AT

Karlsruhe Institute of Technology

Department of Economics and Management

Institute of Applied Informatics and Formal Description Methods (AIFB)

Diploma thesis

Robustness in Multiobjective

Optimization

of

Joscha Kaiser
Matr. Nr.: 1480371
Course of studies: Business Mathematics

Handover date:
29.05.2015

Supervision: Dr. rer. nat. Pradyumn Kumar Shukla






Erklarung

Ich versichere wahrheitsgemaf3, die Arbeit selbststandig angefertigt und alle
benutzten Hilfsmittel und Quellen vollstandig angegeben zu haben, die wortlich
oder inhaltlich iibernommenen Stellen als solche kenntlich gemacht zu haben
und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis beachtet
zu haben.

Datum Name






Contents

1

N

H O Q & »

Preface

1.1 Introduction . . . . . . . . . .. ...

1.2 Literature Review . . . . . . . . .. ... ... ... .. ...,

1.3 Notation . . . . . . . . . ...
1.3.1 Binary Relations and Cones . . . . . . .. .. .. ...
1.3.2 Polyhedral Cones . . . . . .. ... ... ... .....
1.3.3 Deterministic Multiobjective Optimization . . . . . . .

Cone Robustness

2.1  Computational Methods . . . . . ... ... ... ... ... ..
2.1.1 Cone Robustness Based Evolutionary Algorithm (CREA)
2.1.2  Simulation Results . . . . ... ... .. ... ... ..

2.2 Conclusions . . . . ... ..o

Uncertain Optimization Problems
3.1 Set-Valued Optimization . . . . . ... ... ... ... ....
3.1.1 Existing Binary Relations . . . . ... ... ... ...
3.2 Definition of Robustness . . . . .. .. .. ... ... .....
3.3 Computational Methods . . . . . ... ... ... ... ... ..
3.3.1 Set-Valued Non-Dominated Sorting Based Genetic Al-
gorithm IT (SV-NSGA-II) . . . . . ... ... ......
3.3.2 Implementation in jMetal . . . . . ... ... ... ..
3.3.3 Simulation Results . . . . .. ... ... ... .. ...
3.4 Conclusions . . . .. .. ...

Closing Remarks

Consistence of the Definition of an Edge
Proof of Example

Proof of Example

Proof that Algorithm (3| is Well-Defined

List of Java Classes and Interfaces added to jMetal

E.1 Core Components . . . . . . . ... ... . ... ... .....
E.2 Methaheuristics . . . . . . ... ... 0o
E.3 Operators . . . . ... .. .
E4 Problems. . . . .. ...

sl

EEEE B

Q

=~ KA A
O

2 :0 :0

SOMSS

Q0]

RQ

m
o
=



E.5 Utility Components






1 Preface

1.1 Introduction

Most practical optimization problems are of multiobjective nature. They
usually represent a decision problem which is characterized by multiple cri-
teria such as time, reliability, efficiency, safety, cost, and so on. Since these
objectives typically are conflicting under the given problem, the existence of
a unique optimal solution is very unlikely but rather many or even infinitely
many decisions are suitable.

Another common characteristic of real-world optimization problems is, that
they have to deal with some kind of perturbations or uncertainties, which
may occur due to unforeseeable future events, estimation or computational
errors. Those perturbations can effect an optimization problem in all of its
components, such as input and output data as well as the constraints and
also the decision maker’s preferences may vary under uncertainties. For an
optimization problem contaminated with uncertain data it is very important
to estimate the effects of this uncertainty and so it is necessary to evaluate
how sensitive an optimal solution is to perturbations of the infected data.
One way to deal with such kind of problems is the field of robust multiob-
jective optimization.

In this thesis we regard multiobjective optimization problems which are
searching for efficient solutions based on an ordering relation induced by
an arbitrary convex cone in the objective space. We develop a new defini-
tion of robustness for multiobjective optimization problems suffering under
perturbations within the ordering inducing cone and present an evolutionary
algorithm able to find such cone robust efficient solutions. This algorithm
also assigns a degree to each found efficient solution, which is measuring
the solutions maximal resistance capability against increasing perturbations
within the ordering inducing cone. In the second part we regard optimiza-
tion problems suffering under uncertain input data concerning the objective
function. We present the connection between such so called uncertain opti-
mization problems and set-valued optimization problems and introduce seven
ordering relations on the power set representing the objective space. Also we
present an evolutionary algorithm able to solve a special class of set-valued
optimization problems equivalent to uncertain optimization problems. This
opens a new field of application for evolutionary algorithms on the growing
research unit of set-valued optimization problems. In general an evolution-
ary algorithm creates a population, i.e. a set of random solutions for a given
multiobjective optimization problem and efficiently evolves this population



over a predefined amount of iterations or until some other kind of stopping
criteria is reached. Recently, evolutionary algorithms become increasingly
popular. Next to a lot of theoretical studies, they are as well applicable to
many real world problems on topics as chemistry, mechanical engineering,
civil engineering etc. [6], [4I]. Reasons for this increasing popularity are
given by the many advantages evolutionary algorithms bring along in com-
parison to conventional optimization techniques. One of the most important
might be, that evolutionary algorithms in general do not need any deriva-
tives of the function to be optimized because of their stochastic nature and
their consideration of an optimization problem as a black box. For real world
problems an extraction of gradient information often is a very tough task or
even impossible [29], thus derivative-free optimization techniques are often
more applicable. Other important advantages to ordinary gradient-based op-
timization methods are their random operators and their population-basis.
These prevent evolutionary algorithms from getting stuck in local optima
and let them evolve a whole population of solutions representing the com-
plete efficient front of a multiobjective optimization problem, in one single
run. In this way, the decision maker is provided with the opportunity to get
to know the shape of the efficient front and the efficient set and is provided
with the opportunity to choose of a broad variety of optimal solutions.

This diploma thesis is structured as follows. In section [1.2] we will give a
short literature review of different robustness approaches existent for mul-
tiobjective optimization problems. Section [1.3| covers the basic notation on
binary relations, cones and deterministic multiobjective optimization and
presents a special class of cones, which is of high importance to the compu-
tational components of this thesis. In section [2] we will introduce the new
concept of cone robustness, which covers the topic of uncertainties within the
ordering inducing cone. In section [2.1| we will present and evaluate an evo-
lutionary algorithm able to search for such robust solutions and we will end
the chapter with a conclusion in section 2.2} pointing out open questions and
aspects of future work. In section |3 we will discuss uncertain multiobjective
optimization problems and we will present an introduction into the field of
set-valued optimization in section (3.1} Furthermore, section [3.2] covers the
definition of robustness for uncertain optimization problems and illustrates
the connection between set-valued optimization and uncertain optimization.
In section we will present an evolutionary algorithm able to run on set-
valued or uncertain mutliobective optimization problems respectively and in
section we will end this chapter with a conclusion as well. Finally we will
finish the thesis with some closing remarks in section [



1.2 Literature Review

There are a lot of different ways of how to model uncertainties in multiobjec-
tive optimization problems and how to test solutions on robustness, presented
in the literature existent on the topic of robustness in multiobjective opti-
mization. In the following we are going to introduce some of the most famous
works on this subjects as well as the work which was most influential for this
thesis.

As pioneers on the topic of robustness in multiobjective optimization often
K. Dep and H. Gupta’s work [8] from 2006 is stated. They primarily focus on
perturbations in the decision space and define two types of robust solutions.
The first one is called robustness of type I. This definition is an extension of
an averaging approach for singleobjective optimization problems[43], Tsusui
and Gosh, 1977], [4, Branke, 1998] and defines a solution as robust iff it is a
solution to minimizing the so called mean effective objective function which
is the vector-valued function, consisting of the mean values of each original
component. The second robustness approach is called robustness of type II,
here Dep and Gupta minimize over the original objectives but add a con-
straint, which limits the extent of functional change under perturbations in
the decision space to a user-defined threshold. For both methods the authors
always consider a solution as minimal if it is efficient w.r.t. to the definition
of efficiency initial introduced to applied sciences by Edgeworth (1881) [11]
and Pareto (1906)[39], respectively. Note that in many papers on the topic
of multiobjective optimization, efficient solutions are denoted as Pareto op-
timal solutions. Since Edgeworth’s notions are very close to the ones given
by Pareto it is historically appropriate to speak of Edgeworth-Pareto opti-
mal solutions, as for example suggested by Stadler [38] and we refer to [3§]
as well for a more detailed biographical survey of history and developments
in multiobjective optimization. Furthermore we have to remark, that there
does not exist a unique definition for efficiency in literature as for instance
pointed out by M. Ehrgott in [13], some authors use optimal, non-dominated
or minimal for what we will call efficient.

In the work of L. T. Bui, H. A. Abbass, M. Barlow and A. Bender [1] from
2010 the authors measure robustness in relation to perturbations of the de-
cision makers attitude to risk in two different ways. First they introduce the
so called dominance robustness, which is the ability of an Edgeworth-Pareto
optimal solution to stay efficient, when it is perturbed in the decision space.
Secondly they present the preference robustness as the minimum transition
cost of an Edgeworth-Pareto optimal solution in its decision space, when it



is perturbed in the objective space. Both definitions of robustness are de-
signed in order to hedge against uncertainties in the decision maker’s attitude
to risk, which are significant due to the fact that the decision maker often
changes over the period of decision making. Our notion of robustness intro-
duced in section 2 as well is based on the concern of uncertainties within the
decision makers attitude to risk or his preferences in general. But instead
of regarding perturbations within the objective or decision space we directly
approach the binary relation on the objective space which induces the defini-
tion of domination between two solutions and hence represents the decision
makers preferences.

At last we want to introduce the work of J. Ide [17] from 2014, which gave
the thought provoking impulse for section [3] Here the author presents five
papers which are joint work with E. Kobis, A. Schobel, et al. on the topic of
robustness in uncertain multiobjective optimization [12], [20], [18], [19], [21].
Uncertain optimization problems regard possible scenarios or realizations
concerning the objective function, which leads towards a family of different
deterministic multiobjective optimization problems. Many different concepts
of what is considered to be a robust solution have been presented within the
work of Ide et al. In the first paper the authors extend the concept of minmax
robustness from single objective optimization problems to multiobjective op-
timization problems. Minmax robustness was initially introduced by Soyster
[37] in 1973 and addresses the idea to find solutions which are feasible in
every scenario and thus hedges against the worst case of all scenarios. In the
other papers presented, the authors introduce various additional concepts of
what is considered to be a robust solution to an uncertain multiobjective
optimization problem and present a connection between multiobjective set-
valued optimization and uncertain multiobjective optimization in [I8]. This
connection is studied in [I9] furthermore and some of the robustness concepts
are extended to general spaces and cones which was crucial for our work on
this subject in section |3 as we are working with general cones as well. Fi-
nally the authors present an application of the concept of minmax robust
optimization onto a real world problem out of the wood cutting industry in
the last paper ([21]).

1.3 Notation

First we will have to give the most basic notations necessary in this work, in
order to guarantee the integrity of all results and proofs to follow.

Throughout this thesis we are working with real multidimensional linear
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spaces R* with & € N\ {1} being a natural number bigger than one. If
not denoted differently we will work with the Euclidean norm || - |2 and
the canonical scalar product {-,-) in R*. For ¢ € R,e > 0 and §j € R*, a
e-neighborhood of 7 is labeled as B.(7) := {y € R¥ |||y — ||z < §}. Given an
arbitrary matrix A € R™>™™ with [,m € N we will denote its rank as rg(A)
and its transpose as AT € R™*!. For an arbitrary countable set S the cardi-
nality is given by |S| and for a subset Y of R¥ the linear span is denoted as
lin(Y'). The dimension dim(Y") of Y is defined to be dim(Y") := dim(lin(Y"))
the dimension of the linear space spanned by Y. The set Y C R* is called
closed, iff the limit of each convergent sequence in Y lies in Y as well and
an element y € Y is said to be an interior point if there exists an € > 0,
s.t. Be(y) C Y. The interior of Y contains all interior points of ¥ and
is denoted as int(Y') := {y € Y|y is an interior point of Y'}. Furthermore
we will denote id* : R¥ — R¥ z +— z, as the identity function in R*¥ and
P(RF) .= {A CR*| A # 0} as the power set of R* without the empty set.
At last given two subsets A, B of R* we will denote the Minkowski sum as
A+B:={a+blac A,be B} aswellas A— B:={a—0bla€ A,be B}.

Now we can present the basic notations on binary relations and cones which
are of importance for this thesis.

1.3.1 Binary Relations and Cones

First let us recall a few important properties of binary relations.

Definition 1.1
A binary relation p on an arbitrary set'Y 1is said to be:

~

reflexive iff for all y € Y ypy holds true,
irreflexive iff for ally € Y ypy does not hold true,

antisymmetric iff for ally,z € Y withyp z and z py follows that y = z,

transitive uff for all y,z,w € Y with ypz and z pw follows that y pw.
5. total iff for all y,z € Y either ypz or z py holds true.

Definition 1.2
A binary relation p on an arbitrary set'Y is called a:

1. strict partial order iff it is irreflexive and transitive,

2. pre-order iff it is reflexive and transitive,
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3. partial order iff it is an antisymmetric pre-order,
4. total order iff it is total and a partial order.

We call a binary relation p on'Y an ordering relation on Y iff it is a strict
partial order, pre-order, partial order or a total order.

The following lemma will be of importance to the various kinds of notations
for domination we are working with in this thesis.

Lemma 1.3
LetY be an arbitrary set, < a pre-order on'Y and let < be defined as follows.
Forally,zeY

r<y <= =y and ~(y X x).

Then < is a strict partial order on'Y .

Proof:

Irreflexivity: Assume < to be reflexive, then there exists ay € Y with y < y
which is equivalent to

y<y and =(y < y).

Hence < has to be irreflexive.

Transitivity: Let y, z,w € Y with y < 2 < w, which means

y=<zand z 5 w, (1)
—(z=xy) and ~(w X 2). (2)

Since < is a pre-order and hence transitive it follows with that
y < w holds true. What is left to prove is that

(w5 y) (3)

holds true as well. Let us assume the opposite. Then we gain with
that

wsSYysz
holds true. With the transitivity of < then follows, that
w = 2.

That is a contradiction to and hence < has to be transitive as well.
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During this thesis we are going to define various order relations which are
based on a cone K C R*.

Definition 1.4

A nonempty subset K of R¥ is called a cone in R¥ iff y € K and X > 0
implies \y € K. Clearly, if K is a cone, then 0 € K. Such a cone K € RF
15 said to be:

1. proper iff K # {0} and K # R*,
2. convex iff y,z € K implies y+ z € K,
3. pointed iff —y ¢ K for ally € K, i.e., KN (—K) = {0}.
The set of all closed, convex and proper cones K in R* is denoted as
KF:={K CRF | K is a closed, convex and proper cone in R*}.

We have to remark that these notations are not unique in literature, unfor-
tunately there exist different kinds of definitions, when it comes to cones.
Some authors use the definition above, where K C R* being a cone implies
that K contains the zero vector 0 € R* ([26], [22]), some as well regard blunt
cones, i.e. they choose A > 0 in the definition above and allow K to be the
empty set as well ([13], [33]).

Now we will present the first two binary relations induced by a cone.

Definition 1.5
The binary relations <, <x on R¥ induced by K € K*, are defined as
follows. For all y,z € R* it holds

Y=gz = z—yeck,
y<gz <= y=3gzand (2 =<kY).

The following corollary describes how the properties of a cone K influence
the properties of the binary relations <y, <x induced by K.

Corollary 1.6
Let K be a cone in RF, if K is

1. convex,

(i) =<k becomes a pre-order,
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(i) < becomes a strict partial order,
2. convexr and pointed,

(i) <k becomes a partial order,

(i) y<x 2 <= y=xzandy#z Vy,z€Rr

Proof: 1. and 2. (i) follow directly by Theorem 1.20 of [I3]. 1.(:7) follows
by lemma [I.3] And 2.(i4) follows directly by the antisymmetry of <x. W

If not denoted differently we will always regard closed, convex and proper
cones K € KF throughout this thesis. The last definition of this subsection
determines the conical hull of a subset of R* and will be of importance for
some of the proofs to follow.

Definition 1.7
LetY be a subset of R¥. Then the conical hull of Y is defined to be

cone(Y) := {i ;Y

i=1

yieKozieR,aizo,vz',ZGN}.

1.3.2 Polyhedral Cones

Next we are going to define a very important type of cones for this thesis,
the polyhedral cones in R¥. To do so we will first need the following.

