
1

Topic-based Selectivity Estimation for Hybrid
Queries over RDF Graphs

Andreas Wagner #1, Veli Bicer ∗2, Thanh Duc Tran #3

AIFB, Karlsruhe Institue of Technology
Karlsruhe, Germany

1 a.wagner@kit.edu, 3 ducthanh.tran@kit.edu
∗ IBM Research, Smarter Cities Technology Centre

Dublin, Ireland
2 velibice@ie.ibm.com

Abstract—The Resource Description Framework (RDF) has
become an accepted standard for describing entities on the Web.
Many such RDF descriptions are text-rich – besides structured
data, they also feature large portions of unstructured text. As a
result, RDF data is frequently queried using predicates matching
structured data, combined with string predicates for textual con-
straints: hybrid queries. Evaluating hybrid queries requires accu-
rate means for selectivity estimation. Previous works on selectivity
estimation, however, suffer from inherent drawbacks, reflected
in efficiency and effective issues. In this paper, we present a
general framework for hybrid selectivity estimation. Based on its
requirements, we study the applicability of existing approaches.
Driven by our findings, we propose a novel estimation approach,
TopGuess, exploiting topic models as data synopsis. This enables
us to capture correlations between structured and unstructured
data in a uniform and scalable manner. We study TopGuess in
theorical manner, and show TopGuess to guarantee a linear space
complexity w.r.t. text data size, and a selectivity estimation time
complexity independent from its synopsis size. In experiments
on real-world data, TopGuess allowed for great improvements in
estimation accuracy, without sacrificing runtime performance.

I. INTRODUCTION

The amount of RDF on the Web is large and rapidly
increasing. RDF contains descriptions of entities, with each
description being a set of triples: {〈s, p, o〉}. A triple associates
an entity (subject) s with an object o via a predicate p. A set
of triples forms a data graph. See Fig. 1 for a running example.

Text-rich Data. Many RDF descriptions are text-rich, i.e.,
contain large amounts of textual data. On the one hand,
structured RDF often comprises text via predicates such as
comment or description. Well-known examples include
the DBpedia1 or IMDB2 dataset. On the other hand, unstruc-
tured Web documents are frequently annotated with structured
data using, e.g., RDFa or Microformats.3 Such interlinked
documents can be seen as an RDF graph with document
texts as objects. For instance, the Wikidata project4 recently
introduced structured data to the entire Wikipedia corpus.

Conjunctive Hybrid Queries. The standard language for
querying RDF is SPARQL, which at its core features conjunc-
tive queries. These queries comprise a conjunction of query
predicates 〈s, p, o〉. Here, s, p and o may refer to a variable or

1http://dbpedia.org
2http://www.linkedmdb.org
3http://www.webdatacommons.org
4http://www.wikidata.org

a constant, i.e., an entity, a predicate or an object in the data.
Consider the following SPARQL query, cf. Fig. 1 and 2:

SELECT * WHERE {
?m title "Holiday" . ?m type Movie .
?m starring ?p . ?p name "Audrey" .
?p bornIn ?l . ?l name "Belgium" .
?p type Person }

Patterns in the WHERE clause represent a conjunction
of predicates that either match structured data (e.g., ?m
starring ?p) or keywords (e.g., ?p name "Audrey")
in texts – forming a hybrid query. Hybrid queries are highly
relevant for RDF stores with SPARQL fulltext extension,
e.g., LARQ5 or Virtuoso6, or databases with text search,
e.g., [1]. In fact, every SPARQL engine allowing FILTER
clauses on texts has to deal with hybrid queries. For instance,
?p name "Belgium" translates to ?p name ?name and
FILTER contains(?name, "Belgium").

Selectivity Estimation. For constructing a query plan,
optimizers rely on selectivity estimates in order to reduce
intermediate results. Aiming at minimal space and time com-
plexity, selectivity estimation techniques summarize the un-
derlying data. Common data synopses include histograms [2],
join synopses [3], tuple-graph synopses [4] or probabilistic
relational models [5], [6], [7] (PRM). For example, a PRM
approach relies on a Bayesian network (BN) as a synopsis,
where predicates are modeled as random variables, each with
a conditional probability distribution (CPD) associated, Fig. 3.
A selectivity estimation problem is formulated by calculating
the joint probability of all query predicates over a BN.

State-of-art selectivity estimation approaches exhibit a
trade-off between efficiency, synopsis size and effectiveness:
First, previous works restricted the dependency structure, i.e.,
only certain important correlations are captured in their syn-
opsis [6], [7]. This way, synopsis size and thereby estimation
time scaled to large datasets. Second, sample spaces for
random variables in a synopsis are required to be small, which
in turn led to a manageable overall synopsis size [5], [7].
Last, estimation via a PRM-based approach requires Bayesian
inferencing to compute the query probability. It is known that
such inferencing is NP-hard. Thus, approximative inferencing
techniques have been applied, trading estimation effectiveness
for efficiency [5], [6], [7].

5http://jena.sourceforge.net/ARQ/lucene-arq.html
6http://virtuoso.openlinksw.com

http://dbpedia.org
http://www.linkedmdb.org
http://www.webdatacommons.org
http://www.wikidata.org
http://jena.sourceforge.net/ARQ/lucene-arq.html
http://virtuoso.openlinksw.com

2

Such trade-offs are aggravated with regard to hybrid queries.
Here, selectivity estimation must allow for large string sample
spaces, due to string predicates that match any text value that
contains their keywords. Thus, sample spaces (e.g., Ω(Xname)
in Fig. 1) must comprise all words and phrases (sequences of
words) in the text. Synopsis size, however, grows exponentially
w.r.t. sample space size, as a synopsis needs to capture depen-
dencies between all elements in their sample spaces. Consider
the CPD in Fig. 3: if a single word in sample space Ω(Xname)
is added, the CPD requires |Ω(Xstarring)| · |Ω(Xtitle)| addi-
tional entries. In fact, every CPD comprising Xname grows
similarly, as it also needs to capture the dependencies induced
by the newly added word.

