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Summary.

Ontologies may help to facilitate the finding and use of Web information. How-
ever, the engineering of an ontology may turn out expensive and time-consuming.
Therefore, we exploit ontology learning techniques that automate ontology engi-
neering to some extent. In this chapter, we focus on the learning of the taxonomic
backbone of ontologies, presenting a survey on algorithms as well as some new
ideas that consider the structure of existing ontology parts. Eventually, we describe
an evaluation of our proposal and give concrete results.

1.1 Introduction

The Web in its current form is an impressive success with a growing number of
users and information sources. However, the growing complexity of the Web is not
reflected in the current state of Web technology. The heavy burden of accessing,
extracting, interpretating and maintaining information is left to the human user. Tim
Berners-Lee, the inventor of the WWW, coined the vision of a Semantic Web in
which background knowledge on the meaning of Web resources is stored through
the use of machine-processable (meta-)data. The Semantic Web should bring struc-
ture to the content of Web pages, being an extension of the current Web, in which
information is given a well-defined meaning. Thus, the Semantic Web will be able
to support automated services based on these descriptions of semantics. These de-
scriptions are seen as a key factor to finding a way out of the growing problems of
traversing the expanding Web space, where most Web resources can currently only
be found through syntactic matches (e.g., keyword search), providing a new level of
Web Intelligence.

Ontologies have shown to be the right answer to these problems by providing a
formal conceptualization of a particular domain that is shared by a group of people.
Thus, in the context of the Semantic Web, ontologies describe domain theories for
the explicit representation of the semantics of the data. The Semantic Web relies
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heavily on these formal ontologies that structure underlying data enabling com-
prehensive and transportable machine understanding. Though ontology engineering
tools have matured over the last decade, the manual building of ontologies still re-
mains a tedious, cumbersome task which can easily result in a knowledge acquisi-
tion bottleneck. The success of the Semantic Web strongly depends on the prolifer-
ation of ontologies, which requires that the engineering of ontologies is completed
quickly and easily. When using ontologies as a basis for Semantic Web applica-
tions, one has to face exactly this issue and in particular questions about develop-
ment time, difficulty, confidence and the maintenance of ontologies. Thus, what one
ends up with is similar to what knowledge engineers have dealt with over the last
two decades when elaborating methodologies for knowledge acquisition or work-
benches for defining knowledge bases [1.24, 1.25]. A method which has proven
to be extremely beneficial for the knowledge acquisition task is the integration of
knowledge acquisition with machine learning techniques

In this chapter we focus on an essential part of ontology engineering, namely the
development of the taxonomic backbone of the ontology. The purpose of the chapter
is to give a survey of existing work on learning taxonomic relations from texts and
an example of how such learning may be performed and evaluated.

The article is organized as following. We start with two survey on existing work
(also cf. [1.17]). We consider symbolic (Section 1.2) and statistics-based approaches
(Section 1.3). The trade-off between the two is that statistics-based approaches al-
low for better scaling, but symbolic approaches might eventually turn up being more
precise. Therefore, we aim at a reconciliation between the two paradigms and pro-
pose new algorithms for taxonomy learning including existing taxonomic relations
as background knowledge (Section 1.4). The Sections 1.5 through 1.7 will focus on
the evaluation of algorithms for ontology learning and elucidate the evaluation with
a typical Web scenario. In particular, Section 1.5 introduces the overall setting that
we used as an example for evaluating the learning of taxonomies, presenting the in-
put data for our learning method. Section 1.6 shows how to perform evaluation and
finally Section 1.7 gives the results we have obtained so far.

1.2 Survey of Symbolic Approaches

1.2.1 Extraction of Taxonomic Relations

The idea of using lexico-syntactic patterns in the form of regular expressions for
the extraction of semantic relations, in particular taxonomic relations has been in-
troduced by Hearst [1.7]. Pattern-based approaches in general are heuristic methods
using regular expressions that originally have been successfully applied in the area
of information extraction (see [1.9]). In this lexico-syntactic ontology learning ap-
proach the text is scanned for instances of distinguished lexico-syntactic patterns
that indicate a relation of interest, e.g. the taxonomic relation. Thus, the underlying
idea is very simple: Define a regular expression that captures re-occurring expres-
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sions and map the results of the matching expression to a semantic structure, such
as taxonomic relations between concepts.

Example. This examples provides a sample pattern-based ontology extraction sce-
nario. For example, in [1.7] the following lexico-syntactic pattern is considered

: : :NPf; NPg � f; g or other NP : : :

When we apply this pattern to a sentence it can be inferered that the NP’s re-
ferring to concepts on the left of or other are sub concepts of the NP referring to a
concept on the right. For example from the sentence

Bruises, wounds, broken bones or other injuries are common.

we extract the taxonomic relations (BRUISE,INJURY), (WOUND,INJURY),
and, (BROKEN–BONE,INJURY).