Definition 1.8
Let 1 € N and for all i € {1,2,...,1}, a; € R* be the i-th row vector of the
matriz A € R>* then the i-th half space induced by A is given by

Hi(A) = {y € R* | {a;,y) > 0}
and the i-th hyperplane induced by A is defined as
Py(A) == {y € R" [{a;,y) = 0}.

Figure|l]illustrates the i-th hyperplane and the i-th half space P;(A) induced
by some matrix A € R!*3,
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Figure 1: Illustration of the P;(A) (left) and H;(A) (right)

Now we are able to present the actual definition of a polyhedral cone.

Definition 1.9

Let 1 € N and for all i € {1,2,...,1}, a; € R* be the i-th row vector of the
matriz A € R>** then the polyhedral cone K(A) induced by the matriz A is
defined as the intersection of all half spaces H;(A), i € {1,2,...,1} induced
by A, i.e.

!
K(A) := (| Hi(A).
i=1
Notice that K(A) is a closed convex cone for all A € R>* (see e.g. [13], [33]).

Now we confine ourselves even more onto a new definition of a polyhedral
cone induced by a special kind of matrix, since the class of cones we gain by
doing so, will play a main role in this thesis. In order to keep the reader’s
focus on our main goal of determining a new definition of robustness and
keeping it from slipping off into the depths of polyhedral theory we have put
those definitions and sentences on this topic which are not of main concern,
into appendix [A]

Definition 1.10
Let A € R** be a square matriz with rg(A) = k and row vectors a;,i €
{1,2,...,k}. We denote the class of polyhedral cones K(A) in R induced by

15



such a matriz A € R¥** as the class of k-edged cones in R¥. The i-th edge
Ei(A) of K(A) is given as

k
E(A) = | [ P(A) | nHi(A).
Jj=1,
J#i
The here stated definition of an edge of a k-edged cone does not intervene with
the common definition of an edge of an arbitrary cone used in literature. This

assertion is proven in lemma [A.7] of appendix [A] Furthermore the following
corollary holds true.

Corollary 1.11
Let K(A) be a k-edged cone in R¥, then it follows that K(A) is pointed.

Proof:  Follows directly by theorem |[A.3| (ii) in Addendum A. |

Definition and Example 1.12

Let I* € R¥*¥ be the k-dimensional identity matriz and let us define
RE = {yeRF|y; >0Vie{1,2,...,k}}.

Notice that the k-edged cone induced by I* equals R:, i.e. K(I¥) =TRE.

The following example of a k-edged cone, which is our own creation, will
accompany us throughout this thesis and will play an important role in the
computational methods of section [2| and section [3| on cone robustness and
uncertain optimization respectively.

Example 1
Let the matrix A(J) € R¥* be defined as A(4) := (aij(é))”e{l 2 k) with
tan(d) i .
Vk—1—(k—2) tan(s)’ 127&‘7’
a5(6) = e (4)
1, if i = j.
Then A(d) induces the k-edged cone K(A(5)) C RF for all 6 € D =
[O, arctan <\/%>> , which has the edges
¢ (9)
Z. e
Ei(A(8)) = {Ae'(6) | A > 0}, with €'(4) := , (5)
¢;.(0)

16



. Sty =00 FE LN
and €5(0) := - , Vie{l,2,... k}.
1 ifj=i

By the choice of D as a half opened and not closed interval we ensure that
K(A(0)) stays pointed and avoid that the matrix A(d) gets a rank smaller
than k respectively, as presented in the proof of this example. In order to
build some tension and keep the reader’s interest on what ever might come
next and what this dubious construction of a k-edged cone might be of use
for, we do not give an explanation for the functionality of this particular
definition of the cone K (A(d)) at this point of the thesis. But we present a

graphical illustration of K (A(0.2)) as a small hint in figure
Proof: The proof of this example is given in Addendum

int (K (4(0.2)))

~
~

E1(A(0.2))

Figure 2: Illustration of the 3-edged cone K(A(0.2)) of example

The following theorem is a direct consequence of a main theorem in polyhe-

dral theory and will be of importance for the continuation of example
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Theorem 1.13
Let K(A) be a k-edged cone, then the following holds true,

K(A) = cone({Ei(A) lie{1,2,. .. ,k}}).

Proof: The statement is a direct consequence of theorem 2.15 in [2§],
with theorem [L.11] and definition [L.4l |

Now we can move on to the notations that we use in this thesis on the topic
of deterministic multiobjective optimization, i.e. multiobjective optimization
without any perturbations included.

1.3.3 Deterministic Multiobjective Optimization

If not cited differently we are always regarding the following deterministic
multiobjective optimization problem Pg.

Definition 1.14
Let K € KF be a closed convex and proper cone, then the multiobjective
optimization problem induced by K s given by

Px: mingf(z) st zelX,

where the set X C R™ contains all feasible solutions and is called decision
space or feasible set, R*\ X contains all infeasible solutions, f : X — R,
the function to be optimized is called the objective map and Y := f(X) =
{f(z) e R* | x € X} is the objective space.

The notation ming means here, that we are going to ‘minimize’ the objective
function with respect to the ordering relation < induced by K, i.e. we are
searching for efficient solutions w.r.t. K.

Definition 1.15 (Efficiency)
Let Px be a multiobjective optimization problem induced by K € KF. A
solution 2° € X is called efficient w.r.t. K iff

f(z) 2k f(2°) for some x € X = f(2°) 2k f(2).

The efficient set of Py is denoted by Sk = {x € X | x is efficient w.r.t. K}
and the efficient front of Pk then is defined to be E(Pk) = f(Sk).

18



Unfortunately there does not exist a unique definition for efficiency in liter-
ature, some authors use Pareto optimal, nondominated or minimal for what
we call efficient. Notice as well, that there exist other variants as the effi-
ciency concept denoted here, such as weak, strong or proper efficiency [13],
[3]. In general, though, one is mainly interested in finding efficient solutions
and we will stick to this concept. Also there exist various equivalent alterna-
tives of the formulation for the definition of an efficient solution given above.
One of these we would like to point out to because of its popularity.

Corollary 1.16
A solution 2° € X of a multiobjective optimization problem Py is efficient
w.r.t K, iff

there exists no x € X, s.t. f(x) <x f(a). (6)

Proof: Here the equivalence to definition follows directly by the
definition of our strict partial order <y in [I.5] [

Next we need the definition of domination between two solutions of our op-
timization problem Pg.

Definition 1.17 (Domination)

Let Py be a multiobjective optimization problem induced by K € K*.

If f(z) <k f(x) holds true for two feasible solutions T,x € X,T # x, then
the solution x s called dominated by * w.r.t. K and synonymously it is
said, that * dominates x w.r.t. K. If for two arbitrary feasible solutions
r, T € X,T # x neither f(x) <k f(Z) nor f(z) <k f(z) is fulfilled, they are

called incomparable w.r.t. K to one another.

Notice that if K = R¥ holds true, we gain the usual and well studied defi-
nitions of efficiency and domination initially introduced to applied sciences
by Edgeworth (1881) [11] and Pareto (1906)[39]. An efficient solution w.r.t.
]Ri, then also called Edgeworth-Pareto optimal solution, is a point 2° € X
s.t. there exists no other x € X with

fi(z) < fi(2®) forallic {1,2,...,k},

and
fi(z) < fj(2°) for at least one j € {1,2,...,k}.

We will also call the cone ]Ri the Edgeworth-Pareto cone from here on.
The following corollary presents equivalent definitions to the definitions of

efficiency and dominance for pointed and convex cones, which are more vivid
and which will be of use for some of the proofs to follow.
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Corollary 1.18
Let x,x € X be two feasible solutions of the multiobjective optimization prob-
lem Py induced by a pointed cone K € K¥. Then

x dominates T w.r.t. K <= f(z) e {f(x)}+ K\ {0}. (7)
And

20 is efficient w.rt. K <=
{f(a")} — K\ {0} does not contain any f(z) with x € X. (8)

Proof: Equation and follow directly by corollary point 2.(i7)
and definition [1.17| or corollary respectively. ]

The following simple example will illustrate us the above given definitions.

Example 2

We are regarding the multiobjective optimization problem Py with objective
map f := id?, being the identity function in R%. The problem inducing cone
K equals the Edgeworth-Pareto cone R? and the feasible set is given by
X:={xeR?| (z;1—1)*+ (za — 1) < 0}.

In figure [3, the objective space Y is depicted as the blue colored set, the
red colored part of which is the efficient front £(Pk) of Px. The solution
20 € Sk is efficient w.r.t. K and dominates the solution z € X. On the left
of figure 3] the inclusion f(z) € {f(2°)} +R?2 \ {0} visualizes the domination
of 20 over Z in the sense of equation ([7]) as well as the efficiency of 2° in the
sense of equation (§)). On the right, f(z°) € {f(z)} —R3 \ {0} visualizes the
inefficiency of z in the sense of the negation of equation (8)). The solution
# € X neither is dominated by 2° w.r.t. K nor does it dominate x w.r.t. K,
thus those two solutions are incomparable w.r.t. K to each other.

In the literature on multiobjective optimization an ordering relation induc-
ing cone K sometimes is denoted as domination cone [44] since, regarding
equation (7)) of corollary [I.18] one can interpret the cone K \ {0} without
0 as the set of all dominated directions in R¥. Thus the nonzero vectors in
the domination cone can be thought of as ‘bad’ or ‘dominated’ directions to
travel within our objective space and the choice of the cone K represents the
preference attitude of the decision maker. Usually next to properness and
convexity of our cone K pointedness is supposed as well. In other words,
not all directions are allowed to be dominated directions, there has to ex-
ist at least one dominated direction, the sum of two dominated directions
ki, ke € K\ {0} is again a dominated direction, ky + ko € K \ {0} and that if
k € K\ {0} is a dominated direction then the inverse direction is not allowed
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fi() 2 f1(x)

Figure 3: [llustration of equation (7)), (8) (left) and —(8) (right) on example

to be a dominated direction as well, i.e. —k ¢ K \ {0}. Therefor we will
always regard closed convex proper and pointed cones K in R¥ from here on,
if not denoted differently.

2 Cone Robustness

Within this section, we are always regarding the multidimensional optimiza-
tion problem induced by a closed, convex, proper and pointed cone
K € KF in R* and let C;,Cy be two arbitrary nonempty subsets of KCF, if
not denoted differently.

As the literature review of section 1.2/ has shown, there exist a lot of different
possibilities where perturbations within an optimization process may occur
and at least as many ways to handle these uncertainties to gain some kind of
robust efficient solution. The concept of cone robustness discusses perturba-
tions within the cone K which defines our ordering relation on the objective
space. As discussed in section this ordering relation can be interpreted
as the decision makers preferences which also reflect his attitude towards
risk. Such perturbations may occur in real world optimization problems if
the decision makers change over the period of optimization. In Australia, for
instance, military decision makers who are involved in long-term planning of
capability development projects typically rotate into different positions ev-
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ery two years, although most of such projects span at least five to ten years
[1]. Uncertainties within the ordering relation implying cone also are of im-
portance, if not the decision maker changes in person, but his preferences
vary over time. An example for perturbations within the decision maker’s
preferences is given in portfolio optimization. Regarding a real estate broker
or a portfolio analyst, preferences might change over a longer period of time
or even on a daily basis in accordance to the developments of the real estate
or stock market respectively.

Hence we are now searching for solutions which are robust with respect to
perturbations in our cone K. More precisely, given a finite family C € KF of
closed, proper, convex and pointed cones containing our initial cone K € C,
we are looking for the solution which is efficient with respect to every cone
C in C. Since the union of such a family of cones is a cone as well, we are
looking for solutions which are efficient w.r.t. the union cone U := Jpo C
The following, simple to prove, theorem is of upmost importance for our
concept of cone robustness.

Theorem 2.1
Let K, and K, be two pointed cones in KF, with K, being a true subset of
Ky, i.e.

K, C Ky

and Pk, , Pk, the multiobjective optimization problems induced by Ky and Ky
respectively, with identical objective map f : X — RF and decision space X .
Then it follows that the efficient front of Pk, is a subset of the efficient front
Of PKU 1.€.

g(,PK2) - E(PKl)

Proof:  Let y° € £(Pk,) be an element of the efficient front of P, that
is equivalent to the existence of an efficient solution z° € Sk, w.r.t. K, for
which f(2°) = 3° holds true. With corollary [1.16] that again is equivalent to

BreX: f(z)<w, f(2°) el
Jrex: f) e f(z)+ K\ {0} facke
fre X f=) e fz)+ K\ {0} CgrlLdd
re X f(z) <k, flz 0)

which is equivalent to 2° € Sk, being efficient w.r.t. K, with corollary
And at last, this is equivalent to y° € £(Pk,) being an element of the efficient
front of Pk, . |
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This result means for our aim of finding robust solutions with respect to
perturbations in the ordering relation inducing cone K, that the ‘bigger’ the
perturbations of K, the larger our union cone U will get and the smaller the
set of robust solutions will become. To model such perturbations within K
we will need the next definition.

Definition 2.2 (Ascending Cone Mapping)
Let D C R with 0 € D, let Cy,Cy be arbitrary nonempty subsets of KF, then
an injective mapping

c:Ci xD —>CQ, (K,é) — C(K,5>
15 called an ascending cone mapping uff the following holds true:
(i) ¢(K,0) = K, for all K € Cy,

(ii) for all K € Cy and 61,05 € D with §; < &9 follows that c(K,d01) C
C(K, 52)

Given an element c(K,§) € Cy of the image set of ¢, the corresponding ele-
ment § € D of the domain is then called the perturbation factor of K € C;.
Such an ascending cone mapping c is called proper iff D C Ry is a bounded
non-negative subset of R and the subsets C1,Co C K* do only contain pointed
cones.

Thus an ascending cone mapping models the perturbation within K in the
sense that its image, which is the cone representing our union cone U, ex-
pands in dependence of its perturbation factor 6. The following example is
a continuation of example [1| and may cast some light on the mysteries of the
definition of a k-edged cone presented there.

Example 3
Let C; := {RE}, D := [O, arctan( —— ) ) and let the matrix A(J) € R¥*
be defined as in example [ Then the mapping

¢:Cx D =Gy, (K,0) = K(A(0)),

is a proper ascending cone mapping, which maps (R’i, ) onto the pointed
k-edged cone

K(A(6)) = cone({Ei(A(é)) lie{1,2,..., k}}), 9)

for each 6 € D.
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Proof: A proof of example 3 is given in appendix [C] |

An instant consequence of theorem and definition [2.2] is the following
corollary, which will be of importance for the algorithm presented in the
next subsection.

Corollary 2.3

Let ¢ : C; x D — Cy be a proper ascending cone mapping defined as in
definition let K € C; and (6;)ien be a strictly monotonically increas-
ing sequence in D then the sequence of multiobjective optimization problems
(PC(K,(Si))iGN with identical objective maps and feasible sets results in a de-
scending sequence of efficient fronts (€(Pe(k.s,)))ien, i-€.

EPeik ) 2 E(Pe(is,4)) for alli € N.
Proof:  Follows directly by theorem [2.1] and definition 22} -

Now we can present our new definition of robustness.

Definition 2.4 (Cone robust efficiency)

Let be a multiobjective optimization problem induced by a cone K € Cy
let ¢ : C; x D — Cy be a proper ascending cone mapping and let 6 € D hold
true. A solution 2 € X of Pk then is called a cone robust efficient solution
w.r.t. the pair (c,8) iff 2° is an efficient solution w.r.t. ¢(K,8) of Pe(k.s),
i.e. if 20 € Sc(k,5), where Se(x 5y 1s called the cone robust efficient set w.r.t.

(c,0) of Pk.

Given an ascending cone mapping ¢ we also define a mapping which assigns
a maximal degree of resistance capability against perturbations within the
ordering relation inducing cone K to efficient solutions.

