needed for using RDBMS as a basisriplementing the
outlined inferencing procedure.

It is well-known that datalog rules are closely related t@myions in relational
algebra B]. The correspondence is achieved by storing the extendieaah datalog
predicate in a database table, the columns of which cornesfmthe arguments taken
by the predicate. Rule (3) of Fi@®. could therefore be realised by the following SQL
operation:

INSERT INTO inst (x,y) SELECT tl.x AS x, t2.y AS y
FROM subClass AS tl1 INNER JOIN inst AS t2 ON tl.x=t2.y

Executing this SQL statement extends &t table with all facts that can be de-
rived in one application of rule (3) of Fi@®. We provide this statement for illustrating
the mapping to SQL commands — using it iteratively in an impgatation would lead to
prohibitively large amounts of unnecessary computatibrgeed, the operation derives
the same conclusions in each iteration, just like the oaiginle does when processed
operationally.

Various optimisations have been proposed and thoroughéstigated to overcome
this problem B]. One way to increasefiéciency is to keep track of the iteration step
in which a fact was derived, and to make sure that rule apics.require new facts
to be involved in the derivation. This leads to the so-cadiedi-naive bottom-up eval-
uation which is largely used in Orel. Writintnst' for the predicate that corresponds
to the extension ofnst as derived in step this strategy boils down to evaluating the
following rule:

subClass(X,y) A inst/(y,2) — inst'*}(x,2)

Unfortunately, semi-naive evaluation can still derivegeamumbers of redundant
facts during inferencing. Moreflécient general purpose optimisations likagic sets
are available when only certain entailments are of intdigptcally at query time) but
are not useful for full materialisation. But moréieient forward chaining algorithms
do exist as well, and have been studied in the area of dasbase in particular in
relation with transitive closure computatiorid]. Since these approaches often assume
very simple rule sets, they can not be directly adopted tinfleeence rules of Orel, and
part of the ongoing developmentfert around the tool is to suitably adapt techniques
from this area.

5 Implementation and Initial Results

Orel is implemented in Java, using the OWL ARPJ for accessing OWL documents.
The current default RDBMS that is used in Orel is MySQL altijoonly minor adjust-
ments would be needed to move to another RDBMS. Orel is friwae and can be
obtained (including its source code) frdmtp://code.google.com/p/orel/.

The current implementation of Orel is still not fully optiseid in various respects.
On the one hand, we are exploring heuristics for improvirgy itifferencing control
flow. On the other hand, optimising database queries for icptar RDBMS is a te-
dious process with many dependencies on the technicakinficiure used in testing.
We have found that flierent server setups and machine configurations can lead to a
50% reduction in ontology loading times while incurring avgtdown of several orders
of magnitude for materialisation. Thus, while we cannoegigproducible evaluation
figures, we can provide some first insights into general matbehaviour.

The OWL 2 test caséhave been used to test the correctness of the implementation
For performance testing, we specifically focussed on thékveivn SNOMED CT on-
tology, a medical terminology of about 425,000 axioms wilirang focus on subclass
subsumptions. We considered loading and inference médatian for this ontology.
Load times have shown to be rather similar across very systéutiverse performance,
typically ranging between 9min and 20min. These times refltex slow inserting be-
haviour of relational databases — the given times are ajfreaded on an optimised
loading phase that controls transaction management arexiimgl and that exploits
client-side caching and rewritten bulk updates. Yet, thiging speed is a strong limit-
ing factor (computing the data for writing takes but a fewasets). Application areas
for DBMS-based systems of course assume axioms to changsl@w aate, thus re-
ducing the relevance of initial loading times.

Loading does not involve reasoning, i.e. materialisatidrthe current stage of im-
plementation, Orel is able to successfully classify SNOMEDbut it cannot compete
with highly optimised in-memory systems like Cond@8[; almost 2 hours are needed
on a fast database server. This reflects some of the limigtbusing an fi-the-shelf
RDBMS, and we expect significant potential for speed-up bggialternative back-
ends. Similar results have been reported for the SAOR inéerengine for OWL Horst

2http://owl.semanticweb.org/

http://code.google.com/p/orel/
http://owl.semanticweb.org/

[14], and we are not aware of any system that uses MySQL as a iingdosckend.