In [1.7] the patterns have been defined manually, which is a time-consuming
and error-prone task. In [1.19] the work proposed by [1.7] is extended by using a
symbolic machine learning tool to refine lexico-syntactic patterns. In this context
the PROMETHEE system has been presented that supports the semi-automatic ac-
quisition of semantic relations and the refinement of lexico-syntactic patterns.

Assadi’s work [1.1] reports a practical experiment of construction of a regional
ontology in the field of electric network planning. He describes a clustering ap-
proach that combines linguistic and conceptual criteria. As an example he gives the
pattern <NP, line> which results in two categorizations by modifiers. The first cat-
egorization is motivated by the function of structure modifiers, resulting
in a clustering of connection line, dispatching line and transport
line (see Table 1.1). For the other concepts the background knowledge lacks ade-
quate specifications such that further categorizations could have been proposed.

Table 1.1. Example Categorization

A proposal categorization The other candidate terms
connection line mountain line
dispatching line telecommunication line

transport line input line

Faure and Nedellec [1.3] have presented a cooperative machine learning system
called ASIUM which is able to acquire taxonomic relations from syntactic parsing.
The ASIUM system is based on a conceptual clustering algorithm. Basic clusters
are formed on head words that occur with the same verb after the same preposition.
ASIUM successively aggregates clusters to form new concepts and the hierarchies
of concepts form the ontology.

An ontology learning system where the different techniques have been applied
to dictionary definitions in the context of the insurance and telecommunication do-
mains is described in [1.12, 1.16]. An important aspect in this system and approach
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is that existing concepts are included in the overall process. Thus, in contrast to
[1.7, 1.19] the extraction operations have been performed on the concept level, thus,
patterns have been directly matched onto concepts. Thus, the system is, besides ex-
tracting taxonomic relations from scratch, able to refine existing relations and refer
to existing concepts.

1.2.2 Refinement of Taxonomic Relations

Hahn and Schnattinger [1.5] introduced a methodology for the maintenance and re-
finement of domain-specific taxonomies. An ontology is incrementally updated as
new concepts are acquired from real-world texts. The acquisition process is centered
around linguistic and conceptual “quality” of various forms of evidence underlying
the generation and refinement of concept hypotheses. In particular they consider se-
mantic conflicts and analogous semantic structures from the knowledge base into the
ontology in order to determine the quality of a particular proposal. Thus, they extend
an existing ontology with concepts and taxonomic relations between concepts.

The system Camille1 was developed as a natural language understanding sys-
tem, e.g. when the parser comes across words that it does not know, Camille tries
to infer whatever it can about the meaning of the unknown word [1.6]. If the un-
known word is a noun, semantic constraints on slot-fillers provided by verbs give
useful limitations about what the noun could mean. The meaning of a noun can
be derived, because constraints are associated with verbs. Learning unknown verbs
is more difficult, thus, verb acquisition has been the main focus of the research
on Camille. Camille was tested on several real-world domains within information
extraction tasks (MUC), where the well-known scoring methods precision and re-
call, taken from the information retrieval community, have been calculated. For the
lexical acquisition task recall is defined as the precentage of correct hypobook. A
hypobook was counted as correct if one of the concepts in the hypobook matched
the target concept. Precision is the total number of correct concepts divided by the
number of concepts generated in all the hypobook. Camille has achieved a recall of
42% and a precision of 19% on a set of 50 randomly-selected sentences containing
17 different verbs.

1.3 Survey of Statistics-based Approaches

In this section we will consider those approaches to taxonomy learning that infer the
semantics of a new concept and relate it to concepts already present in the ontology
on the basis of statistical data about cooccurrence behavior of word(s) expressing
these concepts. The main idea common to these approaches is that the semantic
identity of a word is reflected in its distribution over different contexts, so that the
meaning of a word is represented in terms of words cooccurring with it and the
frequencies of the cooccurrences. This manner of representing semantics obviates

1 Contextual Acquisition Mechanism for Incremental Lexeme Learning
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the need to prepare special resources to process it, such as lexico-syntactic patterns,
and promises to make the process of taxonomy learning fully automatic. However,
the main problem for these approaches is the notorious data sparseness, i.e. the fact
corpus data available on words of interest may not be indicative of their meaning.
Correspondingly, the major efforts here are spent on the development of ways to
sort and effectively use available cooccurrence data.

1.3.1 Statistics-based Extraction of Taxonomic Relations

Distributional data about words may be used to build concepts and their embedding
into a hierarchy “from scratch”. In this case a certain clustering technique is ap-
plied to distributional representations of concepts. Clustering can be defined as the
process of organizing objects into groups whose members are similar in some way
(see [1.11]). In general there are two major styles of clustering: non-hierarchical
clustering in which every object is assigned to exactly one group and hierarchi-
cal clustering, in which each group of size greater than one is in turn composed of
smaller groups. Hierarchical clustering algorithms are preferable for detailed data
analysis. They produce hierarchies of clusters, and therefore contain more informa-
tion than non-hierarchical algorithms. However, they are less efficient with respect
to time and space than non-hierarchical clustering 2. [1.18] identify two main uses
for clustering in natural language processing3: The first is the use of clustering for
exploratory data analysis, the second is for generalization. Seminal work in this
area of so-called distributional clustering of English words has been described in
[1.20]. Their work focuses on constructing class-based word co-occurrence models
with substantial predictive power. In the following the existing and seminal work
of applying statistical hierarchical clustering in NLP (see [1.20]) is adopted and
embedded into the framework.
Baseline Hierarchical Clustering. The tree of hierarchical clusters can be pro-
duced either bottom-up, by starting with individual objects and grouping the most
similar ones, or top-down, whereby one starts with all the objects and divides them
into groups.