Definition 2.5 (Cone robustness degree)

Let[Pg] be a multiobjective optimization problem induced by the cone K € Cy,
let ¢ : C; x D — Cqy be a proper ascending cone mapping, let F C Sk be a
set of efficient solutions of Px and let 2° € F. Then is the cone robustness
degree of 2% with respect to the pair (F,c) given by

CRD%(2") = sup{6€D | fxeF: f(x) <cwks f(z°)}

We gave this new robustness measure the name cone robustness degree since,
to put it crudely, it yields for each efficient solution 2° € F C Sk out of a
set of efficient solutions a degree one can perturb the cone K w.r.t c, s.t.
this solution does not become dominated. The following examples continue
example [1] and [3| and will illustrate this last definition on the basis of the
statements presented in corollary [I.18]
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Example 4

Given the proper ascending cone mapping ¢ : C; X D — Cy, let be a
multiobjective optimization problem induced by a cone K € Cy, let 2%,z €
Sk and let § € D hold true. Now the cone robustness degree of 2" w.r.t.
(c,Sk) is a degree one can perturb the cone K w.r.t ¢, s.t. this solution
stays efficient in the sense of equation of corollary or as long as
it stays undominated by another solution & € X in the sense of equation
@ of corollary respectively. Figure 4| gives us a visual illustration of
the cone robustness degree with respect to the ascending cone mapping ¢ of
example [3] for a two-dimensional objective space. As can be seen here, our
ascending cone mapping ¢ is chosen in such a manner, that it yields for each
Edgeworth-Pareto efficient solution a cone robustness degree which displays
the actual angle, we are tilting the edges of the Edgeworth-Pareto cone. In
the following example we will prove this assertion.

fo(2) fa(z)

fi(z) fi(x)

Figure 4: Illustration of CRD§ (2°) = ¢ in the sense of (left) and (7))
(right)

Example 5

Let the matrix A(J) € R*¥** be defined as in example [1| and the ascending
cone mapping ¢ : C; X D — Cy as in example [3] Let e;(d) be the i-th edge
of the k-edged cone K(A())), defined as in example (1| for all § € D and
i € {1,2,...,k}. Then the vectors €'(0) or €'(d) are positively spanning
the i-th edge of the polyhedral cone ¢(R%,0) = R or ¢(R%,§) = K(A(9))
respectively, for § € D,i € {1,2,...,k}, as proven in example [I Those
vectors have an included angle of ¢ and lie on the plane spanned by the i-th
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unit vector 4; and the vector v; := ) i1, i; containing ones in each objective
i

except in the i-th objective stands a 0. Le. €(0),e'(d) € lin({i;,v;}) for all
deDandie{l,2... k}.

Figure |5 and @ depict how the edges of the cone R? tilt in the three-
dimensional case for our example. Figure[5|shows the Edgeworth-Pareto cone
R? and figure @ the opened cone ¢(R?%, §) with perturbation factor § = 0.3. In
figure[5]the yellow snippet of a plane visualizes the plane spanned by i3 and vs
and the red, green or blue snippets depict the intersection of E(Ri, 0.3) with
the hyperplane induced by the first, second or third row vector of A(0.3) re-
spectively, which are exactly the so called facets whose union is the boundary
of the 3-edged cone K(A(0.3)) (see e.g. [27]).

Proof: Since for all § € D and i € {1,2,...,k},
61(0> = Zz and 62(6) = Zz

holds true, we gain ¢*(0), ¢'(8) € lin({i;,v;}) foralld € Dandi € {1,2,...,k}.
To prove that the included angle of the vectors €’(0) and €'(§) equals §, we
use the following property of the scalar product. For two vectors u,v € R”,

(u, v) = cos(@)|ul[[] (10)

holds true, with ¢ being the included angle of u and v (see e.g. [25]). The
following equation is true for all § € R (see e.g. [10])).

cos?(8) + sin*(9) = 1

<% (1+tan?(0)) cos®(§) =1

tan= sin

1
= 0=
¢ (0)=is, () (€(0),€(d))
«):> cos(d) = ——————.
[e?(0)[I[e*(d) |
Thus with follows the assertion. [ ]
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E(R3.,0.3)

Figure 6: Opened cone ¢(R?,0.3).
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In the following subsection we will apply the ascending cone mapping ¢ of the
examples above within an evolutionary algorithm. This algorithm is devel-
oped to evolve a well spread population of solutions which are led towards a
predefined cone robust efficient part of the efficient front, with an a posteriori
assignment of the actual cone robustness degree.

2.1 Computational Methods

Within this section, we confine ourselves onto the following class of mul-
tiobjective optimization problems induced by a closed, convex, proper and
pointed cone K in R*.

Pr m}gnf(:c) st. zed,

with objective map f : R® — R* [ € N and feasible set X := {x €
R"| g;(x) < 0,Vi € {1,2,...,1}}, with inequality constraint functions
gi:R"—= Rforallie{l,2,...,0}.

The restriction of the feasible set onto sets defined through [ € N inequal-
ity constraints is necessary since the algorithms presented in this section are
working with a so called constraint violation comparator, described in detail
in section [2.1.1] Moreover the confinement of the objective function f onto
functions with domain R™ is mathematically necessary due to the usage of
the crowding distance assignment within our algorithms, e.g. presented in
[2]. We will give a more detailed explanation for those two required restric-
tions when the triggering tools, i.e. the constraint violation comparator and
the crowding distance assignment, are introduced in detail in section [2.1.1]

In the introduction part of this thesis we have already presented the ad-
vantages evolutionary algorithms bring along in comparison with most of
the conventional methods of solving multiobjective optimization problems.
In this subsection we will use the results from above to develop an evolu-
tionary algorithm searching for cone robust efficient solutions based on the
non-dominated sorting based genetic algorithm II, NSGA-II (see e.g. [2]),
whose procedure is presented in figure

Here P, denotes the parent population, O; the offspring population and R;
their union of the t-th generation. For ¢ € N, F; denotes the ¢-th non-
dominated front.
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Non-dominated Crowding

sorting distance
sorting
7 [ - -
P, 7 |- ------- -
F3
[ P 1
— /‘
O¢ )
<+ Rejected
[

Ry

Figure 7: Procedure of NSGA-II, [2].

Non-dominated sorting is a highly efficient ranking scheme which is very
popular in the field of population-based algorithms [40]. Given a multiobjec-
tive optimization problem Py with feasible set X C R", the non-dominated
sorting algorithm assigns to each solution x € P of a given set of solutions
P C X, which as well is called a population of solutions, a rank based on the
number of solutions z € P\ {z} dominating the given solution z. This yields
a set of disjunct subsets {]—"Z- CP|FNF; =0,Yi+#3j,i,j¢€ {1,2,...,l}}
of P, for some [ € N, where F; contains exactly those solutions with rank
1. lLe. x € Pisin F; iff x and Z are incomparable w.r.t. K to each other,
for all & € F; and there exist exactly i solutions z € P with f(Z) <x f(x).
In accepted usage non-dominated sorting works with the usual Edgeworth-
Pareto cone, for our purposes though, we will be using some arbitrary closed,
convex, proper and pointed cone K € K*.

Crowding distance sorting ranks the underlying solutions in accordance to
their distribution in the objective space, therefor to each solution a value is
assigned to, the so called crowding distance. This approach prevents the al-
gorithm from getting stuck in local minima and guarantees a well distributed
approximation of the efficient front as outcome of the NSGA-II. The proce-
dure of the crowding distance assignment is explained in the next section in
more detail.
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2.1.1 Cone Robustness Based Evolutionary Algorithm (CREA)

Given a multiobjective optimization problem Py suffering under perturba-
tions within K, represented by a proper ascending cone mapping ¢ : C; x D —
Cy, the cone robustness based evolutionary algorithm CREA has two main
tasks. First, evolve a population of well spread solutions which cover a re-
gion of the undisturbed efficient set S w.r.t. K that is cone robust efficient
w.r.t. (c,d) for some predefined perturbation factor § € D. Secondly, as-
signing each so found solution its cone robustness degree. For the first step
the algorithm uses the two parameters 6 € D and 7 € [0, 1], where § is
the perturbation factor of our cone K defining the area towards which our
population evolves to and 7 is a threshold ensuring a proper diversity of the
population, as presented in detail later in algorithm [I} For the second step
we have to choose the parameter o € R, defining the step size of a proper
monotonically increasing sequence of perturbation factors (9;);en in order to
assign a cone robustness degree to each of the found solutions. Algorithm
presents this process in detail and also explains the terminology of step size
and properness.

In the following we assume a population size of N € N for our parent and off-
spring populations, denoted as P, and Oy, respectively, i.e. |P| = N = |Oy].
Let R; := P, U O, be their union, at any generation t € N, such as let e € N
be a counter for the current amount of evaluations of the objective function
f of Px and M € N the maximal amount of such evaluations, defining the
limit of generations CREA is running for.

Algorithm [I| presents a framework for the creation of a new parent popu-
lation within CREA. This procedure is oriented on the Proper Knee Based
Evolutionary Algorithm (PKEA) presented by P. K. Shukla, M. A. Braun and
H. Schmeck in [36] in 2013. The PKEA is developed to find proper knee re-
gions, a part of the efficient front with good properties, more precisely which
contains solutions below a user-defined threshold metric. Algorithm 1 ori-
entates on the procedure used in PKEA to generate a new parent population
while adjusting the level of diversity as well as the level of attraction towards
the knee or robust region respectively via the user-defined threshold 7 € [0, 1].
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Algorithm 1 : Creation of New Parent Population in CREA

Input: Finite set R of at least NV solutions, proper ascending cone
mappingc : C; X D — Cy, original cone K € Cy, perturbation
factor § € D and threshold 7 € [0, 1].

—_

begin

[\

- Perform a non-dominated sorting to R; w.r.t. the original cone K to
identify the different fronts F;,i =1,2,...,1, 1 € N.

-Set j =1 and P = 0.
while [P U F;| < N do
- Assign crowding distance to all elements of F;.
- Replace P by P U F;.
- Replace 7 by 7 + 1.
end

© 0 ~J O Ut = W

- Perform a non-dominated sorting to F; w.r.t. the perturbed cone
¢(K,9) to identify the different fronts Ff,i =1,2,...,m, m € N.

- Add min { [7(N — |P])], |Ff|} arbitrary solutions of F{ to P and
remove them of F;.

1

o

11 - Assign crowding distance to all elements of F;.

12 - Add |N — | P|| solutions of F; to P considering their crowding
distance values.

13 end
Output: New parent set P.

[\

Here the function [-] used in line 10 of the algorithm is the common ceil
function [z] := min {n € Z | n > x}, returning the smallest following integer
for each real number. The crowding distances are already assigned in line 5,
due to the fact that some of the selection mechanisms allowed in CREA work
with crowding distance values as well. Note that the threshold 7 controls how
strong the population is driven towards the cone robust efficient set w.r.t.
(c,0) as well as it controls the diversity within this population. Especially a
choice of the extremal values for 7 will reflect this statement. I.e. a choice
of 7 = 0 leads towards a search of the complete efficient front £(Py) as the
minimum in line 10 of algorithm [1] will become zero. A choice of 7 = 1 will
result in a low diversity of the found population since the algorithm runs
without any or little consideration of the crowding distance as }N —|P H in
line 12 will become zero, if the cardinality |FY| of the first non-dominated set
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w.r.t. ¢(K,6) is at least |N — |P|| in line 10. A choice of 7 within between
those two extremal values on the other hand, e.g. 7 = 0.5, should result
in a well spread population driven towards the part of the efficient set S,
which is cone robust efficient w.r.t. (c,d). In order to assign the crowding
distance to each element of F; in line 5 and 11 of algorithm [1| we use the
crowding distance assignment of the NSGA-II, whose framework is depicted
in algorithm [2| and which is described more in more detail in [2].

Algorithm 2 : Crowding Distance Assignment of [2]
Input: Set F of [ solutions

1 begin

2 - for each i, set Fli]gistance = 0 initialize distance

3 - for each objective m

4 F =sort(F,m) sort after objective value

5  Fllaistance = Fllldistance = 00 so that boundary points are
always selected

6 fori=2to(I—1) for all other points

T Flilaist = Flilais+ TRl L maie)

8 end

Here, F[i].m refers to the m-th objective map value of the i-th individual in
the set F and the parameters f7% and f™" are the maximum and minimum
values of the m-th objective map. For a more detailed explanation, we refer
to its source [2].

Algorithm 3| shows a framework for the assignment process of the cone ro-
bustness degree used in CREA.
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Algorithm 3 : Assignment of the Cone Robustness Degree in CREA

Input: Solution set F7, proper ascending cone mapping ¢ : C; x D — Cs
original cone K € C; and step size 0 € R,

1 begin

2 -Set i,i,l=1,0=0, F =F, F, =F and Ly = 0.

3 while §;, + o <sup{d|d € D} do

4 while |Ff| = |F,| and §;,+ 0 <sup{d|d € D} do

5 - Replace 6; by 6; + 0.

6 - Perform a non-dominated sorting to F;, w.r.t. the perturbed
cone ¢(K, ;) to identify the different fronts F7,j =1,2,...,p,

peN.
7 - Replace i by i + 1 and F; by F}.
8 end
- Replace [ by [ 41, i; by 7 and F;, by F;'.
10 - Assign cone robustness degree 9;_; to all solutions in the fronts

Fy, forall j € {2,3,...,p} and set Ly = F;,_, \ Fi, = U, FY-
11  end
12 - Assign cone robustness degree d; to all solutions in FY.
13 end

Note that within the assignment process of the cone robustness degree of
algorithm (3| the monotonically increasing sequence (6;);eny C R with step size
o is generated in line 2, 5 and 7, more precisely ;.1 = d; + 0. This sequence
is proper in the sense of being a monotonically increasing non-negative se-
quence of perturbation factors (9;);en € Ry, with §; = 0. Simultaneously
the sequence of solution sets (F;);en C F is generated in line 2 and 7. This
sequence contains the non-dominated solutions w.r.t. ¢(K,d;) of F;, in each
iteration ¢ € N of the inner loop. The subsequence (F;,)ieny C Fi of (F})ien
generated in line 2 and 9 is a strictly decreasing sequence of solution sets,
ie. Fj,, CJF for each iteration [ € N of the outer loop. Notice, that the
sequence (F;,)en is decreasing is a direct consequence of the first stopping
criterion of the inner loop and corollary of section [2] when the sequence

of multiobjective optimization problems regarded there is given through

’PC(K’&) : minC(Kygi)idk st. T € El,

for i,/ € N. In line 9 of algorithm |3| we are removing the already dominated
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solutions U?:z F} out of the set of currently regarded solutions F;, in order
to save the computational effort which would be necessary to perform a
non-dominated sorting on the larger set ;. That this removal of already
dominated solutions out of the currently regarded set does not have any
impact on the cone robustness degree of a still non-dominated solution is
proven in appendix [D]

Thus, given a set of efficient solutions JFi, algorithm [3] assigns the best ap-
proximation of its actual cone robustness degree CRD% () possible under
the given step size to each obtained efficient solution 2° € F; of Px w.r.t.
K ie.

0 < CRD%, (2°) =6 < o, (11)

where ¢ is the cone robustness degree assigned to 2° in line 10. Therefor does
the assigned cone robustness degree ¢ of 2 converge towards the true cone
robustness degree CRD% (z°) as the step size o converges towards 0. Note
that none of the above mentioned sequences are infinite, due to the fact that
we have a proper ascending cone mapping with restricted domain. Hence it
would be correct to change the domains N of the sequences to restricted ones
{1,2,...,m},m € N as well. We did not do this in the interest of clarity and
we will leave it to the interested reader to assign the appropriate maxima
m, since these maxima are not of any importance for our above presented
convergence deliberations. From here on we will refer to the set of solutions
L; as the cone robustness level [, due to the fact that it contains the solutions
to whom algorithm |3[ assigns a cone robustness degree in line 10 in the [-th
iteration of the outer loop. Note that the higher the cone robustness level
[ € N a solution 2° € L; is in, the higher is its assigned cone robustness
degree. In order to allow the decision maker to plot each cone robustness
level separately or as a whole together with an assigned legend, algorithm
as well creates external data in line 10 and 12 storing the assigned cone
robustness degree and objective function values of all solutions within the
current level, for each iteration of the outer loop.

Now we are able to present the complete framework of CREA in algorithm [
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Algorithm 4 : CREA

1
2

3
4
5

co 3 O

10
11

12
13

Input: Multiobjective optimization problem Py induced by K € C;,
population size N € N, maximal amount of evaluations M € N, proper
ascending cone mapping ¢ : C; x D — Cy, step size 0 € R, perturbation
factor § € D and threshold 7 € [0, 1]. Appropriate selection, mutation
and crossover operators.

begin
- Generate a parent population P, of N random solutions z; € R* and
evaluate them.
- Set generation counter t = 1 and evaluation counter e = N.
while e < M do
- Generate offspring population O, of min{ N, M — e} solutions
using the selection, mutation and crossover operators.
- Evaluate O; and set e = e + min{ N, M — e}.
- Set Ry = P, U O;.
- Perform algorithm [1I] with input Ry, ¢, K, §, 7 and output P of
the new parent population.
-Set P,=Pandt=1¢-+1.
end
- Perform a non-dominated sorting to P, w.r.t. the original cone K to
identify the different fronts F;,i =1,2,...,1, 1 € N.
- Perform algorithm 3 with input Fi,c¢, K and o.
end

Output: Approximation of a region of the efficient set F; that covers
Sc(Kk,5), is distributed w.r.t. 7 and has assigned cone robustness degrees
for all solutions x € Fj.