In spite of the comparatively low performance of the curierglementation, we were
still able accomplish major speed improvements for thesdfi@ation by improving con-

trol structure and inference rules. Most of these optinosatare directly applicable to
other backends as well.

6 Related Work

The objective or Orel is to provide a stable framework for OWhtabogy manage-
ment and inferencing based on persistent storage. Appesaiftrule-based bottom-up
materialisation of consequences have a long history, aetit@erefore can build on a
significant amount of prior work, both practical and thewadtin nature.

On the theoretical side, there is a large body of well-es&hbtl research to be found
in the area of (relational) databases, especially relateldet optimisation of recursive
queries B] and the construction of materialised viewl$]. We have discussed herein
only briefly the basic use of a semi-naive evaluation stsatiegt other approaches are
applicable in a similar fashion when optimising for furthese cases. Typical exam-
ples for such techniques are magic sets (used for optimeangplex bottom-up com-
putations needed at query time) and incremental matexiadis (used for iciently
recreating inferences when new data is added).

More recently, much work has been conducted on “no-SQL” @gqgres to per-
sistent storage, leading to a number of database-likeragstieat are tailored toward
improved éficiency for non-relational data schemes such as sets of Rplesr JSON
documents, or simple key value pairs. These developmentbedeneficial for se-
lecting more suitable storage backends for Orel in the &ythuat they are not directly
related to the work on the current system. Indeed, Orelsitcture abstracts all stor-
age operations so that inference and control structurestdefer to SQL or any other
concrete DBMS feature in any way.

On the more practical side, there are a number of past andntusystems that
support rule-based inferencing on relational databasesai not aware of any tool
that supports more than a single OWL 2 profile based on such pnoagh, making
Orel's multi-profile integration novel. Also, the overalicaitectures of systemsftier
significantly, even if rule-based inferences are used atdine. The main relationship
to Orel therefore is in the actual reasoning module thatratds a knowledge base
for a given set of rules, whereas functions such as checkibgiagy entailment are
often highly specific to a given tool. In fact, we do not knoweofy freely available
database-driven reasoner that can check ontology entgilimeany OWL profile, the
implementation of which was not a minor part of the currergl@ystem.

The system whose inferencing is most closely related to Srile DB reasoner
for ELH [10]. This system supports only a small fragment of the OWL EL pepbut
the rules applied for this part are closely related to thasalun Orel for the respective
features. The only inference problem that DB supports issifigation, but it shows
some very good performance characteristics for this tasgle@ally regarding memory
usage.

The only other database-driven inference engineStérthat we are aware of is a
prototype system that was presentedif]] In this case, the focus is on conjunctive
query answering, with the main contribution being to shoat tsuch queries can be
answered rather directly on databases with a certain statetrialisation. Loading
performance and memory consumption have not been optirmsthis work, and are
not as good as for the DB reasoner, but outstanding quergnpestice could be ob-
tained. The existence of prototype systems like the abodet@eur motivation for
developing a stable, free platform that can be used to iategnd refine the underlying
approaches and algorithms.

Most other database systems that support OWL reasoning éocGSVL RL or on
a subset thereof. The most current such implementationmhgteported is the OWL
reasoner of Oracle 11gMany systems focus on DLALT] or pD* [18], thus provid-
ing only incomplete coverage of OWL RL inferencing. Promineramples include
OWLIM [19], DLDB2 [20], and Minerva R1].

Further systems provide yet more restricted amounts of OWRFS inferences
mostly for augmenting RDF-based instance data. An inteigsxample is SAOR for
which a non-standard storage implementation has lead tifisent performance in-
creases as compared to MySQU4]. Even though SAOR does not support many OWL
features yet, this hints at the potential that non-SQL detab may have for improving
the dficiency of systems like Orel.