Algorithm 1 given in the following (adopted from [1.18]) describes the bottom-
up algorithm. It starts with a separate cluster for each object. In each step, the two
most similar clusters are are determined, and merged into a new cluster. The al-
gorithm terminates when one large cluster containing all objects has been formed.
The most important aspect in clustering is the selection of an appropriate computa-
tion strategy and a similarity measure. We will introduce a number of computation
strategies (e.g. single-link, complete link or group-average) and similarity measures
(e.g. cosine, Kullback Leibler) later in this subsection.

Algorithm 2 given in the following (adopted from [1.18]) roughly describes the
top-down algorithm. It starts out with one cluster that contains all objects. The al-
gorithm then selects the least coherent cluster in each iteration and splits it. Clusters
2 Hierarchical clustering has in the average quadratic time and space complexity.
3 A comprehensive survey on applying clustering in NLP is also available in the EAGLES

report, see http://www.ilc.pi.cnr.it/EAGLES96/rep2/node37.htm
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Algorithm 1 Hierarchical Clustering Algorithm — Bottom-Up
Require: a set X = fx1; : : : ; xng of objects, n as the overall number of objects,

a function sim: 2X � 2X ! IR
Ensure: the set of clusters K (or cluster hypothesis)

for i:=1 to n do
ki := xi.

end for
K := fk1; : : : ; kng.
j := n+ 1.
while jKj > 1 do
(kn1; kn2) :=arg max(ku;kv)2K�Ksim(ku; kv).
kj = kn1 [ kn2:
K := Knfkn1; kn2g [ fkjg:
j := j + 1

end while

with similar objects are more coherent than clusters with dissimilar objects. Thus,
the strategies single-link, complete link and group-average can also serve as mea-
sures of cluster coherence (function coh) in top-down clustering.

Algorithm 2 Hierarchical Clustering Algorithm — Top-Down
Require: a set X = fx1; : : : ; xng of objects, n as the overall number of objects,

a function coh: 2X �! IR
a function split: 2X � 2X ! 2X

K := fXg(= k1)
j := 1
while 9ki 2 Ks:t:jkij > 1 do
ku := arg minkv2Kcoh(kv)
(kj+1; kj+2) = split(ku)
K := K n fkug [ fkj+1; kj+2g
j := j + 2.

end while

The reader may note that splitting a cluster (function split) is also a clustering
task (namely the task of finding two sub-clusters of a cluster). Thus, there is a recur-
sive need for a second clustering algorithm. Any clustering algorithm may be used
for the splitting operation, including bottom-up algorithms.

As mentioned earlier an important aspect is the selection of an appropriate com-
putation strategy and a similarity measure. In the following the most important ones
are presented.

Computation strategies used in hierarchical clustering. In this work it is focused
on the three functions single link, complete link and group-average that have shown
to perform good in statistical hierarchical clustering. Their advantages and disad-
vantages a shortly introduced. The interested reader is referred to a more detailed
introduction given in [1.11]. Measuring similarity based on single linkage means
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that the similarity between two clusters is the similarity of the two closest objects in
the clusters. Thus, one has to search over all pairs of objects that are from the two
different clusters and select the pair with the greatest similarity. Single-link clus-
tering have clusters with local coherence. If similarity is based on complete link-
age the similarity between two clusters is computed based on the similarity of the
two least similar members. Thus, the similarity of two clusters is the similarity of
their two most dissimilar members. Complete-link clustering has a similarity func-
tion that focuses on global cluster quality. The last similarity function considered is
group-average. Group average may be considered as a bit of both, single linkage
and complete linkage. The criterion for merges is the average similarity between
members.

Similarity Measures. As mentioned earlier clustering requires some kind of similar-
ity measure that is computed between objects using the functions described above.
Different similarity measures (e.g a good overview is given in [1.13]) and their eval-
uation [1.2] are available from the statistical natural language processing commu-
nity . The two most important measures within our work, namely the cosine measure
(see Definition 1.3.1) and the kullback leibler divergence (see Definition 1.3.2) are
briefly introduced. The cosine measure and the kullback leibler divergence proved
to be the most important ones in the area of statistical NLP.