Here the selection, mutation and crossover operators which are used in line
5 to create a new offspring population are to be chosen out of the usual
techniques used in NSGA-II which are applicable to select, modify and create
solutions of a multiobjective optimization problem Pg. For a more detailed
explanation of their functionality we recommend [7]. Note, that the non-
dominated sorting algorithm used in line 8, 11 and 12 as well as the selection
mechanism used in line 5 of CREA, takes care of violated constraints as well,
whenever comparing two solutions. I.e. there exists a so called constraint
violation comparator, which checks for feasibility of both solutions before
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checking weather one solution & € R” dominates another z € R”, i.e. if 2,7 €
X :={zeRF|g(x) >0,Vie{l,2,...,l}} or not. If one solution is feasible
and the other one not, the feasible one is preferred. If both are infeasible
the constraint violation comparator prefers the solution with smaller overall

, for a solution x €

constraint violation, which is defined to be ‘Zé:l gi(x)
RE\ X. Though if the for most problems stochastically very unlikely but
possible case that ‘22:1 gz(j)‘ = ‘22:1 gl(i)’ holds true, the solutions & and
Z are incomparable w.r.t. the constraint violation comparator. Hence it is
possible that there exists an index ¢ s.t. the front F; contains two infeasible
solutions z,z € R™ \ X or more. Thus it is necessary to restrict ourselves
onto problems having objective functions with domain R™ due to the fact,
that the crowding distance assignment used in line 8 of algorithm [4] needs to
calculate the objective function values of each solution handed in (see e.g.

21).

2.1.2 Simulation Results

For our simulations we have been working with Metaheuristic Algorithms
in Java or short |jMetal [9], an object-oriented Java-based framework for
multiobjective optimization with metaheuristics. This complex framework
provides a whole bunch of completely implemented evolutionary and popula-
tion based algorithms with their common and helpful components necessary
for multiobjective evolutionary algorithms, such as evaluation and selection
mechanisms as well as ranking, crossover and mutation methods. As part
of this thesis we have extended version 4.5 of the jMetal framework by the
Cone Robustness Based Evolutionary Algorithm and tested it on various test
problems, including the ZDT problem family [46]. This family is composed of
six carefully chosen multiobjective test problems containing features known
to cause difficulties in the evolutionary optimzation process, such as multi-
modality and deception.

In order to test the CREA we have injected each test problem with pertur-
bations within the cone K € K*, defining the ordering relation <x on R¥
used in our optimization problem as in definition [I.5] Therefore we have
been working with the proper ascending cone mapping ¢ of example [3| which
maps (R¥,4) onto the polyhedral cone K(A(d)), where A(5) € R¥* is the
matrix primarily introduced in example [ Notice that all methaheuristics
presented in the jMetal framework only work with the strict partial or-
der <+ induced by the Edgeworth-Pareto cone Rﬁ, hence they are imple-
mented to find Edgeworth-Pareto optimal solutions only. We have extended
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the jMetal framework by the DegreeDominanceComparator class, represent-
ing the strict partial order < R(5) induced by the pointed polyhedral cone

K(0) = K (A(5%g0)) of example |If with domain in arc degrees instead of
radians. Doing so, we have presented the basic module enhancing all al-
gorithms presented in jMetal in such a manner, that they become able to
search for the efficient front w.r.t. K (0) of any multiobjective optimization
problem P s induced by K(é) The DegreeDominanceComparator class is
explained more detailed in appendix [E] which contains a descriptive list of
all classes and interfaces implemented in order to include the new metha-
heuristics presented in this thesis, into the jMetal framework.

Since the transformation from radians into arc degrees does not interfere with
any of the proofs given in example [I} [3 or [5] the mapping ¢ defined as

¢: CixD—Cy (RE,G) s c(RE, %5) = K(6), (12)
with D := [O, % arctan (ﬁ)), is a proper ascending cone mapping as

well. We choose arc degrees over radians for our perturbation factor d in
order to keep it more vivid in the following simulation runs, especially when
choosing small step sizes o.

We have tested the CREA methaheuristic on each presented test problem and
each presented adjustment of parameters for 30 simulation runs. For all
problems solved we used a population of size N = 300 and a maximum
of evaluations M = 300000. Hence the algorithm was running for 1000
generations. Furthermore we chose the simulated binary crossover (SBX)
with distribution index 20, a crossover probability of 90%, the polynomial
mutation operator with a probability of 50% and distribution index 20 and
the binary tournament selection as selection operator to produce the offspring
population in each generation(, see e.g. [7] for detailed descriptions).

The following examples are representative outcomes of these test runs, which
mirror the properties the CREA possesses. The computer used for this eval-
uation has an Intel Core i5-3320M CPU with 2.6 GHz and 8 GiB installed
memory as well as Windows 8 Pro N as operating system on a guest virtual
machine whose host operating system is Ubuntu 14.04 LTS. The compact
disc enclosed with this diploma thesis contains the implementation of the
CREA integrated in the jMetal framework.

We have also implemented the macroinstruction plotConeRobustnessDegree
enabling the decision maker to plot the outcome of a CREA run on a multidi-
mensional optimization problem with two-dimensional objective space. It is

37



written in IXTEX under the usage of the TikZ and pgfplots packages [42],
[15] and the file Plot _CREA.tex attached to the compact disk which is en-
closed with this diploma thesis contains the instruction and a description
within the comments (as well as an alpha version of the same macro able to
plot three-dimensional outputs of the CREA).

For a presentation of such a produced vector graphic and a first simulation
result, let us have a look back on example [2| depicted on figure |3l We have
tested the CREA methaheuristic on example [2| with a step size 0 = 1°, a
perturbation factor 6 = 20° and a threshold 7 = 0 as a first and 7 = 1.0
as a second adjustment of parameters. Remember that the choice of 7 =0
results in a search for the whole Edgeworth-Pareto optimal front with an a
posteriori assignment of the cone robustness degree. The choice of 7 = 1.0
results in a search attracted towards that part of the Edgeworth-Pareto op-
timal front which is cone robust efficient w.r.t. (¢, 20°), though without
any consideration of the crowding distance, as discussed after algorithm
Note that the domain D of the ascending cone mapping ¢ used within our
implementations equals the half-opened interval [0,45°) for k = 2. A rep-
resentative outcome of the CREA on those parameter settings under usage of
our plotConeRobustnessDegree macro is presented in figure .
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Figure 8: CREA on example [ with 7 = 0 (left) and 7 = 0.5 (right)

As you can see in figure |8 the algorithm works as expected with the values 0
and 1.0 for our threshold 7 on the test problem of example 2] For the second
parameter setting depicted on the right, the part of the Edgeworth-Pareto
optimal front was found, which has a cone robustness degree of at least 20°,
though there is a very low diversity due to the extremal choice of 6 = 1. The
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left of figure |8 depicts the whole Edgeworth-Pareto optimal front with cone
robustness degree values between (0° and 44° assigned, where the assigned
maximal cone robustness degree is 44° and not 45° due to the chosen step
size of 0 = 1° and the convergence deliberations presented after algorithm
in equation ([11]). The following simulation results will depict those delib-
erations as the assigned cone robustness degree converges towards 45° if the
chosen step size converges towards 0°. Furthermore, they will show that a
lower choice of the threshold 7, leads to a higher diversity within the found
set of efficient solutions.

Next we will present the results of the CREA simulation runs on the ZDT
problem family introduced in [46]. On the figures to follow, which depict
these results, the reference Edgeworth-Pareto optimal fronts provided on the
jMetal homepage [10] are depicted in gray. We will start with the test
problem ZDT1 presented in the next example.

Example 6
For n € N, the test problem ZDT1 is given through
I
Prk : min po s.t. x€|0,1]",

with g(x) := 1+ 9%

Figure 9] depicts a representative output of the runs on example [6] with n =
30, a threshold 7 = 0.5 and a perturbation factor § = 40°, a step size ¢ = 1°
as a first and o = 0.1° as a second adjustment of parameters.

Cone Robustness Degree
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Figure 9: CREA on ZDT1, with 0 = 1° (left) and o = 0.1° (right)
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Note, the left subfigure was not plotted via the plotConeRobustnessDegree
instruction but each of the five cone robustness levels separately in order
to depict the increasing accuracy of the cone robustness degree assignment
under a decreasing step size o clearly. In the representative run depicted
on the left of figure [9] five cone robustness levels where found with minimal
distance of 1° and on the run depicted on the right, 50 cone robustness levels
with minimal distance of 0.1° where found. The next parameter setting on
the example to follow reflects the two previous results but as well shows the
importance of the included diversity mechanism of CREA.

Example 7
For n € N, the test problem ZDT2 has the following form.

x
. 2 n
Py : ming ( )(1_<;(E;)> ) st. zel0,1]"
with g(z) :=1+ 9%

Figure [10] depicts a representative run on example [7] with n = 30, a pertur-
bation factor 6 = 28.5°, a threshold 7 = 0 and step size ¢ = 1° on a first and
7 =0.5 and 0 = 0.1° on a second adjustment of parameters.
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Figure 10: CREA on ZDT2, with 7 = 0 and ¢ = 1° (left) and 7 = 0.5 and
o = 0.1° (right)

Because of the concave form of the efficient front of ZDT?2 the solutions with
the maximal assigned cone robustness degree are the ones with objective
values (1,0) and (0,1), as you can see on the left subfigure where we were
searching for the whole Edgeworth-Pareto optimal front. In the second pa-
rameter adjustment we are searching for the solutions with cone robustness
degree of at least 28.5°. Note that this part of the efficient front is separated
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from the two solutions with maximal cone robustness degree. Though, CREA
is able to find these separated solutions, thanks to the diversity mechanism
provided through the crowding distance assignment in algorithm [1| and an
appropriate threshold setting of 7 = 0.5 ensuring a search for a well spread
population directed towards the cone robust efficient set SE(R'J? 28.50), as de-
picted on the right of figure [I0] The next adjustment of parameters on the
last test problem of the ZDT family will underline this result.

Example 8
The test problem ZDT3 has the following form.

T
Pr: ming o) (1_ L—Lsin(l(hrxl)) st. xel0,1)",

9(z)  g(x)

with g(z) :=1+ 9%

Figure [11] depicts a representative output for the runs of CREA on example
with n = 30, a step size 0 = 0.5° a threshold 7 = 0 as a first adjustment
of parameters and 7 = 0 such as perturbation factor 6 = 5° as a second and
0 = 20° as a third parameter setting.
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Figure 11: CREA on ZDT3 with 7 = 0(left), § = 5° and ¢ = 20°(right)

On the left of figure (11| one can see the output of a search for the whole effi-
cient front S of ZDT3 with assigned cone robustness degrees, i.e. the output
of the first adjustment of parameters. The right part of figure 11| depicts the
obtained parts of the efficient front found for the second and third adjust-
ment of parameters, which visualizes how the found front reduces towards
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the cone robust efficient part our search is directed to, as the perturbation
factor § increases.

2.2 Conclusions

In this section we have developed a new definition of robustness for mul-
tiobjective optimization problems suffering under perturbations within the
ordering inducing cone. In particular, we provide the definitions of an as-
cending cone mapping, of cone robust efficiency as well as the cone robustness
degree measuring the maximal capability a solution stays undominated un-
der perturbations of the ordering relation inducing cone. We have presented
an evolutionary algorithm able to search for such robust efficient solutions as
well as assigning each found solution its degree of robustness. Hence we have
provided the powerful tool to solve black-box problems in such an order that
a decision maker is able to find a set of efficient solutions robust under some
level of uncertainties concerning the future preferences. As well, an assigned
robustness degree gives him the possibility to estimate the risks lying within
even higher perturbations.

Our work leaves many avenues for further research. First a deeper analysis
of the cone robustness efficiency is desirable in order to prove analytically
which part of a regarded efficient front is cone robust efficient w.r.t. the given
ascending cone mapping setting. Such an analysis strongly depends on the
currently regarded ascending cone mapping in connection with the shape and
in especially the slope of the actual efficient front regarded. This topic was
not addressed in this thesis, as our main focus was lying on a presentation of
a general introduction into the theory of cone robustness rather than spec-
ifying too deeply on one single ascending cone mapping. A second aspect
of future studies could be an integration of the cone robust efficiency tools
within other evolutionary algorithms. The first step in this direction is al-
ready given through the implementation of the strict partial order < &) and
the assignment process of the cone robustness degree presented in algorithm
Hence, simply exchanging the strict partial order =Rk induced by the

Edgeworth-Pareto cone R’j through < &) within other methaheuristics, will
lead to evolutionary algorithms able to find cone robust efficient fronts. The
inclusion of algorithm |3 into other methaheuristics will allow an assignment
of cone robustness degrees or could be used in a ranking scheme applicable
for arbitrary selection mechanisms. Also a deeper study of the Cone Robust-
ness Evolutionary Algorithm himself with other ascending cone mappings
than the one regarded here is of high interest. We have already implemented
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an alpha version of such an extension for the CREA by providing the tools
for opening each edge E;(d) of the regarded cone K(A(J)) of example [1] up
to an individual maximum ¢; € D for all ¢ € {1,2,...,k} during the cone
robustness assignment process of algorithm This is implemented in the
CREA2 class, in the main class of which the user can give a double vector as
input parameter to the constructor of the extended version CREA2 instead of
a single double value as given to CREA. Furthermore it is possible to extend
the domain D of the implemented ascending cone mapping ¢ (presented in
(12))) through regarding negative values for ¢ as well, as the proof of example
[ shows.

3 Uncertain Optimization Problems

If not denoted differently, throughout this section let K € K be a proper
closed and convex cone in R¥. Hence together with corollary it follows,
that the binary relation <g on R* induced by K is a pre-order.

We are going to present a special class of multiobjective optimization prob-
lems Pk (U) which is infected with uncertainties concerning the objective
map. These uncertainties are represented through an uncertainty set U con-
sisting out of possible scenarios £ € U. Uncertain multiobjective optimization
problems are very likely to occur in real world applications. For example,
consider to buy a new car and you prefer the car with the highest comfort
and lowest energy cost for the cheapest price. The last two objectives un-
derlie the uncertainties of unknown future oil or electricity prices and what
tax benefits you might get for owning an eco-friendly car, as you have to de-
cide between gas or electricity drive [I7]. Another example is given through
finding an optimal traffic light circuit for a student city, where the decision
maker has to analyze the geographic location and amount of possible cyclists,
pedestrians, public transport and motorists and maybe even includes rush
hour times into his calculations in order to adapt the circuit based on these
results. Here uncertainties are likely to occur in all of the given parameters
as students often change their residence, their means of transportation and
also vary in their daily routine times, which leads to unpredictable traffic
conditions.

An uncertain multiobjective optimization problem Pk (U) can analogously
be formulated as a set-valued optimization problem. Thus in section we
are going to introduce various ordering relations used in set optimization
which represent the decision makers preferences and risk-taking propensity.
These ordering relations will then lead us to robustness definitions for our
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uncertain multiobjective optimization problem in section In section
we will present an evolutionary algorithm able to run on a special class of
set-valued optimization problems or uncertain multiobjective optimization
problems respectively. We will shortly explain the basic modules necessary
for the implementation of this algorithm in section and will present
some numerical results in low dimensions in section [3.3.3

As already stated in the literature review of this thesis, concerning the defi-
nitions within this section we will primarily orientate ourselves on the disser-
tation of J. Ide [17] from 2014, especially the paper [19] of Ide et al. covering
the relationships between multi-objective robustness concepts and set-valued
optimization was of importance. For the field of multiobjective set-valued
optimization problems and the ordering relations stated here, we mainly ori-
entated ourselves on the paper [24] of J. Jahn from 2010 where he introduced
various new binary relations on power sets, nevertheless we will refer to other
sources, if existent.

First we will need the definition of an uncertain multiobjective optimization
problem, where the uncertain input data contaminates the formulation of a
multiobjective optimization problem.