Finally, rule-based inferencing on top of RDF data has bemparted by some
tools, the most prominent among which is probably Jena wigatures a proprietary
inference rule implementatichln this case, rules are rather understood in the sense of
production rule systems where they form a configurable faanhaapplication that is
used to perform relevant computations.

A rather diferent class of database-driven ontology reasoners arensyshat al-
low for OWL QL querying, such as the QuOnto systeifihe nature of the problems
involved here are somewhatfidirent, and query rewriting often plays a central role.
However, recent works in this field have also suggested theofipartial materialisa-
tion for improved query performancgZ].

7 Conclusion and Future Work

We have presented the new ontology inference and managemginie Orel, and its
underlying approach based on rule-based bottom-up midatian of consequences
in a database. Similar materialisation approaches have é&qdored for (sometimes
incomplete) OWL FuRDF(S) inferencing, most notably in SAOR4] and OWLIM
[19]. Conversely, there are also a number of fast in-memoryémgintations available
for handling (parts of) OWL EL. Orel is ffierent from both classes of systems as it
provides RDBMS based inferencing for OWL EL, and is using a aklgerithmic basis
that allows for a unified treatment of OWL EL and RL.

Shttp://www.oracle. com/technology/tech/semantic_technologies/
“http://jena.sourceforge.net/inference/
Shttp://www.dis.uniromal.it/~quonto/

http://www.oracle.com/technology/tech/semantic_technologies/
http://jena.sourceforge.net/inference/
http://www.dis.uniroma1.it/~quonto/

The ongoing work on Orel pursues a number of independensg@dlicourse, per-
formance is considered as a core challenge, and both thetitgdealculus and the
storage backend can be improved to address it. For imprakangalculus, we develop
rule sets that avoid redundant conclusions, and experimigmoptimisation methods
for efficiently computing closures of datalog programs. Regartliegtorage backend,
we consider other database paradigms related to recen@haafproaches. Another
vital feature for a database-driven system dfient update methods for adding and
deleting axioms without recomputing all derivations. Meth for maintenance of ma-
terialised views are well knowrlp], but strongly depend on the details of the imple-
mented calculus.

Besides these obvious goals, there are a number of intageditiections to fur-
ther develop the core system. Relevant additional featnobsde (conjunctive) query
answering, explanation, and extensions with non-stanegpdessive features such as
nonmonotonic inferencing. Other important fields of reskaoncern distribution and
parallelisation. At the same time, we seek concrete agjicacenarios that can be
used to explore the practical utility of a robust and sca@VL inferencing system.

Acknowledgements. The work reported herein has been supported by the EU ingiroje
ACTIVE (IST-2007-215040) and by the German Research Fdismander the Ex-
presST project.

References

1. Hitzler, P., Krétzsch, M., Parsia, B., Patel-Schneider, P.F..ofphd S., eds.: OWL 2
Web Ontology Language: Primer. W3C Recommendation (27 Octob&) 20@ilable at
http://www.w3.org/TR/owl2-primer/.

2. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, Butz, C., eds.: OWL 2
Web Ontology Language: Profiles. W3C Recommendation (27 Octol3) 2vailable
athttp://www.w3.org/TR/owl2-profiles/.

. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addidesley (1994)

4. Kroétzsch, M., Rudolph, S., Hitzler, P.: ELP: Tractable rules forlO®VIn Sheth, A., Staab,
S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayidn,eds.: Proc. 7th Int.
Semantic Web Conf. (ISWC’08). Volume 5318 of LNCS., Springel0O@649-664

5. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S.s@rdB.N., Dean, M.: SWRL:
A Semantic Web Rule Language. W3C Member Submission (21 May 20¢#)ahle at
http://www.w3.org/Submission/SWRL/.

6. Boley, H., Kifer, M., eds.: RIF Basic Logic Dialect. W3C Candidate®amendation (1
October 2009) Available atttp://www.w3.org/TR/rif-bld/.