Definition 1.3.1. The cosine measure or normalized correlation coefficient between
two vectors x and y is given by

cos(x;y) =

P
x2X;y2Y xyqP

x2X x2
P

y2Y y2
(1.1)

Using the cosine measure it is computed how well the occurrence of a specific
lexical entry correlates in x and y and then divided by the Euclidean length of the
two vectors to scale for the magnitude of the individual length of x and y.

Though, the following measure is not a metric in the strong sense, it has been
quite successfully applied in statistical NLP. The kullback leibler divergence has its
roots in information theory and is defined as follows:

Definition 1.3.2. For two probability mass functions p(x), q(x) their relative en-
tropy is computed by

D(pjjq) =
X
x2X

p(x)log
p(x)

q(x)
(1.2)

The kullback leibler divergence is a measure of how different two probability dis-
tributions (over the same event space) are. The kullback leibler divergence between
p and q is the average number of bits that are wasted by encoding events from a
distribution p with a code based on a not-quite-right distribution q. The quantity
is always non-negative, and D(pjjq) = 0 iff p = q. An important aspect is that
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kullback leibler divergence is not defined for p(X) > 0 and q(x) = 0. In cases
where propability distributions of objects have many zeros, the usage of bottom-up
clusering becomes nearly impossible. Thus, for using kullback leibler divergence
top-down clustering is the more natural choice.

Example. To explain the similarity measures a small example is given in the fol-
lowing. Imagine a simple concept-concept matrix as given by Table 1.2 consisting
of 5 concepts.

Table 1.2. Example Similarity Matrix

ID HOTEL ACCOMODATION ADDRESS WEEKEND TENNIS

HOTEL - 14 7 4 6
ACCOMODATION 14 - 11 2 5
ADDRESS 7 11 - 10 3
WEEKEND 4 2 10 - 5
TENNIS 6 5 3 5 -

Using the cosine measure one may compute the similarity between the concepts
HOTEL and ACCOMODATION as follows. The vector of the concept HOTEL is given
by xT = (0; 14; 7; 4; 6), the vector of the concept ACCOMODATION is given by yT

= (14; 0; 11; 2; 5).

cos(x;y) =
7 � 11 + 4 � 2 + 6 � 5

101 � 150
� 0:93 (1.3)

For computing the Kullback Leibler divergence one has first calculate the
probability mass functions for each concept and its corresponding frequencies.
The probability mass functions for HOTEL are given as (0; 0:45; 0:22; 0:13; 0:19)
the probability mass functions for the concept ACCOMODATION are given as
(0:44; 0; 0:34; 0:06; 0:16)

Based on these values one can compute the kullback leibler divergence as fol-
lows

D(HOTELjjACCOMODATION) = 0:22 �
0:22

0:34
+ : : :+0:19 �

0:19

0:16
� 0:65(1.4)

We refer the reader to [1.18] where a detailed introduction into further similarity
measures between two sets X and Y such as the matching coefficient X \ Y , the
dice coefficient 2jX\Y j

jXj+jY j , the Jaccard or Tanimoto coefficient jX\Y j
jX[Y j or the overlap

coefficient jX\Y j
min(jXj;jY j) is given.

In the area of information retrieval some work of automatically deriving a hier-
archical organization of concepts from a set of documents without use of training
data or standard clustering techniques have been presented by Sanderson and Croft
[1.22]. They use a subsumption criterion to organize the salient words and phrases
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extracted from documents hierarchically. In [1.10] a novel statistical latent class
model is used for text mining and interactive information access. In his work the au-
thor introduces a Cluster-Abstraction Model (CAM) that is purely data-driven and
utilizes context-specific word occurrence statistics. CAM extracts hierarchical rela-
tions between groups of documents as well as an abstract organization of keywords.

1.3.2 Statistics-based Refinement of Taxonomic Relations

Statistical data about concepts gathered from text is also used to augment an exist-
ing ontology with new concepts. In this case, an automatic classification method is
applied to determine a likely place of the new concepts in the taxonomy.

Previous approaches to automatically augmenting an ontology made use of a
number of classification techniques which can be summarized according to the fol-
lowing methods: the k nearest neighbor method (kNN), the category-based method
and the centroid-based method. They all operate on vector-based semantic repre-
sentations, which describe the meaning of a word of interest (tar-get word) in terms
of counts of its coocurrence with context words, i.e., words appearing within some
delineation around the target word. The key differences between the methods stem
from different underlying ideas about how a semantic class of words is represented,
i.e. how it is derived from the original cooccurrence counts, and, correspondingly,
what defines membership in a class. The kNN method is based on the assumption
that membership in a class is defined by the new instance’s similarity to one or more
individual members of the class. Thereby, similarity is defined by a similarity score
as, for instance, by the cosine between cooccurrence vectors. To classify a new in-
stance, one determines the set of k training instances that are most similar to the new
instance. The new instance is assigned to the class that has the biggest number of its
members in the set of nearest neighbors. In addition, the classification decision can
be based on the similarity measure between the new instance and its neighbors: each
neighbor may vote for its class with a weight proportional to its closeness to the new
instance. When the method is applied to augment a thesaurus, a class of training in-
stances is typically taken to be constituted by words belonging to the same synonym
set, i.e. lexicalizing the same concept (e.g., [1.8]). A new concept (henceforth - tar-
get concept) is assigned in the ontology as a hyponym to that concept (candidate
hyperonym) that has the biggest number of its hyponyms among nearest neighbors.