Definition 3.1

An uncertain multiobjective optimization problem P (U) induced by K
is given as the family (Pk(£),€ € U) of multidimensional optimization
problems induced by K, with

Pr(&): mingf(z,§) st x€X,

where U C R™ is the uncertainty set consisting out of scenarios & € U,
f: X xU — RF is the objective function, X C R" represents the feasible
set as usual and P (§) is an instance of Pg(U).

And given P (U) we define the set of objective values of x as

fula) = {f(z,€): £€ U} CR".

In the following we will only regard uncertain multiobjective optimization
problems Pg(U) with non-empty uncertainty set U in order to gain non-
empty sets of objective values fy(z) in Z(RF) for all x € X. An uncertain
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optimization problem Pg(U) can as well be written down as a set-valued
optimization problem SP[UO which will be shown in the next subsection.

3.1 Set-Valued Optimization

Within this thesis we will regard set-valued optimization problems of the
following form.

Definition 3.2
Let < be a pre-order on the power set 2(RF) of R¥, then the multiob-
jective set-valued optimization problem induced by < is given by

SP<: min F(x) st zxzeX,

where F : X — P(R¥) is called a set-valued objective map and is also de-
noted as F': X = R*, X C R is the feasible set and F(X) =, ., F(x)
is the objective space of SP4.

TeEX

We will also need a special class of set-valued optimization problems, to which
we will refer to as parametrized set-valued optimization problem.

Definition 3.3
Let < be a pre-order on the power set 22(R*) of R*, then the parametrized
multiobjective set-valued optimization problem induced by < s given by

SPS: min F(z) st x€X,
where the set-valued objective map
F:X— PR, v {p& cR| €S}

is described by a parametrized objective function p : X x S — RF, with
parameter set S C R™ containing all parameters £ € S of SPi, X CR”
is the feasible set and F(X) = ., F(x) is the objective space of SPi.

reX

Since minimizing on a power set is not totally intuitive, we will have to give
an efficiency definition for mutliobjective set-valued optimization problems
as well.

Definition 3.4 (Efficiency)
Let < be a pre-order on P (RF) and let SP< be the multiobjective set-valued
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optimization problem induced by <, then 2° € X is called an efficient solution
w.r.t. X of SP< iff

F(z) < F(2°) for somexz € X = F(2°) < F(x).

The efficient set of SP is denoted by S := {x € X |z is efficient w.r.t. <}
and the efficient front of SP< then is defined to be E(SPL) = J,es. ().

Notice that there exist a lot of different solution concepts in set-valued opti-
mization, such as the concepts based on a vector-approach or the ones based
on a lattice-structure. The above given concept based on a set-approach is
probably the most common one and more suitable from a practical point of
view than others (see e.g. [3], [19], [24], [26]). For an overview of the varieties
of existing solution concepts and a deeper insight on the basics of set-valued
optimization in general, we recommend [26].

Given an uncertain optimization problem and a pre-order < on 2 (RF),
the parametrized set-valued optimization problem 8732 with parameter set
S := U, set-valued objective map F'(x) := fy(x) for all z € X and parametrized
objective function p(z,&) := f(z,§) for all x € X and £ € U represents the
uncertain optimization problem P (U) and will be denoted as

SPY: min fy(z) st. z€X. (13)

Notice that the here given pre-order < plays a key role, as it will define our
robustness notion for our uncertain optimization problem Pg (U), as the next
sections will show.

3.1.1 Existing Binary Relations

In the following, the sets A and B are elements of the power set Z2(RF).

In this section we are going to introduce seven existing binary relations on
P (RF) known in the field of set-valued optimization. In order to keep it

more lucid we will present the most common notation, for each relation, in
literature in the header of each definition respectively.

Definition 3.5 (Lower set less order relation "<%.")

A<l B = (WeB JacA:a=xb) <= A+KDB.

Definition 3.6 (Upper set less order relation '<x”)

A<y B <= KMa€eAJdbeB:a=gb) — ACB-K.
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The upper and lower set less order relations have been presented by Kuroiwa
in [30] and [31] and have been subject of study for various mathematicians
since then ([I8], [24], [26]). Figure [12| depicts the first two relations. Note
that in the subfigure (a) A <% B holds true but not A <% B as well as in
subfigure (b) A <% B holds true but not A <k B. Figure |12 (c) shows the
following binary relation on sets, which can be described through the previous
two and has been introduced independently by Young [45] and Nishnianidze
[34].

Definition 3.7 (Set less order relation '<x5.”)

A5 B = A% B and A<% B.

Figure 12: Lower, upper set less order relation and set less order relation

A much stronger binary relation is given through the ’certainly less’ relation,
which was introduced by Chiriaev and Walster in [5] and is depicted in figure

(a).

Definition 3.8 (Certainly less order relation <5 )

Ay B <= (A=B) or (Va€A VbeB: a=ghb).

The following three order relations were primarily introduced by Jahn and
Ha in [24] in 2010. Since they are working with the minimal and maximal
elements w.r.t. K of the sets to compare, from now on it holds true that
ABe M :={Aec PR | ming A+#0, maxxg A # 0}, where ming A or
maxg A are the efficient front w.r.t. K of the multiobjective optimization
problem Py with feasible set X := A and objective map f := id* or f := —id*
respectively.

Definition 3.9 (Minmax less order relation '<x7" )
A<LT B <= minA<5 minB and maxA <} maxDB.
K I K e K K %G

47



Figure 13: Certainly and minmax less order relation

Definition 3.10 (Minmax certainly less order relation "¢ )

ALEB = (A=DB) or
(A # B, mI}nAﬁﬁ(m[%nB and m}z{xxA<%m}e{mxB).

Definition 3.11 (Minmax certainly nondominated order relation """ )

AP"B <= (A=B) or (A#B, m}é{iXAﬁ‘;(mI}nB).

Figure [14] depicts the last two order relations regarded in this thesis. Note
that there exists no equality between the certainly less order relation <9 and
the minmax certainly nondominated order relation <" as you can see on

the right subfigure.

min B = max A |
|

(b) A<K" B & (A% B)

Figure 14: Minmax certainly less and nondominated order relation
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The following result is of importance in order to use the concerning binary
relations on set-valued optimization problems as the next section will prove.

Theorem 3.12
Let K € KF be a proper, convex and closed cone in R¥. Then it follows that
the binary relation <X} is a pre-order

(i) on P(R¥), for all x € {l,u,s,c},
(i) on A, for all x € {m,mc,mn}.

Proof:  Assertion (i) is proven in proposition 3.1 and 3.2 of [24] and (ii)
in poposition 3.4 and 3.7 of [24] respectively. [

3.2 Definition of Robustness

From here on and if not denoted differently, whenever we are regarding an
uncertain multiobjective optimization problem Pg(U) or a set-valued opti-
mization problem SP<- , we are going to distinguish between the underlying
pre-order <3}, with x € {l,u,s,¢,m,mec,mn} in the following manner. If
x € {m,mc,mn} holds true, only uncertain optimization problems Pg (U)
are regarded that have the following properties: Their corresponding uncer-
tainty sets U and objective functions f fulfill fy(x) € & for all x € X
and respectively, only set-valued optimzization problems are regarded with
F(z) € A for all x € X.

In [19] of Ide et al. the following three definitions of robustness for our
uncertain optimization problem P (U) were presented.

Definition 3.13 (Definition 6, 7 and 8 of [19])

Given an uncertain multiobjective optimization problem Py (U) a solution
1 € X is e-robust for P (U) iff there exists no other solution z € X\ {z°}
s.t. fu(z) 5 fu(a®), where x € {1, u, s}.

Note that in [I9] the authors were working with an arbitrary linear topologi-
cal space Y partially ordered by a pointed closed convex and not blunt cone
K, instead of the linear space R¥ we confined ourselves to and they extended
the above given robustness definition by allowing to replace K with its blunt
version K \ {0} and its interior int{ K} as well.
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Within the conclusions of [19] (p. 18) the authors state the following as-
sertion we will refer to as assertion (A).

Given one of the three pre-orders <% on P (R*) with * € {u,l, s}, solving
the set-valued optimization problem 8732]}} is equivalent to finding <j,-robust

solutions to the uncertain multiobjective optimization problem P (U).

This assertion in fact is wrong if efficiency for a set-valued optimzation prob-
lem is defined as in definition or definition 4 of [19] respectively, as the
next example will prove.

Example 9

Let us regard the set-valued optimzation problem PguK induced by the upper
set less order relation <% representing an uncertain optimization problem
Pr(U) as in equation , with feasible set X of cardinality 2, i.e. let
X = {z1, 22}, with 1,29 € R". And let fy(z;) — K = fy(z2) — K and
fu(z1) # fu(za) hold true. Then obviously fy(x1) <% fu(ze) as well as
fu(z1) % fu(x2) holds true, as depicted in figure 15| for K := R’L Hence x;
as well as zy are both efficient to 77;]1;{ , though no one of them is <%-robust
for Py (U).

fu(z1)

Ju(z2) i
fulwr) = K=fu(ws) — K |

Figure 15: Illustration of example []

Note that, as done by J. Ide in [I7], by changing the definition of efficiency
for a set-valued optimization problem from definition to the following
alternative, the assertion (A) in [19] obviously becomes true.

Definition 3.14 (of [I7] page 10)
Let =2 be a binary relation on 2(R*) and let SP< be the multiobjective set-
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valued optimization problem induced by =3, then 2° € X is called an efficient
solution to SP= iff there exists no v € X \ {a°} such that F(z) 3 F(a°).

Here J. Ide as well had to change the definition of a set-valued optimization
problem to one induced by an arbitrary binary relation instead of a pre-order,
since replacing the cone K, as annotated after definition [3.13] will change
the properties of the pre-orders used in this definition in such a way, that it
is no pre-order anymore. E.g. regarding the upper set less order relation <%,
changing K to its interior int{ K} will lead to an irreflexive binary relation.

In order to stay consistent with the literature of set-valued optimization
problems we will stick to the prevalent efficiency definition for set-valued
optimization problems. Though, the search for <j.-robust solutions as de-
fined in definition 3.13] with % € {u,l, s}, would now restrict our search
for robust solutions of the uncertain optimization problem in such
a manner, that we wont be able to find solutions as presented in example
Ol This would prevent the decision maker from having the opportunity to
choose out of a broader set of robust solutions. Hence in order to avoid this
restriction and stay consistent with the definition of robustness presented in
[19] as well, we have extended definition to a more general setting.

Definition 3.15 ( Z-robust efficiency )

Given an uncertain multiobjective optimization problem P (U) and an arbi-
trary ordering relation =X on P(RF), a solution 2° € X is called <-robust
efficient for Py (U) iff there exists no other solution v € X \ {2°} s.t.

fo(@) 3 fola).
In order to find the complete efficient set S5 of a set-valued optimization

problem SP. we will need the following definitions of strict partial orders
induced by the pre-orders presented in the last subsection.

Definition 3.16
Let x € {l,u, s,c,m,mec,mn} and A, B € P (RF¥), then the strict partial order
<3 induced by <% on P(RF) is defined as

A<y B <= A=x% B and (B ) A).

Lemma [I.3] directly proves with theorem that <j really is a strict par-
tial order on 2 (R¥) for all * € {l,u, s,c, m, mc,mn}. The following theorem
presents an overview of the connection between uncertain optimization prob-
lems and set-valued optimization.

Theorem 3.17
Let P (U) be an uncertain multiobjective optimization problem, let the set-
valued optimization problem SPZ;{ be defined as in equation for all
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x € {l,u,s,c,m,me,mn} and let 2° € X be a solution of Px(U) and SP#;*
respectively, then the following holds true for all x € {l,u, s, c, m, mec, mn}.

2% is efficient for SPZ*K (14)
= 2" is <} -robust efficient for Px(U) (15)
«— 2 is <} -robust efficient for Pg(U). (16)
Proof: Let x € {l,u,s,c,m,mec,mn}.

(14) <= (15):

2V is efficient for SPZ;(
= Vo e X with fy(z) <G fu(z?) follows fu(2°) <G fu(x)
= e e X: fulr) Sk fo(2°) and ~(fu(2°) <G fu(2))
— Pr e X: fu(x) <% fu(a®)

<= 2 is < -robust efficient.

(15) <= (16):

2% is <7 -robust efficient 2"

= dreX: fu(r) S fol2®)
= fr € X fu(z) Sk fo(2") and ~(fu(a”) <k fo(2))
<= 2" is < -robust efficient z°.

At last we have to give a definition of domination for set-valued optimization
problems in order to describe the algorithms of the next section properly.

Definition 3.18 (Domination)

Let SP<+ be a multiobjective set-valued optimization problem and <} defined
as in definition [3.16, with x € {l,u, s,c,m,mc,mn}. If f(z) <3 f(z) holds
true for two feasible solutions T,x € X, T # x, then the solution x is called
dominated by = w.r.t. <j and synonymously it is said, that T dominates
x w.r.t. <j. If for two arbitrary feasible solutions v,z € X, T # x neither
f(z) <k f(Z) nor f(Z) <k f(x) is fulfilled, they are called incomparable
w.r.t. <} to one another.
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3.3 Computational Methods

As done in subsection [2.1] here again we confine ourselves to a special class
of optimization problems in order to guarantee the functionality of all tools
used in the algorithm to follow.

For = € {l,u,s,c,m,mec,mn} we regard the following class of
parametrized set-valued multiobjective optimization problems.

S_Pi»;( : ming. F(z) st r€X,

with set-valued objective map F : R — 2 (R*), x — {p(z,&) | € S},
parametrized objective function p : R" x S — R¥, parameter set S C R™
and feasible set X := {z € R"|g(z) < 0,Vi € {1,2,...,1}}, with
inequality constraint functions g; : R® — R for all i € {1,2,...,1}.

Here the set-valued objective map F' has the domain R™ in order to guar-
antee the applicability of our crowding distance comparator and the feasible
set X is given through inequality constraints in order to allow the usage of
the constraint violation comparator as described in section [2.1.1]

To our best knowledge, there does not exist any attempt so far on using pop-
ulation based heuristics or evolutionary algorithms in general for solving any
kind of multiobjective set-valued optimization problems or uncertain mul-
tiobjective optimization problems. As part of this diploma thesis we have
extended the open source Java framework jMetal [9] by the set-valued non-
dominated sorting based genetic algorithm II, which is able to run on both
types of optimization problems due to the equivalence presented in theorem
[3.17] This presents an introduction for evolutionary algorithms into the field
of multiobjective set-valued optimization and uncertain multiobjective opti-
mization respectively.

3.3.1 Set-Valued Non-Dominated Sorting Based Genetic Algo-
rithm II (SV-NSGA-II)

From here on we will restrict our formulations on parametrized set-valued
optimization problems in the interest of clarity. Note that all of the results
to follow are as well applicable onto uncertain multiobjective optimization

problems, due to theorem [3.17]
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The SV-NSGA-II has the same basic structure as the NSGA-II [2], but is
able to run on parametrized multiobjective set-valued optimization problems.
This opens a completely new field of application for evolutionary algorithms
on set-valued optimization problems which comes with a bunch of questions
as well as opportunities. Regarding the SV-NSGA-II we had to face the ques-
tion on how to design the basic modules within jMetal in order to generate
a methaheuristic able to run on parametrized set-valued multiobjective opti-
mization problems. Also we had to find a way how to construct the selection
mechanism and the crowding distance assignment and regarding set-valued
optimization problems in general one has to find an applicable and appro-
priate way to model the problems and sample the images of the set-valued
objective function. In the following we are going to elucidate, how we an-
swered those questions and why we chose the way we did.

As handled in section [2.1.1] here again we are assuming a population size
of N € N for our parent population P, and offspring population O, in the
following, i.e. |P| = N = |Oy]. Let R; := P, U O; be their union, at any
generation t € N, such as e € N a counter for the current amount of evalua-
tions of the set-valued objective function F' of S_Pi;( and let M € N be the
maximal amount of evaluations, defining the limit of generations SV-NSGA-IT
is running for.