7. Baader, F.,, Brandt, S., Lutz, C.: Pushing&¥®envelope. In Kaelbling, L., Shotti, A., eds.:
Proc. 19th Int. Joint Conf. on Atrtificial Intelligence (IJCAI'05), Pessional Book Center
(2005) 364-369

8. Krbtzsch, M., Rudolph, S., Hitzler, P.: Description logic rules. IralBtb, M., Spyropoulos,
C.D., Fakotakis, N., Avouris, N., eds.: Proceedings of the 18tlofi@an Conference on
Artificial Intelligence (ECAI'08), I0S Press (2008) 80-84

9. Motik, B., Sattler, U., Studer, R.: Query answering for OWL DL witkess Journal of Web
Semanticg(1) (2005) 41-60

w

http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-profiles/

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Delaitre, V., Kazakov, Y.: ClassifyingLH ontologies in SQL databases. In Patel-Schneider,
P.F., Hoekstra, R., eds.: Proceedings of the OWLED 2009 WopkshdWL: Experiences
and Directions. Volume 529 of CEUR Workshop Proceedings., CEUReVg (2009)
loannidis, Y.E., Ramakrishnan, R.:fliEient transitive closure algorithms. In Bancilhon,
F., DeWitt, D.J., eds.: Proceedings of the 14th International Coméeren Very Large Data
Bases (VLDB'88), Morgan Kaufmann (1988) 382—394

Horridge, M., Bechhofer, S., Noppens, O.: Igniting the OWL tbidch paper: The OWL
API. In Golbreich, C., Kalyanpur, A., Parsia, B., eds.: Procegsliof the OWLED 2007
Workshop on OWL: Experiences and Directions. Volume 258 of CEURKéfmp Proceed-
ings., CEUR-WS.org (2007)

Kazakov, Y.: Consequence-driven reasoning for 817 Q ontologies. 23] 2040-2045
Hogan, A., Harth, A., Polleres, A.: SAOR: authoritative reaspifin the web. International
Journal on Semantic Web and Information Systems (1JS\&/(3D09)

Gupta, A., Mumick, I.S., eds.: Materialized Views: Techniquemlémentations, and Ap-
plications. MIT Press (1999)

Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering exdascription logi€L
using a relational database syste28][2070-2075

Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Descriptiogic programs: combining
logic programs with description logic. In: Proceedings of the 12th Intemnal Conference
on World Wide Web (WWW'03), ACM (2003) 48-57

ter Horst, H.: Completeness, decidability and complexity of entailnoe®RDF Schema and
a semantic extension involving the OWL vocabulary. Journal of Web 88cs8 (2005)
Kiryakov, A., Ognyanov, D., Manov, D.: OWLIM — a pragmatiargntic repository for
OWL. In: In Proc. Conf. on Web Information Systems Engineering $&)l Workshops.
(2005) 182-192

Pan, Z., Zhang, X., Heflin, J.: Dldb2: A scalable multi-perspectemantic web repository.
In: Proc. 2008 IEEBNIC/ACM Int. Conf. on Web Intelligence (WI'08), IEEE (2008) 489—
495

Zhou, J., Ma, L., Liu, Q., Zhang, L., Yu, Y., Pan, Y.: Minerascalable OWL ontology
storage and inference system. In Mizoguchi, R., Shi, Z., Giunchigliads.: Proc. 1st Asian
Semantic Web Conf. (ASWC'08). Volume 4185 of LNCS., Springe0@329-443
Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschl.: Combined fo rewritabil-
ity for conjunctive query answering in dl-lite. In Cuenca Grau, B., idoks, I., Motik, B.,
Sattler, U., eds.: Proceedings of the 22nd International Workshopeseription Logics
(DL'09). Volume 477 of CEUR Workshop Proceedings., CEUR-W&(@009)

Boutilier, C., ed.: Proceedings of the 21st International Conéeren Artificial Intelligence
(IJCAr'09), 1IJCAI (2009)