The major disadvantage of the kNN method that is often pointed out is that it
involves significant computational expenses to calculate similarity between the new
instance and every instance of the training set. A less expensive alternative is the
category-based method (e.g., [1.21]). Here the assumption is that membership in a
class is defined by the closeness of the new item to a generalized representation of
the class. The generalized representation is built by adding up all the vectors con-
stituting a class and normalising the resulting vector to unit length, thus computing
a probabilistic vector representing the class. To determine the class of a new word,
its unit vector is compared to each vector representing a class. Thus the number
of calculations is reduced to the number of classes. Thereby, a class representation
may be derived from a set of vectors corresponding to a synonynom set or a set of
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vectors corresponding to a synonym set and some or all subordinate synonym sets.
In the straightforward case of standard kNN a class is represented by its synonym
set. The other extreme is to represent the class in the same manner as is used, e.g., in
[1.21] to represent a concept of a thesaurus. Here a class vector would be built from
data on all hyponyms of the corresponding concept; new words found similar to this
vector would be assigned to that class that lexicalizes the corresponding concept.
Another way to prepare a representation of a word class is what may be called the
centroid-based approach (e.g., [1.20]). It is almost exactly like the category-based
method, the only difference being that the vector representing a class is computed
slightly differently. All n vectors corresponding to class members are added up and
the resulting vector is divided by n to compute the centroid between the n vectors.
As in the case with the category-based approach, one has the same range of choices
as to the number of hyponyms of a candidate hyperonym that is used to form a class
representation.

1.4 Making use of the structure of the ontology

Existing work in the area of taxonomy learning demonstrated that the symbolic and
the statistical approaches have mutually tallying strong points: while the former of-
fers robustness and precision, the latter is characterized by scalability. Accordingly,
one can observe a recently increased interest to the hybrid approaches to the task of
taxonomy learning (e.g., [1.4]).

In the present paper we will examine possibilities to combine the symbolic ap-
proach to represent concepts - the information about the taxonomic organization of
an ontology - with the statistical data on them obtained from a corpus in order to
increase the accuracy of automatically augmenting the ontology with new concepts.

1.4.1 Tree descending algorithm

One way to factor the taxonomic information into the conceptification decision is
to employ the tree-descending” conceptification algorithm, which is a familiar tech-
nique in text categorization. The principle behind this approach is that the seman-
tics of every concept in the ontology tree retains some of the semantics of all its
hyponyms in such a way that the upper the concept, the more relevant semantic
characteristics of its hyponyms it reflects. It is thus feasible to determine the con-
cept of a new word by descending the tree from the root down to a leaf. The se-
mantics of concepts in the ontology tree can be represented by means of one of the
three methods to represent a concept described in Section 1.3. At every tree node,
the decision which path to follow is made by choosing the child concept that has
the biggest distributional similarity to the new word. After the search has reached
a leaf, the new word is assigned to that synonym set, which lexicalizes the concept
that is most similar to the new word. This manner of search offers two advantages.
First, it allows to gradually narrow down the search space and thus save on com-
putational expenses. Second, it ensures that, in a conceptification decision, more
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relevant semantic distinctions of potential conceptes are given more preference than
less relevant ones.

1.4.2 Tree ascending algorithm

Another way to use information about inter-concept relations contained in an on-
tology is to base the conceptification decision on the combined measures of distri-
butional similarity and taxonomic similarity (i.e., semantic similarity induced from
the hierarchical organization of the ontology) between nearest neighbors. Suppose
words in the nearest neighbors set for a given new word, e.g., trailer, all belong
to different conceptes as in the following conceptification scenario: box (similarity
score to trailer: 0.8), house (0.7), barn (0.6), villa (0.5) (Figure 1.1). In this case,
the kNN method will conceptify trailer into the concept CONTAINER, since it
appears to have biggest similarity to box. However, it is obvious that the most likely
concept of trailer is in a different part of the ontology: in the nearest neighbors set
there are three words which, though not belonging to one concept, are semantically
close to each other. It would thus be safer to assign the new word to a concept that
subsumes one or all of the three semantically similar neighbors. For example, the
concepts DWELLING or BUILDING could be feasible candidates in this situa-
tion.