Given a parametrized multiobjective set-valued optimization problem 873“:;{
with * € {l,u, s, ¢, m, mc, mn}, the SV-NSGA-II is able to search for all effi-
cient solutions of S_Pi;{ in one run. Algorithm || presents its framework.
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Algorithm 5 : SV-NSGA-II

1
2

3
4
)

o N O

9
10
11

12
13
14
15

16

17
18
19

20

Input: Proper closed convex and pointed cone K C R*, pre-order <%
with x € {l, u, s, ¢, m, me, mn}, parametrized multiobjective set-valued
optimization problem 8772;(, amount of sample points s € N popula-
tion size N € N, maximal amount of evaluations M € N, selection,
mutation and crossover operators suitable for SPf x

begin
- Generate a parent population P, of N random solutions and evaluate
them.
- Set generation counter ¢ = 1 and evaluation counter e = N.
while e < M do
- Generate offspring population O, of min{ N, M — e} solutions
using the appropriate selection, mutation and crossover operators.
- Evaluate O; and set e = e + min{ N, M — e}.
- Set Ry = P, U Oy.
- Perform a non-dominated sorting to R; w.r.t. <J to identify the
different fronts F;,i =1,2,...,1, 1l € N.
-Set j =1 and P = 0.
while |PUF;| < N do
- Assign crowding distance to all elements of F; using an
appropriate crowding distance assignment.
- Replace P by P U F;.
- Replace j by j + 1.
end
- Assign crowding distance to all elements of F; using an
appropriate crowding distance assignment.
- Add N — |P| solutions of F; to P considering their assigned
crowding distance values.
-Set bL=Pandt=1t+1.
end
- Perform a non-dominated sorting to P, w.r.t. <j to identify the
different fronts F;,i =1,2,...,1, 1 € N.
end

Output: Approximation of the efficient set S of SPf -
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Note that we do not have to explicitly submit the strict partial order <7
as an input parameter of algorithm [o| since <J is induced by the pre-order
< as presented in definition [3.16l The amount of sample points s € N
submitted as input parameter defines the number of samples to take of the
parameter set S C R™ for each solution z € X, i.e. it defines the discretiza-
tion Sp = {€',€2,...,&%} of S. Thus, this parameter is of importance as it
defines how adequately the image F'(z) is represented and hence how good
the comparison of two solutions under the usage of the chosen cone K and
pre-order <. is approximated. Also it defines the amount of comparisons
necessary in order to test wether one solution x € X dominates another solu-
tion z € X in dependence of the strict partial order <j, we are working with
as described later in section [3.3.3] Hence the choices of parameter s € N as
well as the choice of the pre-order <7 has a high influence on the running
time of the algorithm.

Since the mutation and crossover mechanisms suitable for deterministic mul-
tiobjective optimization problems Pk are working in the decision space X
and not in the objective space Y, they are usable for parametrized multi-
objective set-valued optimization problems 5732;{ in general as well. The
selection mechanism on the other hand has to be adapted in order to run on
the set-valued objective space F/(X). We chose to adjust the binary tourna-
ment selection presented by K. Deb in [7] within our implementations. Here
two solutions x,z get picked out of the parent population P, in generation
t of the SV-NSGA-II at random. If one of the solutions dominates the other
one, with respect to the chosen strict partial order <7}, the dominating solu-
tion will be returned. If they are incomparable to each other w.r.t. <j the
solution with lower crowding distance will be selected and if the crowding
distance of both solutions are equal or not assigned yet, as in the first iter-
ation of the algorithm, one of the two solutions x,Z is selected at random.
In order to assign a crowding distance to each element of a set 7 C X of
solutions of a parametrized set-valued optimization problem SPi*K the rep-
resentative crowding distance assignment picks for each solution x € F a
representative point p(z, &) € F(x) out of its image set F(z) and performs a
classical crowding distance assignment on the obtained set of representative
points as presented in detail in algorithm [6]
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Algorithm 6 : Representative crowding distance assignment in SV-NSGA-II

Input: Parametrized objective function p : R" x § — RF, rep-
resentative parameter ¢ € S, x € {l,u,s,c,m,me,mn} set F =
{zt,2% ... 2'} of | € N solutions 2* € R, i € {1,2...,1}.

1 begin

2 ifl<2do

3 - Assign to each solution in F a crowding distance of oo.

4 else

5} - Set counter 7 = 1, set representative set Z = ().

6 while i <

7 - Add representative (7, €) to Z.

8 -Set i =i+ 1.

9 end

10 - Perform a classical crowding distance assignment to the
representative set Z using p as objective function.

11 - Assign each solution z° the same crowding distance as his
corresponding representative (z¢, &) has, for all i € {1,2,...,1}.

12 end

13 end

The representative crowding distance assignment has the advantage that the
decision maker has the possibility to change the representative parameter by
choice. Regarding an uncertain multiobjective optimization problem Pg (U)
the decision maker therefor is enabled to choose a representative parameter
¢ out of the uncertainty set U representing one of the possible scenarios to
occur. This chosen scenario may be the undisturbed, the most important or
the most likely scenario, if some probabilities are known.

Once again we have been working with the Java-based framework for mul-
tiobjective optimization with metaheuristics jMetal in order to implement
the SV-NSGA-TIT.

3.3.2 Implementation in jMetal

In this section we will shortly describe how we managed to implement the
SV-NSGA-II methaheuristic within the given jMetal framework [10]. Due to
the fact, that all of the methaheuristics provided in jMetal run on determin-
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istic multiobjective optimization problems, we had to review and edit fun-
damental instruments of the framework in order to generate an evolutionary
algorithm able to run on multiobjective set-valued optimization problems.
We will describe the basic components necessary to enable a user who is fa-
miliar with jMetal to understand the idea behind our construction and which
are enabling him to construct further parametrized set-valued multiobjective
optimization problems as well as methaheuristics able to run on this class
of optimization problems. A complete list of all implemented classes and
interfaces is provided in appendix [E]

The basic module necessary to implement the SV-NSGA-II, was to generate
a class representing a solution x € X of a parametrized set-valued opti-
mization problem SPi*K. Therefor we were working with the already exis-
tent SolutionSet class which contains a set of Solution objects. We use
such a SolutionSet object in order to store a subset of the domain of the
parametrized objective map p : X x S — RF. Le. the SolutionSet object
representing the solution z € R™, stores a set of elements e := (z,§) € {z} xS
of the domain of p, for a predefined or randomly chosen set of sample points
¢ € S of the parameter set S C R™ and each such element e is stored in a
Solution object. How many sample points £ € S are chosen is up to the deci-
sion maker and is controllable via the input parameter s € N. Weather these
sample points are uniformly picked for each solution or randomly sampled
has to be defined in the implementation of the current regarded set-valued
optimization problem SP:E*K. In order to generate the population based
methaheuristic SV-NSGA-II, we had to implement the SolutionSetSet class
which stores a set of SolutionSet objects. Thus such a SolutionSetSet
object represents a set of solutions x € R of a parametrized set-valued
optimization problem SP:q o

Each such set-valued problem inherits from the class SetProblem which it-
self inherits from the Problem class already given within the jMetal frame-
work. All set-valued problems have to define the methods evaluate() and
evaluateConstraints(). Both methods receive a Solution object repre-
senting an element e = (z,£) € R" x S of the domain of p for the given
set-valued problem. The first method evaluates the parametrized objective
function p(z,§) € F(x) and the second one determines the overall constraint
violation of the solution x € R™. Additional methods necessary to define
are the newSolutionSet () method without input parameter and its over-
loaded version which receives a Solution object representing the element
e = (i,é) € R" x S again. Both have to return a new SolutionSet object,
containing the elements (z,£) € {z} x S,i € {1,2,...,s} where s € N is
the user-defined amount of sample points. The first method chooses z € B
within a for this problem predefined hyperbox B C R" randomly and the
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second method uses its input parameter value . For both methods the im-
plementer of the set-valued problem has to define how the parameters &°
are sampled within the given parameter set S C R™. We will give an ex-
ample of application for sampling parameters in the next section, where we
are presenting the simulation results of the SV-NSGA-II on a parametrized
multiobjective set-valued optimization problem.

3.3.3 Simulation Results

In order to test the SV-NSGA-II we have extended the jMetal framework
by seven classes representing the seven pre-orders <7 such as the respective
strict partial order <3} induced by them, for all x € {u,l,s,c, mn,mec,m}.
These classes are listed and described in the appendix [E.5 Each of them con-
tains a constructor whose input parameter is a DegreeDominanceComparator2
object, which represents the partial order < induced by the pointed poly-

hedral cone K(8) = K(A(-%8)) of example [1| with § in arc degree instead

180
of radians. We have tested the SV-NSGA-II on the following test problem

introduced by J. Jahn in [23].

Example 10 (Example 4.2 in [23])
Given a proper closed convex and pointed cone K C R¥ we are regarding the
following unconstrained multiobjective set-valued optimization problem

SP;. + min {(y1,40)" € R [ (y1 — 227)% + (y2 — 223)* < (1 + 23)°}
st x=(x1,72)" € R
In order to enable our implementation of the SV-NSGA-IT to run on this test
problem we have to regard its parametrized and constrained version.

Example 11

Given a proper closed convex and pointed cone K C R* we are regarding the
following constrained parametrized multiobjective set-valued optimization
problem

SPE. + min_; {(pi(2,€),pa(2,)T € R?|€ = (&1.6)7 € [0,1]}
st. x=(r1,19)" € X,

where the parametrized objective function is given through

p1(z,€) == & (1 + 23)? cos(&,27) + 2232,
pa(,€) = &(1 4 x3)? sin(&2m) + 223,
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And the decision space X := {z € R?|g;(z) < 0,i € {1,2,3,4,}} is defined
through the following inequality constraints

g1(r) = =21 + a, go(x) = 21 — b,
g3(r) = —x2 + a, ga(x) = 22 — b.

Whereas a,b € R? are user-defined parameters. Note that the set-valued
objective function

F(z) = {(p1(2,€),p2(2,€))" € R*|€ = (&1,6)" €[0,1]}

maps onto disks in R? with variable radius (1 + 23)? and center (2%, 2x3)7
for each solution (xy,7,)T € X.

In jMetal it is necessary to restrict the decision space in each objective
through an upper and a lower boundary through the instance variables
lowerLimit_ and upperLimit_ of the Problem class, hence we could not re-
gard the unrestricted optimization problem of example [10| from Jahn’s paper
[23]. Notice that this restriction can not be broken by any of the muta-
tion and crossover operators used in line 5 of algorithm |5] as it limits the
encodings.variable values to the defined boundaries. Notice as well, that
this allows us to alleviate our restrictions on the optimization problems re-
garded in the sections on computational methods, as we are allowed to regard
problems with a smaller domain, which is a subset of the hyperbox defined
through the lowerLimit_ and upperLimit_ variables of the respective prob-
lem.

Jahn presented a derivative-free descent method in [23] which is able to search
for one efficient solution of a multiobjective set-valued optimization problem
SPs. with non-empty and compact objective map images F (z) C RF and
convex sets F'(z) + K and F(x) — K for all solutions x € X. His method
fits into the class of pattern search methods. It starts with an user-defined
solution 2 € R™ and develops a descent direction and step length in each
iteration through clustering an equally distributed set of solutions around
the current regarded one. The algorithm presented by Jahn then calculates
the best descent direction as well as an appropriate step length, through
comparison of these solutions. Therefor 45 optimization problems have to be
solved, whenever testing wether one solution dominates another one, as he
replaces the dual cone K* by a subset of 5§ € N unit vectors. We on the other
hand are not replacing the dual cone but are working with a discretization
{p(x,&Y), ... p(x, &%)} of the image F(z) of each solution x € R". The
amount of sample points s € N defines the computational effort necessary to
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test wether one solution x € R™ dominates another solution £ € R". Let us
have a look back on the binary relations introduced in section [3.1.1] and let
us regard definition [3.5of the lower set less order relation <4 as example. In
order to test wether F'(x) <t F(Z) holds true or not, in the worst case we will
need to compare each of the sampled points of F'(x) with all of the sampled
points of F(Z) w.r.t. <g. This requires O(ks*) comparisons, where k is the
dimension of the objective space as usual. For the other binary relations
presented in section we gain the same number for the computational
complexity or this number even increases. For example [L1| the user defines
the amount of sample points s € N through two input parameters ¢,r € N
as described in algorithm [7]

Algorithm 7 : Sampling Process for Example

Input:Parameter ¢,r € N.
1 begin
2 -Seti=¢,j=rand Sp = {0 € R?}.
3 while?>1do

4 while j > 1 do

5 -Set & =1, & =12 and €= (£,6)".
6 - Add € to Sp.

7 -Set j =7 —1.

8 end

9 -Seti=1i—1.

10  end

11 end

Output: Discretization Sp of the parameter set S.

The discretization Sp of the parameter set S, which we gain as output of
algorithm [7] contains s := ¢r + 1 sample points. Figure [16] depicts F(x)
in blue and its discretization {p(z,&"),...,p(z,£&%)} in red, for the solution
r =0 € R? and input parameters ¢ = 20 and 7 = 5 of algorithm [7}

We have tested the SV-NSGA-II on example [11] for each of the seven imple-
mented pre-orders <73, with x € {u,l, s, c, mn,me, m}, where the inducing
cone K equals the polyhedral cone K(§) = K (A(£226)) of example [1| with
d € [0°,45°) in arc degree instead of radians. In these simulation runs we
have been working with the adapted binary tournament selection described
in section the simulated binary crossover with distribution index 20,
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Figure 16: F'(0) and its discretization

a crossover probability of 90% and the polynomial mutation operator with
a probability of 50% and distribution index 20 (see e.g. [7] for further ex-
planations). For reasons of clarity, additionally we have stated all input
parameter settings used in our simulation runs in table [3.3.3 Here the pa-
rameters a,b € R determine the decision space X = [a,b]? as in example

11

Table 1: Input parameters for the simulation runs on example
5 | N M | ¢ |r £ [a | b]
<% | 0 | 200 | 40000 | 30 | 10 (0,0)T 0 |10
<% | 0 [300 | 60000 | 30 | 10 | (0.5,0.5)T | 0 | 10
<5 | 0 | 200 | 40000 | 30 | 10 | (0.5,0.5)T | —4 | 4

<% | 15200 | 40000 | 20 | 5 | (0,007 | —4| 4
<mr 130 | 100 | 20000 | 15| 5 | (0,007 | —4 | 4
<me | 0 |100|20000 | 15| 5 | (0,0)T 0 |10
<7 | 10 | 100 | 20000 | 15| 5 | (0,0)T 0 |25

Note that a definition of the decision space as a subset X = [0,0]*,b € R of
the first octant ]Ri, does not restrict the objective space in such a manner that
we could lose parts of the efficient front reachable with a decision space X =
[—b, b]?. This results from the definition of the set-valued objective functions
F of example , as F(xy1,x9) = F(—x1,29) = F(x1,—x2) = F(—x1, —2)
holds true, for all (xq,z2)"T € R2.
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For the upper set less order relation <% we chose the population size N =
200, the amount of iterations M = 40000, the input parameters of algorithm
[7 defining the amount of samples ¢ = 30,r = 10, the Edgeworth-Pareto
cone K = R? = K(0), the representative parameter (0,0)T € S as input
of algorithm @ and the square [0, 10]? to randomly generate the first parent
population P; in. Figure illustrates the approximation of the efficient
front £ (877‘211&2) obtained by SV-NSGA-II on the left and the efficient set

Sﬁ{ﬁ obtained on the right. Here, the whole population evolved towards
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(a) Obtained efficient front £ (SPiEZ) (b) Obtained efficient set S<u,

Figure 17: SV-NSGA-II on example [I1] with input parameter <%

the origin in the decision space, whose image under the set-valued objective
map F' equals the unit disk. The SV-NSGA-II does not distinguish between
the varying z; values visualized on the right of figure [17] due to the limited
accuracy of a double value in Java.

Figure depicts the output for the lower set less order relation <% with
population size N = 300, amount of iterations M = 60000, input parameters
¢ = 30,7 = 10 of algorithm , the Edgeworth-Pareto cone K = R2, the
representative parameter (0.5,0.5)7 € S and the square X = [0,10]? as
decision space. Here the population evolved towards the z,-axis and again
does the limited accuracy of a double value within Java explain the varying
1 values.
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Figure 18: SV-NSGA-II on example [11| with input parameter <4
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(a) Obtained efficient front £ (SPis ) (b) Obtained efficient set S<s
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Figure 19: SV-NSGA-II on example [T with input parameter <5
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Figuredepicts the output for the set less order relation <3 with population
size N = 200, amount of iterations M = 40000, input parameters ¢ = 30,r =
10 of algorithm EI, the Edgeworth-Pareto cone K = R?, the representative
parameter (0.5,0.5)T € S and the square X = [—4,4]% as decision space.
Here again it is clearly recognizable, that the population evolved towards the
To-axis in the decision space, which was to be expected due to the definition
of the set less order relation <j through the upper and lower set less
order relations <%, <.