BUILDING

COUNTRY_HOUSE
villa (0.5)

FARM_BUILDING
barn (0.6)

DWELLING
house (0.7)

CONTAINER
box (0.9)

ROOT

BUILDING

COUNTRY_HOUSE
villa (0.5)

FARM_BUILDING
barn (0.6)

DWELLING
house (0.7)

CONTAINER
box (0.9)

ROOT

Fig. 1.1. A semantic conceptification scenario

The crucial question here is how to calculate the voting weight for these two
concepts to be able to decide which of them to choose or whether to prefer the con-
cept of box. Clearly, one cannot sum or average the distributional similarity mea-
sures of neighbors below a candidate concept. In the first case the root will always
be the best-scoring concept. In the second case the score of the candidate concept
will always be smaller than the score of its biggest-scoring hyponym. We propose
to estimate the voting weight for such candidate concepts based on taxonomic sim-
ilarity between relevant nodes. The taxonomic similarity between two concepts is
measured according to the procedure elaborated in [1.15]. Assuming that a taxon-
omy is given as a tree with a set of nodes N , a set of edges E � N �N , a unique
root ROOT 2 N , one first determines the least common superconcept of a pair of
concepts a; b being compared.
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It is defined by

lcs(a; b) := �c 2 N : Æ(a; c) + Æ(b; c) + Æ(root; c) is minimal (1.5)

where Æ(a; b) describes the number of edges on the shortest path between a and b.
The taxonomic similarity between a and b is then given by


(a; b) :=
Æ(ROOT; c)

Æ(a; c) + Æ(b; c) + Æ(ROOT; c)
(1.6)

where c = lcs(a; b). 
 is such that 0 � 
 � 1, with 1 standing for the maximum
taxonomic similarity. 
 is directly proportional to the number of edges from the
least common superconcept to the root, which agrees with the intuition that a given
number of edges between two concrete concepts signifies greater similarity than the
same number of edges between two abstract concepts.

The first method to calculate the voting weight for a candidate concept is to
sum the distributional similarity measures of its hyponyms to the target word t each
weighted by the taxonomic similarity measure between the hyponym and the candi-
date node:

W (n) := �h2Insim(t; h) �
(n; h) (1.7)

where In is the set of hyponyms below the candidate concept n, sim(t; h) is
the distributional similarity between a hyponym h and the word to be conceptified
t, and 
(n; h) is the taxonomic similarity between the candidate concept and the
hyponym h.

1.5 Data and Settings of the Experiments

The machine-readable ontology we used in this study was derived from GETESS
[1.23], an ontology for the tourism domain. Each concept in the ontology is as-
sociated with one lexical item, which expresses this concept. From this ontol-
ogy, word classes were derived in the following manner. A class was formed by
words lexicalizing all child concepts of a given concept. For example, the concept
CULTURAL EVENT in the ontology has successor concepts PERFORMANCE,
OPERA, FESTIVAL, associated with words performance, opera, festival corre-
spondingly. Though these words are not synonyms in the traditional sense, they are
taken to constitute one semantic class, since out of all words of the ontology’s lexi-
con their meanings are closest. The ontology thus derived contained 1052 words and
phrases (out of these, 756 cropped up in the corpus at least once) grouped into 182
classes. The corpus from which distributional data about the words were obtained
was extracted from a web site advertising hotels around the world. It contained about
6 megabytes of text (988 000 words).

Collection of distributional data was carried out in the following settings. The
preprocessing of corpus included a very simple stemming (most common inflections
were chopped off; irregular forms of verbs, adjectives and nouns were changed to
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their first forms). The context of usage was delineated by a window of 3 words on
either side of the target word, without transgressing sentence boundaries. In case a
stop word other than a proper noun appeared inside the window, the window was
accordingly expanded. The stoplist included 50 most frequent words of the British
National Corpus, words listed as function words in the BNC, and proper nouns not
appearing in the sentence-initial position. The obtained frequencies of cooccurrence
were weighted by the 1+log weight function. The distributional similarity was mea-
sured by means of three different similarity metrics: the Jaccard’s coefficient, L1
distance, and the skew divergence, a weighted version of the Kullback-Leibler di-
vergence (cf., [1.14]).

1.6 Evaluation method

The performance of the algorithms was assessed in the following manner. For each
algorithm, we held out a single word of the ontology as the test case, and trained the
system on the remaining 755 words. We then tested the algorithm on the held-out
vector, observing if the assigned concept for that word coincided with its original
concept in the ontology, and counting the number of correct conceptifications (“di-
rect hits”). This was repeated for each of the words of the ontology.

However, given the intuition that a semantic conceptification may not be simply
either right or wrong, but rather of varying degrees of appropriateness, we believe
that a clearer idea about the quality of the conceptifiers would be given by an evalu-
ation method that takes into account “near misses” as well. We therefore evaluated
the performance of the algorithms also in terms of how close the proposed concept
for a test word was to the correct concept. For this purpose we measured the taxo-
nomic similarity between the assigned and the correct conceptes of words so that the
appropriateness of a particular conceptification was estimated on a scale between 0
and 1, with 1 signifying assignment to the correct concept. Thus this measure of ac-
curacy of conceptifications was compatible with the counting of direct hits, which,
as will be shown later, may be useful for evaluating the methods. In the following,
the evaluation of the conceptification algorithms is reported both in terms of the av-
erage of direct hits and the average of the taxonomy similarity between the assigned
and the correct conceptes (“direct+near hits”) over all words in the ontology.

To have a benchmark for evaluation of the algorithms, a baseline was calculated,
which was the average hit value a given word gets, when its concept label is chosen
at random. The baseline for direct hits was estimated at 0.012; for direct+near hits,
it was 0.15741.

1.7 Results

We first conducted experiments evaluating performance of the three standard classi-
fiers. To determine the best version for each particular classifier, only those param-
eters were varied that, as described above, we deemed to be critical for a specific
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algorithm in the setting of ontology augmentation. Other parameters can have a se-
rious impact on the absolute quality of their performance, but we, however, were
interested in comparing the classifiers relative to each other.

In order to get a view on how the accuracy of the algorithms was related to the
amount of available distributional data on the target word, all words of the ontology
were divided into three groups depending on the amount corpus data available on
them (see Table 1.3). The amount of distributional data for a word (the frequency in
the left column) is the total of frequencies of its context words.

Table 1.3. Distribution of words of the ontology into frequency ranges

Frequency range # words in the range
0-40 274

40-500 190
>500 292

The results of the evaluation of the methods are summarized in the tables be-
low. Rows specify the metrics used to measure distributional similarity and columns
specify frequency ranges. Each cell describes the average of direct+near hits / the
average of direct hits over words of a particular frequency range and over all words
of the ontology. The statistical significance of the results was measured in terms of
the one-tailed chi-square test.

kNN. The evaluation of the method was conducted with k = 1; 3; 5; 7; 10; 15; 20; 25;
and 30. The accuracy of conceptifications increased with the increase of k. However,
starting with k = 20 the increase of k yielded only insignificant improvement. Ta-
ble 1.4 describes results of evaluation of kNN using 30 nearest neighbors, which
was found to be the best version of kNN.

Table 1.4. kNN, k=304

0-40 40-500 >500 Overall
JC .33773 /.17142 .33924 /.15384 .40181 /.12457 .37044 /.15211
L1 .33503 /.16428 .38424 /.21025 .38987 /.14471 .37636 /.17195
SD .31505 /.14285 .36316 /.18461 .45234 /.17845 .38806 /.17063

Category-based method. To determine the best version of this method, we experi-
mented with the number of levels of hyponyms below a concept that were used to

3

Acronym Full name
JC Jacquard Coefficient
L1 L1 Metric
SD Skew Divergence
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build a concept vector). The best results were achieved when a concept was repre-
sented by data from its hyponyms at most three levels below it (Table 1.5).

Table 1.5. Category-based method, 3 levels

0-40 40-500 >500 Overall
JC .26918 /.12142 .34743 /.17948 .47404 /.28282 .37554 /.2023
L1 .27533 /.125 .41736 /.25128 .56711 /.38383 .43242 /.26190
SD .28589 /.12857 .34932 /.18461 .51306 /.31649 .39755 /.21957

Centroid-based method. As in the case with the category-based method, we varied
the number of levels of hyponyms below the candidate concept. Table 1.6 details
results of evaluation of the best version of this method (a concept is represented by
3 levels of its hyponyms).

Table 1.6. Centroid-based method, 3 levels

0-40 40-500 >500 Overall
JC .17362 /.07831 .18063 /.08119 .30246 /.14434 .22973 /.10714
L1 .21711 /.09793 .30955 /.13938 .37411 /.1687 .30723 /.12698
SD .22108 /.09972 .23814 /.11374 .36486 /.16147 .28665 /.10714

Comparing the three algorithms we see that overall, kNN and the category-based
method exhibit comparable performance (with the exception of measuring similar-
ity by L1 distance, when the category-based method outperforms kNN by a margin
of about 5 points; statistical significance p < 0:001). However, their performance
is different in different frequency ranges: for lower frequencies kNN is more accu-
rate (e.g., for L1 distance, p < 0:001). For higher frequencies, the category-based
method improves on kNN (L1, p < 0:001). The centroid-based method exhibited
performance, inferior to both those of kNN and the category-based method.

Tree descending algorithm. In experiments with the algorithm, candidate concepts
were represented in terms of the category-based method, 3 levels of hyponyms,
which proved to be the best generalized representation of a concept in previous
experiments. Table 1.7 specifies the results of its evaluation.

Table 1.7. Tree descending algorithm

0-40 40-500 >500 Overall
JC .00726 /0 .01213 /.00512 .02312 /.0101 .014904 /.005291
L1 .08221 /.03214 .05697 /.02051 .21305 /.11111 .128844 /.060846
SD .08712 /.03214 .07739 /.03589 .16731 /.06734 .011796 /.047619
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Its performance turns out to be much worse than that of the standard meth-
ods. Both direct+near and direct hits scores are surprisingly low, for 0-40 and
40-500 much lower than chance. This can be explained by the fact that some
of top concepts in the tree are represented by much less distributional data than
other ones. For example, there are less than 10 words that lexicalize the top con-
cepts MASS CONCEPT and MATHEMATICAL CONCEPT and all of their
hyponyms (compare to more than 150 words lexicalizing THING and its hyponyms
up to 3 levels below it). As a result, at the very beginning of the search down the
tree, a very large portion of test words was found to be similar to such concepts.