For the certainly less order relation <9 we chose the population size N = 200,
the amount of iterations M = 40000, the input parameters of algorithm
¢ = 30,r = 10, the cone K = IA((15°) the representative parameter

(0,0)7 € S and the square X = [—4,4]? as decision space. Figure [20| il-
lustrates the efficient front £(SPZ. ) obtained by SV-NSGA-IT on the left
YK (15°)

and the obtained efficient set 84} 150, O the right.

—10 10 20 30
(a) Obtained efficient, front £(SP3. ) (b) Obtained efficient set Sxe

YR (15°) K(15°)

Figure 20: SV-NSGA-II on example 11| with input parameter <%

Here the obtained efficient front £(SPS. ) and efficient sets Sze do

k(150 K(150)]
look rather random at first sight. Though( ilv)hen having a closer look( OI)l the
definition [3.8|of the certainly less order relation it becomes quite obvious that
this strong ordering relation leads to a rather weak restriction for efficiency
as it only filters out solutions which are dominated for every parameter by
the same other solution. This explains the wider spread set of solutions we
gained as output of this adjustment of parameters.
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Figure [21| depicts the output for the minmax certainly nondominated order
relation " with population size N = 100, amount of iterations M = 20000,
input parameters of algorithm [7] ¢ = 15,7 = 5, the pointed polyhedral cone
K = f((30°), the representative parameter (0,0)T € S and the square X =
[—4, 4)% as decision space.

L L L L
-1.5 -1 -0.5 0 0.5

(a) Obtained efficient front £(SPZmn ) (b) Obtained efficient set Sgmn

YK (30°) K (30°)
Figure 21: SV-NSGA-II on example [l1| with input parameter <"

Here again an evolution of the population of solutions towards the x,-axis
in the decision space is recognizable. Note, that the efficient set Sﬁﬂa&n is
spread wider in the decision space as on the second and third adjustment of
parameters. This is a result of the definition [3.11] of the minmax certainly
nondominated order relation, as it is a quite strong ordering relation as well.
For the minmax certainly set less order relation <72 we chose the population
size N = 100, the amount of iterations M = 20000, the input parameters of
algorithqu = 15,7 = 5, the Edgeworth-Pareto cone K = R?, the represen-
tative parameter (0,0)T € S and the square X = [—4,4]? as decision space.
Figure [22| illustrates the efficient front £ (SP%@C) obtained by SV-NSGA-II

on the left and the obtained efficient set Ssme on the right.

66



L L L L L L L v MY
0 1 2 3 4 5 6 7 8 9 10

-50 50 100 150 200
(a) Obtained efficient front £ (SmeQc) (b) Obtained efficient set Sgme
R

Figure 22: SV-NSGA-II on example |11 with input parameter <7

Note that the efficient set Sﬂr&c obtained at this parameter setting as well con-

tains solutions z!, x? within e-neighborhoods B.(z) of solutions z = (1, 0) on
the z1-axis. This results from the deﬁnition as min F(z') 5§, min F(2?)
does not hold true for two solutions out of this area.

Finally we have tested the SV-NSGA-II on the minmax less order relation
<%, with population size N = 100, amount of iterations M = 20000, input
parameters of algorithm [7] ¢ = 15,7 = 5, the pointed polyhedral cone K =
K (10°), the representative parameter (0,0)7 € S and the square X = [—4, 4]?
as decision space. Figure depicts the obtained efficient front £ (873*:7}{1(100))

on the left and the obtained efficient set S<}(n(wo) on the right.
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Figure 23: SV-NSGA-II on example [11| with input parameter <7

Again a strong development directed towards the x,-axis is recognizable
which is explained through the definition [3.9| of the regarded ordering re-
lation <.

3.4 Conclusions

In section |3| we have presented the concept of uncertain multiobjective op-
timization and pointed out strong connections to multiobjective set-valued
optimization. We introduced seven ordering relations which lead to differ-
ent declarations of what is considered to be a robust or efficient solution
to an uncertain or set-valued optimization problem respectively. At last we
have presented a first evolutionary algorithm able to run on parametrized
multiobjective set-valued optimization problems or uncertain multiobjective
optimization problems respectively and some numerical results in low di-
mensions depicting the variety of outputs possible. This opens a new field of
application for evolutionary algorithms and presents a way into searching for
the whole efficient front of set-valued or all robust efficient solutions to uncer-
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tain optimization problems respectively. From here, further research may be
done in many different directions. In practice, the SV-NSGA-II is very time-
consuming. A deeper analysis of the presented binary relations is of interest
in order to develop more efficient sampling and comparison methods to de-
crease the algorithms computational complexity. Also further selection and
diversity mechanisms applicable to set-valued optimization problems could
be an interesting point of research, as well as defining and inserting quality
indicators. A deeper study of the influences of each of the various input
parameters on the output of the SV-NSGA-IT is desirable as well. More or-
dering relations on power sets as those we used in this thesis can be found
in literature, for instance the possibly less order relation (see e.g. [24]) or
the alternative set less order relation introduced in [I8]. Those could be
analyzed and integrated to the algorithm presented. Finally an adaptation
of the various methaheuristics presented in literature that are different to
NSGA-II (see e.g. [7]), in such a way that enables them to run on set-valued
or uncertain optimization problems is desirable as well. The first step in this
direction is presented through the extending implementations made for the
jMetal framework as part of this thesis and its documentation presented in
section and || allowing an easy access to future research developments
towards this direction.

4 Closing Remarks

In total this thesis presented an introduction into the wide field of robust-
ness in multiobjective optimization. In the first part a completely new notion
of robustness was introduced, analyzed and a new methaheuristic was pre-
sented. The second part was covering the relatively new field of uncertain
multiobjective optimization in combination with multiobjective set-valued
optimization and presented a way for evolutionary algorithms to gain these
research areas as new field of application.

Both parts leave open questions and possibilities for further research as dis-
cussed in section 2.2 and section 3.4l Furthermore a fusion of both areas of
research is of high interest. The basic modules allowing this combinational
study are presented through the theoretical as well as the practical part of
this thesis. A big advantage for a computational application onto the field
of evolutionary algorithms is given through the Java based implementations
presented in this thesis, which are all included in the jMetal framework
and hence are easy to combine with each other or different methaheuristics,
operators, or other components contained in the framework.
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A Consistence of the Definition of an Edge

Throughout this appendix K := K(A) C R* will be a polyhedral cone,
with A being an arbitrary real [ x k-matrix having the row vectors a; € R¥,
i€l :={1,2,...,1}. To proof the consistence of our edge definition of a
k-edged cone with the one usually used in literature, we’ll need the following
definitions and results (see e.g. [27], [35]).

Definition A.1
For a polyhedral cone K we define the following two sets of indexes

I=={iell|{y,a;) =0,Vy € K}
I7:={iel|3ye K: {ya)>0}.

And A= is the |I=| X k-matriz which has the row vectors a; for all i € I~
and AZ the matriz having the to I= corresponding rows of A respectively.

Definition A.2
The dual cone K* of K is defined to be

K*:={y cR*|{y, k) >0, Vk € K}.

Theorem A.3
The following three statements hold true

(1) (K*)" = K,
(ii) K is pointed <= dim(K*) =k <= rg(A) =k,
(111) dim(K) +rg(A~) = k.

Proof:  See [27] corollary 1.8 and note 1.13 for (i) and corollary 1.21 for
(ii), whereas the last equality follows directly from the next corollary. For
(iii) see proposition 2.4 of [35]. |

Corollary A.4
The following holds true

K(A)*zcone({aiue{1,2,...,1}}).
Proof:  Let k€ K(A)
— (k,a;) >0, Vie{1,2,...,0}
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!
= Y Nlka) >0, VA >0,Vie{l,2,... 1}

=0

l
= (k) Na) >0, VA >0, Vie{1,2,....1}

i=0

<— k¢ cone({ai\i e{1,2,...,l} }) .

Thus K(A) = cone({ai lie{1,2,...,1l} }) holds true, which with theorem
(i) is equivalent to the assertion. [

Definition A.5

A subset F' of K is called a face of K iff there exists a vector v € K* such
that F = KNvt, where vt := {y € R¥| (y,v) = 0} is the hyperplane induced
by v.

Definition A.6
A face F of K is called an edge iff F' is one-dimensional.

Now we can prove that our definition of an edge of a k-edged cone in R is
equivalent to definition [A.G]

Lemma A.7

Let K(A) be a k-edged cone in R* induced by the matriz A € R**. Le. let
a; € R* be the i-th row vector of A € R¥k for all i € I := {1,2,... k}
and let rg(A) = k hold true. Then definition of an edge of K(A) is
equivalent to definition[A.0,

Proof:  Let F be a face of K(A), that’s equivalent to
Ja € K(A)*: F=K(A)Na*

k
B vyicr3n>o0: F:K(A)ﬂ{yeRk\<y,Z)\iai>:0}

i=1

k
— Vie I3\ >0: F:K(A)ﬁ{yG]Rkl > iy ai) :0}
i=1

k
— Vield\>0: F= {yeRk\ > Xily,ai) =0, (y, ;) zowef}.
=1

(17)
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Now let us regard the set of active indexes I” :={ i€ T|\; >0} If [ =10
we gain F' = K (A), thus let’s exclude this case in the following. Notice that
F is a polyhedral cone again with I= = [~ and I= = I\ I”. Thus statement

is equivalent to
F = {y eR*|(y,a;) =0, Vi € I=,(y,a;) > 0Vj € ]2} PLEY
F= (ﬂ R-(A)) n{ () HA?) |- (18)
iel= jeIs
Since rg(A) = k holds true, with A € R*** it follows that rg(A~) = |I=
1

By theorem (i) it follows dim(F) = n — |[I=|. Thus dim(F) =
|[=| = (k — 1) which, with (1§), is equivalent to

k
F=| (P4 [ nH(A),

for onei € I.

|
B Proof of Example
Proof: Within this proof let I :={1,2,...,k},
tan(9) (19)

T VEk—1— (k- 2)tan(o)

and for an arbitrary square matrix A € R¥** with row vectors a,,i € I the
matrix A; := (a1, as,...,0;_1,0i41,...,a;)" will be the (k — 1) x k-matrix,
which has identical row vectors as A except for leaving a; out.

Let § = 0 hold true, then it follows that A(d) equals the identity matrix I*
in R¥. Thus with example we gain that K(A(0)) = RE. For A(0) = I*
the assumptions of definition obviously hold true and with 7; being the
j-th row vector of the unit matrix I* it follows that

E(A(0)) = {y e R*|Ify =0} NRE = {Xi; | A >0} = {\e’(0) | A > 0}
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Now let § > 0, § € D hold true. First we will prove that for A(§) € R¥** the
assumptions of definition are fulfilled in this case as well. L.e. we have
to show that rg(A(d)) = k holds true. Therefore let us transform the matrix
A(9) via row and column operations in the following way.

+
+
N2
-
1 x x X -1 9-1 -1 1 %
x 1 x ]+ x—1 1-=x 0
A(0) =« « N ~|x—1 0 1-x
% 0
X x 1 n x—1 0 1—x
1+ (k—1)x x X
0 1—-x 0 0
~ 0 0 =: B(0)
0
0 0 1-x

Thus rg(A(9)) = rg(B(6)) = kiff 1 + (kK —1)x # 0 and 1 — x # 0 holds
true. By substituting x back, that is equivalent to § # arctan(—+/k — 1) and
J # arctan(\/k;ﬁ), which is fulfilled for § € D.

Thus the assumptions of definition hold true and we can calculate the
edges E;(A(9)),i € I of K(A(J)) as follows.

Ei(A(8) = | (] Fi(AW@) | N Hi(A@)) = {y € R* | A(8)y = 0, {ai, ) = 0}

i
(20)

77




In order to solve the system of linear equations determining the last set above,
we will use the Gaussian elimination.

i—th column

i
1 x x -+ x X -1 1-1 -1
x 1 x : ]+
X X . . +
1 x
A((S)Z:
x 1
X X
x 1 x
X X - x x 1 +
i—th column
1
1 X X X X
x—1 1—-x 0 0 |-
x—1 0 =
: 1—-x 0
AN
0 1—x
0 0
0 1-—x 0
x—1 0 0 0 0 1-x/ |-

78



—_

_— O

i—th column

i—th column

0

0 -1

A
+

0 j+
; (=x=1) q=1 —

i
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i—th column

0 0 2z+1 «x

1 0 -1 0

0 —1 0

0 1 -1

1 0

e d

-1 0
0

0 0 1 0

Now lets repeat this procedure, i.e.

for all [ € {4,5,...,k — 1} add in

ascending order the [-th row to the m-th row for all m € {2,3,...,1 — 1},
add (—(I — 2)x — 1) times the [-th row to the first row and subtract the I-th
row from the p-th row for all p € {l + 1,14+ 2,...,k — 1}. Then we gain the

following matrix.

i—th column

1
0 0 0 x 0
10 0
0 1
00

10

0 1

00 0 0
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i—th column

00 --01 0 - (k—2)+1
10 () —1
01
~ 00 =: A(5);
10
0 1 0

0 —1

00 -- 0 --- 0 1 —1

Thus follows for y = (y1, s, ..., yx)" € R¥, that
AB)y =0 <= A(d);y =0. (21)
Now we are substituting x back again. For i # k, is equivalent to

yi=uyr Vi€{1,2... k—1} with j #1,

Vk —1—(k—2)tan(d) tan(J)
i+ (k=2 =0 < = — ;.
it (k =2+ fan(0) ) Yk — Y

For i = k, is equivalent to

Y; =yp_1Vj E {1,2,...,]€—2},

__ tan(9)
Yk—1 = \/myk
Together we gain
tan(o , .
Y= - k(_)lyi Vi€l j#i. (22)

In combination with it follows
y € Ei(K(A()))

o 3 () ()0 =

J#

81



—tan® (0) vk — 14+ vk —1— (k—2)tan (0
Vk—1—(k—2)tan (J)
Obviously the denominator of the left fraction in the equation above is pos-
itive for £ = 2. Since tan(+) is a strictly increasing function on D,

1
0eED «— tan(é) € |:0, ?) (24)
and
L . Bl — 1<k_1
k—1 k—2 k—2

holds true for all £ > 3, follows that the denominator is positive for k > 3 as
well. Thus ([23) is equivalent to

(—Vk — 1tan® (0) — (k — 2) tan () +
= (tan(d) +Vk — 1) ( vk — 1tan(d) +
1

£22 (tan( )+\/—) <tan( ) — m)

Due to it follows that tan(d) + vk —1 > 0 and tan(d) — — <
(25 is equivalent to y; > 0. Hence together with , equation of our
example is proven.

W

oz

<0. (25)

C Proof of Example

Proof:
Equation @D is a direct consequence of theorem whose assertion is
proven to be fulfilled through the proof of example [1}

Since A(0) = I* holds true, with example we gain that ¢(R%,0) = R
and hence point (i) of definition [2.2is fulfilled as well. What is left to prove
is that point (i¢) of definition holds true for our example. Remember,
that equation of example 1 is fulfilled, i.e. for all 6 € D holds

e1(9)

€5(d)
Ei(A(6) {)\e |)\>O} with €'(8) := :
e (0)
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d Z(S L _t‘a/zﬁ? lf.]#% Vi i 1.9 k
and €}(9) := , Vi,je{l,2,...k}.

1 if j=1i
In the following let 91,2 € D with é; < d9 hold true, then follows

¢(K,d1) C ¢(K,0)
8, cone ({E(AG) i € T} )  cone({E(A@))|i € T})  (26)

k k
i=1 j=1

By this obviously follows

k
Vi, j €136 >0 €(61) =Y &ie(6y) < (28)
j=1
k k k k k
Vi, j € IVA; > 0385 > 0: ) Ne'(01) = Y N Y &iel () =) <Z A@) e (0y).
=1 =1 7=1 7j=1 =1

By setting Zle Ai&ji = i, Vi € 1 we gain again and thus is equiv-
alent to {e'(d1) |1 € I} C cone({Ei(A(&)) EXS I}) and whats left to prove

is that holds true.
To prove that that this is the case we will first show that holds true for

91 = 0. Therefor we will define z(6) := —% first, notice that
1
0eD «— 2(5) S <—m,0} (29)

holds true. Now we define for all 7,5 €

L _2(5) . . .
&i(0) = ammy—nsm L EF
§i(0) :=

(k—=2)z(8)+1 )
120N ((k—1)z(8)+1) otherwise.