Tree ascending algorithm. The experiments were conducted with the same number
of nearest neighbors as with kNN. Table 1.8 describes the results of evaluation of
the best version (equation 1.7, k = 15).

Table 1.8. Tree ascending algorithm, voting weight according to equation 1.7, k=15.

0-40 40-500 >500 Overall
JC .32112 /.075 .33553 /.0923 .40968 /.08754 .36643 /.08597
L1 .33369 /.07142 .34504 /.0923 .42627 /.09764 .38005 /.08862
SD .31809 /.06785 .32489 /.05128 .45529 /.11111 .38048 /.08201

There is no statistically significant improvement on kNN overall, or in any of the
frequency ranges. The algorithm favored more upper concepts and thus produced
about twice as few direct hits than kNN. At the same time, its direct+near hits score
was on par with that of kNN! This algorithm thus produced much more near hits
than kNN, what can be interpreted as its better ability to choose a superconcept of
the correct concept. Based on this observation, we combined the best version of the
tree ascending algorithm with kNN in one algorithm in the following manner. First
the former was used to determine a superconcept of the concept for the new word
and thus to narrow down the search space. Then the kNN method was applied to pick
a likely concept from the hyponyms of the concept determined by the tree ascending
method. Table 1.9 specifies the results of evaluation of the proposed algorithm.

Table 1.9. Tree ascending algorithm combined with kNN, k=30

0-40 40-500 >500 Overall
JC .34444 /.16428 .35858 /.14358 .41260 /.10774 .38215 /.14021
L1 .35147 /.16428 .36545 /.15384 .41086 /.11784 .38584 /.14682
SD .32613 /.13571 .36485 /.1641 .45732 /.16498 .39456 /.1574

The combined algorithm demonstrated improvement both on kNN and the tree
ascending method of 1 to 3 points in every frequency range and overall for di-
rect+near hits (except for the 40-500 range, L1). The improvement was statistically
significant only for L1, > 500 (p = 0:05) and for L1, overall (p = 0:011). For other
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similarity measures and frequency ranges it was insignificant (e.g., for JC, overall,
p = 0:374; for SD, overall, p = 0:441). The algorithm did not improve on kNN in
terms of direct hits. The hits scores set in bold in Table 1.9 are those which are higher
than those for kNN in corresponding frequency ranges and similarity measures.

1.8 Conclusion

In this section we have surveyed symbolic and statistical means for extracting tax-
onomic relations from text. We have proposed new algorithms that combine the ad-
vantages of scalable statistical approaches with symbolic approaches that consider
background knowledge.

For this proposal we have shown how to evaluate learning approaches in a typ-
ical web setting. Though these first steps have not yet resulted in a significant im-
provement we may conjecture that with the further study of improvement of the
combination of of combined symbolic and statistical approaches we may arrive at
a good quality conceptification of unknown words. In particular, the aggregation of
such multiple approaches will yield a basis for multi-strategy learning as well as for
estimating the reliability of learned taxonomies — which is necessary in order to
embed these algorithms into actual ontology development environments like [1.25].

In particular, our study demonstrated that taxonomic similarity between near-
est neighbors, in addition to their distributional similarity to the new word, may be
a useful evidence on which conceptification decision can be based. We have pro-
posed a “tree ascending” conceptification algorithm which extends the kNN method
by making use of the taxonomic similarity between nearest neighbors. This algo-
rithm was found to have a very good ability to choose a superconcept of the correct
concept for a new word. On the basis of this finding, another algorithm was devel-
oped that combines the tree ascending algorithm and kNN in order to optimize the
search for the correct concept. Although only limited statistical significance of its
improvement on kNN was found, the results of the study indicate that this algorithm
is a promising possibility to incorporate the structure of a ontology into the deci-
sion as to the concept of the new word. In particular, we conjecture that the tree
ascending algorithm leaves a lot of room for improvements and combinations with
other algorithms like kNN. The tree descending algorithm, a technique widely used
for text categorization, proved to be much less efficient than standard conceptifiers
when applied to the task of augmenting a domain-specific ontology. Its poor perfor-
mance is due to the fact that in such a ontology there are great differences between
top concepts in the amount of distributional data used to represent them.

In order to have a better understanding of the role of different parameters on the
performance of these conceptifiers, they can be further studied on the material of
a large-scale ontology, where richer information about its structural organization is
available. Also study on further domains like organizational memories or genomics
let us expect fruitful results with regard to methods and applications. We antici-
pate that with further evaluation of combined symbolic/statistic approaches we may
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arrive at a good quality conceptification of unknown concepts. In particular, the ag-
gregation of several such approaches will yield a basis for multi-strategy learning as
well as for estimating the reliability of learned taxonomies - which is necessary for
speedy and efficient maintaining ontologies for the Web.
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