Then it follows with that

—z(0) € {O, ﬁ) ,
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(1—2(9)) € {1, 1+ ﬁ) ,
(k—1)z(0)+1) € (0,1]

is the case for all 6 € D, hence £,;(6) > 0 for all i € I.
Since (k —2)z(6) +1 = ((k —1)z(0) + 1) + (—=2(9)) holds true, we gain

;i(0) >0 foralli,j e landd e D. (30)

Now let us define u'(§) = (u}(8), us(d),...,ui(6))T € R* forie I as

8) :Zgﬁ(a)e )

Due to €] () = z(8) holding true for all § € D and I € T with [ # j, we gain

U (8) = (k — 2)£.4(8)2(8) + £4(0) + &i(0)=(5)
—(k—2)2(8)% — 2(8) + (K — 2)2(5
(1=2(0)((k—1)z(d) +1

to be the case for all 6 € D and r € I with r # 7. With

+ 1)z (5):()

~— [ —

—(k=1)2(6)* 4+ (k —2)2(6) + 1

0O (k-1 +1)

ui(8) = (k — 1)&.(8)2(6) + &(6) =

it follows that
¢'(61) = €'(0) =i = u'(6) = »_ &i(0)e (0
j=1

is true, for all § € D and i € I, where i; is the i-th unit vector in R*. Hence
(28) is proven for §; = 0. Now let 0 < d; < d5 hold true, then we have

Mpr

51 —6 (52

=1,
;ﬁz 1757,

=1, =1,
l;ﬁl l;éz

N N J/

%
o
V
o
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i( (01) = 2(02) )5” () | € Zk: Ek:( (01) = 2(02) >5jl(52) e!(d2),

(92)



where the scalars in the last linear combination are nonnegative because of
01 < 0, the definition of z(d) and ([30]). Thus holds true for all 61,9, € D
with §; < dy, which proves that ¢ is a proper ascending cone mapping.

D Proof that Algorithm (3] is Well-Defined

In order to prove that the removal of already dominated solutions out of the
currently regarded set F;, of algorithm [3| does not have any impact on the
cone robustness degree of still non-dominated solutions and hence prove that
algorithm (3] is well-defined, we first need to prove the following lemma.

Lemma D.1
Let < be a strict partial order on R¥. Let F' # () be a finite non-empty subset
of R¥ and for i € N let S; C F be a subset with i = |S;| < |F|. Assume that

the following assumption holds true.
Vyes;, JyelF with y<uy. (31)
Then it follows
(i) There exists a pointy € S; and a point y € F'\ S; s.t. §<y.
(ii) For all points y € S; exists a pointy € F'\ S; with y < y.

Proof: = We will prove (i) by induction over all i € N.

Start: Case i = 1 is clear due to the irreflexivity of <. Case ¢ = 2 is clear as
well, due to the transitivity and irreflexivity of <.

Step: 7 ~» i + 1: Assume the statement to hold for all 75 < i for some ¢ € N.
We prove it for i + 1 as well. Let yy be in S;;1. Due to there either
exists a g € F'\ S;;1 with § < yo, then we are done. Assume such an ¢y does
not exist, then there has to exist a y; € S;11 with

Y1 = Yo, (32)
due to (B1). We define S; := S;11 \ {yo} and assume as well, that
By' € Sy e F\Sii: y =y, (33)

otherwise we are done with the proof as well. Furthermore by induction
existsa g € S; and ay € F\ 5 s.t.

y=<y. (34)
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If we show that §y # yo, we are done as then g € F'\ S;;; would hold true,
which is a contradiction to . Assume the opposite, i.e.

g = Yo, (35)

and prove by contradiction, as the transitivity of < will be violated.

For y; we have y; € SZ»(I) = 5\ ({7} U {y € Silyo < y}), otherwise we violate
the transitivity doe to the irreflexivity already. Due to and there ex-
ists a ya < y1,92 € SZ@) =5\ ({#} U{y € Silys < y,s € {0,1}}) otherwise
the transitivity would be violated again. Following this argument induc-
tively, we get a sequence (y;)jeq1,2,.13,0 <@ with 4 <y < -+ <92 <1
being element of SZ»(j) =5\ {gtu{yeSilys <y, se{1,2,...,5—1}})
for all j € {1,2,...,1} respectively. As |S;| < oo and the induction hy-
pothesis holds for all 46 < i all y € S; \ {§} are element of some set

S'i(t) = {y e Si\ {4}ty <y, y: € Si(t)} for a t <. As y, remains and there

has to be some y € S; with y < y; due to and y being an element of S”Z-(t)
would violate the transitivity of <, we have y < y; and with , and
(135) we get § < y; < yi—1 < -+ < y1 < Yo < ¥, which violates the transitivity
doe to the irreflexivity of <. Hence 3 # yo must hold true, which proves the
assertion.

We prove assertion (i7) by induction as well.

Start: For the case ¢ = 1 the assertion is clear doe to . For i = 2 as well
due to the transitivity and irreflexivity of <.

Step: @ ~ i + 1: Assume (2i) holds for all iy < i. Let yo € S;41 hold true.
Then there exists a j € F s.t. § < yo, due to (31). Assume § ¢ F\ S;11, that
is equivalent to 3 € S; := S;11\{yo} due to the irreflexivity of <. Then as the
existence of a point § € F'\ S; with § < ¥ follows from induction, it follows by
the transitivity of < that ¢ < yo has to hold true. This proves the assertion W

A direct consequence of lemma is the following corollary.

Corollary D.2
Let Fi, Fi, € Fi, (6i)ieny and L = Fi \ Fi, = Uj<l L; be defined as through
algorithm 3 for all 1 € N. Then it follows that

L C Fy +c(K,8;,) \ {0}
holds true for all | € N.
Proof:  Direct consequence of lemma [D.T] |
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Now we can prove the actual assertion.

Lemma D.3

Let Fi, Fiy € Fu, (0i)ien and L = Fy \ F;, = Uj<l L; be defined as through
algom'thm@for alll € N. Let r € N,r > 1 and xo € Fi, with CRDg, (x0) =
0;, hold true. Then follows that CRD%, (z0) = CRD%, (o) for alll € N.

Proof: Suppose there exists an [ € N, a § € (9;,)ieny with 0 < 4, a solution
x € L,z € L; with j < I,j € N and CRD%, () = ORDCFilu{x}(xO) =9,
which would disprove the assertion. Then it follows with definition of the
cone robustness degree and corollary that

f(xo) € f(x) + (K, 0) \ {0} (36)

holds true.

Case 1: 0 < 9;,:

Resulting from corollary [D.2| there exists a solution z € F;, s.t. f(Z) =c(K.5,)
f(z). As f(Z) = f(x) 1s impossible due to the transitivity and irreflexiv-
ity of the binary relation < K.;,) ON R*, we have with corollary that
f(z) € f(z) + (K, ;)\ {0} for f(z) # f(x). This means that f(z) +
c(K,0)\ {0} C f(Z) + c(&K,6;) \ {0} due to definition of an ascending
cone mapping, as ¢(K,d) C ¢(K, ;) holds true as well. Together with
we gain that f(xg) € f(Z) + ¢(K,6;,) \ {0} which is a contradiction to zg
being an element of F;,.

Case 2: 0;, > > 0y,
Due to CRDpg, (wo) = d;, > 9, the following has to hold true as well,

Bz e Fy o flxo) € f(2) + (K, 0) \ {0}. (37)

Resulting from corollary we know that there exists a & € F;, s.t. f(z) €
f(Z) +c(K,0;) \ {0}. Hence f(z) + c(K,6;,) \ {0} C f(z) + c(kK,d;) \ {0}
has to hold true and with definition of an ascending cone mapping and
d > ¢0;, we gain that f(z) + c(K,9) \ {0} C f(z) + c(kK,0) \ {0} has to hold
true as well. Together with it follows that f(x¢) € f(z)+ c¢(K,0) which
is a contradiction to .

From this results that CRD%” (o) = C’RD}”U{I}(QJO) = CRD% (), which
proves our assertion. ]

Together with the explanations presented in section after algorithm
follows that the algorithm is well-defined.
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E List of Java Classes and Interfaces added
to jMetal

In this appendix we will present a list of the Java classes and interfaces
generated over the course of this dimploma thesis in order to implement
the SV-NSGA-ITI and the CREA. Both algorithms are inserted into the jMetal
framework [10], hence all of the implemented modules are applicable for other
methaheuristics already existent within jMetal or to develop for the jMetal
framework respectively.

E.1 Core Components

The following classes were added to the jmetal.core package within the
jMetal framework.

1. SetAlgorithm: Abstract class, from which each set-valued metha-
heuristic has to inherit from.

2. SetProblem: Abstract class, from which each parametrized multiobjec-
tive set-valued optimization problem has to inherit from. More detailed
description in section [3.3.2]

3. SolutionSetSet: Class which represents a set of solutions of a set-
valued optimization problem. Contains a List of SolutionSet ob-
jects each representing one solution of our set-valued problem regarded.
More detailed description in section [3.3.2]

E.2 Methaheuristics

The following classes were added to the jmetal.methaheurstics.crea pack-
age within the jMetal framework.

1. CREA: The actual methaheuristic described in algorithm [

2. CREA_main: The main class of the CREA algorithm. Here the user has
to adjust the input parameter setting.

The following classes were added to the jmetal.methaheurstics.nsgall
package within the jMetal framework.

1. SV.NSGAII: The actual methaheuristic described in algorithm [5]

2. SV_NSGAII_main: The main class of the SV-NSGA-II algorithm. Here
the user has to adjust the input parameter setting.
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E.3 Operators

1. SetSBXCrossover: Class which allows the user to perform a simulated
binary crossover (SBX) to two solutions of a multiobjective set-valued
optimization problem. Gets two SolutionSet objects as input param-
eters of its execute () method and inherits form the Crossover class.
Added to the jmetal.operators.crossover package.

2. SetPolynomialMutation: Class which allows the user to perform a
polynomial mutation to a solution of a multiobjective set-valued opti-
mization problem. Gets a SolutionSet object as input parameter of
its execute () method and inherits form the Selection class. Added
to the jmetal.operators.selection package.

3. SetBinaryTournament2: Class which allows the user to perform a
binary tournament selection on solutions of a multiobjective set-valued
optimization problem. Needs Comparator object submitted as input
parameter of its constructor, which is able to run on SolutionSet
objects. Added to the jmetal.operators.selection package.

E.4 Problems

The following classes were added to the jmetal.problems package within
the jMetal framework.

1. Jahn2: Implementation of the parametrized set-valued optimization
problem presented in example [11]

2. TestProbleml: Implementation of the multiobjective optimization prob-

lem presented in example [2|

E.5 Utility Components

The following classes were added to the jmetal.util package within the
jMetal framework.

1. SetDistance: Class containing the representativeCrowdingDistanceAssignment ()
method, whose framework is described in algorithm [6]

2. SetRanking: Implementation of an adaptation of the fast non-dominated
sorting algorithm introduced in [2] in order to run on sets F C R" of so-
lutions of a parametrized set-valued optimization problem S_Pi;( w.r.t.
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a given strict partial order <3, x € {u,l,s,c,m,mc,mn}. Construc-
tor needs a SolutionSetSet object representing F and a Comparator
object representing <7 as input parameter.

The following classes were added to the jmetal.util.comparators package
within the jMetal framework.

1. DegreeDominanceComparator: Class inheriting from Comparator and
representing the strict partial order < K(s) On R"™. Where the inducing

cone K(6) = K (A(£226)) equals the polyhedral cone of example (1| with

seD=|0, 1fr—0 arctan (ﬁ)) in arc degrees instead of radians. Its
constructor gets a double value as input parameter which represents
6 € D. Contains the compare() method which needs two Solution
objects as input parameters. These two Solution objects represent
an ordered pair of solutions (z',z?) of a multiobjective optimization
problem Px. The compare() method tests wether x! dominates z?, x2
dominates z! or both are incomparable to each other w.r.t. K(6). Le.

it returns the integer value —1 iff

Vie{l,2,...,k}: (f(21),a:(0)) < (f(x2), a@i(0)),
Jie{l,2,...,k}: (f(21),a:(0)) < (f(x2), ai(0)),
holds true, where @;(8) equals the i-th row vector a;(£26) of the matrix

A(1226) of example [I| with to arc degrees transformed domain. The
method returns 1 iff

Vie{l,2,...,k}: <f(x1), a;(0)) > (f(x2),a;(9)),
Jie{1,2,...,k}: (f(xh),a:(0)) > (f(x2),a4()),

holds true and 0 otherwise. That this equals a test wether one solution
dominates the other one is proven in lemma [E.1}

2. DegreeDominanceComparator2: Extension of the DegreeDominanceComparator
class containing the additional method compareOne() which as well
needs two Solution objects representing an ordered pair of solutions
(2, 2?) as input parameter. The compareOne() method tests wether
f(zh) 2RAW) f(xf) holds true or not, where <y ) is the partial
order induced by K (9) for all 6 € D.

The following classes were added to the jmetal.util.comparators package
within the jMetal framework as well.
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1. CertainlyLessOrderComparator: Class representing the pre-order
<% and the strict partial order <¢.

2. LowerSetLessOrderComparator: Class representing the pre-order <4
and the strict partial order <.

3. MinmaxCertainlyLessOrderComparator: Class representing the pre-
order x%¢ and the strict partial order <%*.

4. MinmaxCertainlyNondominatedOrderComparator: Class representing
the pre-order %" and the strict partial order <%".

5. MinmaxLessOrderComparator: Class representing the pre-order <lK
and the strict partial order <.

6. SetLessOrderComparator: Class representing the pre-order <3, and
the strict partial order <%.

7. UpperSetLessOrderComparator: Class representing the pre-order <%
and the strict partial order <.

Each of theses seven classes inherits from Comparator and contains the
methods compareOne(), compareStrict() and compare() which all need
two SolutionSet objects as input parameters. These two SolutionSet
objects represent an ordered pair (z!,x?) of solutions of a parametrized
set-valued optimization problem SP%.. The method compareOne() tests if
F(2') <% F(2?) holds true or not. The method compareStrict() tests
if F(z') <% F(2*) holds true or not and hence tests wether z! domi-
nates #2. And the method compare() tests if #! dominates 2%, 2% domi-
nates z' or if both are incomparable to each other w.r.t. <3 for all * €
{u,l,s,c,m,mn,mc}. Here the cone K equals [A(((S) as the constructor needs
a DegreeDominanceComparator2 object as input parameter.

The following classes were added to the jmetal.util.comparators package
within the jMetal framework as well.

1. OverallConstraintViolationSetComparator: Performs a constraint
violation comparison and checks for violated constraints as explained
in after algorithm 4] Contains the compare () method expecting
two SolutionSet objects as input parameters and performs the actual
constraint violation comparison and contains the needToCompare ()
method, expecting one SolutionSet object and checks for violated
constraints of the solution represented by this object. Implements the
IConstraintViolationSetComparator interface.
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2. SetCrowdingComparator: Implements the Comparator interface in
order to compare two SolutionSet objects based on their assigned
crowding distance values.

3. SetRankComparator: Implements the Comparator interface in order
to compare two SolutionSet objects based on their rank. Necessary
for the SetCrowdingComparator class.

Lemma E.1

Let y1,y2 € R* and 6 € D = [0, arctan( kl =)) hold true. Let K(A(J)) be the

k-edged cone induced by the matriz A(d) € R’”k defined as in emmple and
let a;(0) be the i-th row vector of K(A(d)). Then does y1 <i(a(s)) Y2 hold
true iff

Vie{l,2,...,k}: (y1,a:(0)) < (y2,a;(0)),
Jie{1,2,...,k}: (Y1, a;(0)) < (y2,a;(9)),
holds true.

Proof:  Let y; < (a()) y2 hold true. Since K (A()) is pointed and convex
it follows with corollarypoint 2.(ii) that this is equal to y1 =k (a(s)) Y2 and
Y1 # y2 holding true. With definition of a polyhedral cone and definition
of our ordering relation, this again is equivalent to

k
yo—y1 € [\ Hi(A(0)) and g1 # g =
=1

Vie {1,2,. ) Sk} (o —wy1,a(0)) >0 and  y; # yo —
Vie{l,2,....k}: (y2,ai(6)) = (y1,ai(6)) >0 and y1 £y =
Vi € {1a27 okt (Y2,ai(0)) = (y1,ai(9)) and  y1 # ya.

This equals the assertion. |
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