String synopses based on pruned suffix trees, Markov tables,
histograms or n-grams, have been introduced to approximate
the selectivity of single string predicates [8], [9], [10]. Target-
ing the rapid synopsis growth, in our previous work [7], we
proposed the integration of such string synopses in a BN for
summarizing string sample spaces, e.g., Ω(Xname). However,
one is again faced with a drastic trade-off between string syn-
opsis size, and overall estimation efficiency/effectiveness. For
instance, a string synopsis may use histograms for grouping
similar strings in buckets: [“Audrey”, “Belgium”], [“born”,
“British”], etc.. With less buckets being used, more informa-
tion is lost, due to poor coverage of the string values to appear
in the query – resulting in severe selectivity misestimates. In
fact, with fewer buckets, correlations between single words
respectively words and structured data are “washed out” and
may not be captured in the overall data synopsis. On the other
hand, with more fine-grained buckets, CPD size grows, thereby
requiring more space and time for, e.g., marginalization. These
effects translate to the entire data synopsis: the more accurate a
string synopsis captures a string sample space, the more space
as well as estimation time the overall data synopsis requires.

Topic-based Selectivity Estimation. Driven by these short-
comings, we introduce a general framework for selectivity es-
timation on hybrid queries. As a conceptually novel framework
instantiation we present TopGuess. TopGuess utilizes rela-
tional topic models as a data synopsis, which extend traditional
topic models to not only reflect text, but also structure elements
[11], [12], [13]. So, in contrast to our previous work [7], we
have only one single synopsis for text and structure elements.
Further, at indexing time, we construct a data synopsis without
any information loss, i.e., we index statistics for all words
and structured data elements. Thus, TopGuess does not require
any trade-off between (string) synopsis size and efficiency. At
runtime, using a on-disk TRM synopsis, we construct a small,
query-specific BN, which directly gives us a joint probability
for the query. In fact, TopGuess does not require any Bayesian
inferencing for estimating this joint probability, instead the
probabilistic computation necessary can be formulated as a
simple optimization problem.

Contributions. Contributions are as follows: (1) In this
work, we present a general framework for selectivity esti-
mation for hybrid queries over RDF and outline its main
requirements. In particular, we discuss conceptual drawbacks
of PRM-based solutions [5], [6], [7] in light of these require-
ments. (2) We introduce a novel approach, TopGuess, which
utilizes a TRM-based synopsis, as a uniform summary for text
and structure in RDF. (3) We provide a theoretical analysis of

motto

Person

Audrey

Kathleen

Hepburn

type

Roman

Holiday

Movie

starring

type
Belgium

bornIn

Location

type

Audrey

Tautou

type

Mel

Ferrer

type

spouse

title
name

name

name

p1

p2 p3

l1
name

Audrey Hepburn was a British

actress and humanitarian.

Born in Ixelles, Belgium as

Audrey Kathleen Ruston

comment

m1

Strength

through

Unity

Fig. 1. RDF graph about “Audrey Hepburn” and her movie “Roman Holiday”.

TopGuess, leading to space and time complexity bounds. That
is, we show that TopGuess achieves linear space complexity
w.r.t. text data size, and an estimation complexity, which is
independent of the synopsis size. (4) We conducted extensive
experiments on real-world data. Our results suggest that es-
timation effectiveness can be improved by up to 93% using
TopGuess, while runtime performance remains comparable.

Outline. First, in Sect. II we outline preliminaries. Sect. III
introduces a general framework for selectivity estimation. We
introduce our novel TopGuess approach in Sect. IV. In Sect. V
we present evaluation results, before we outline related work
in Sect. VI, and conclude with Sect. VII.

II. PRELIMINARIES

We use RDF as data and conjunctive queries as query model:
Data. Let `a (`r) denote a set of attribute (relation) la-

bels. RDF data is given by a directed labeled graph G =
(V,E, `a, `r), where V is the disjoint union V = VE]VA] VC
of entity nodes VE , attribute value nodes VA and class nodes
VC . Edges (triples) E = ER]EA]type are a disjoint union of
relation edges ER and attribute edges EA. Let relation edges
connect entity nodes, i.e., 〈s, r, o〉 ∈ ER iff s, o ∈ VE and
r ∈ `r), and attribute edges connect an entity with an attribute
value, 〈s, a, o〉 ∈ EA iff s ∈ VE , o ∈ VA and a ∈ `a. The
“special” edge 〈s, type, o〉 ∈ E, s ∈ VE and o ∈ VC , models
entity s belonging to class o. If an attribute value o ∈ VA
contains text, we conceive it as a bag-of-words. Further, we
say that a vocabulary W comprises all such bags-of-words
∈ VA. Example data is in Fig. 1.

Conjunctive Hybrid Queries. Conjunctive queries repre-
sent the basic graph pattern (BGP) feature of SPARQL. We
use a particular type of conjunctive queries, hybrid queries:
A query Q, over a data graph G, is a directed labeled
graph GQ = (VQ, EQ) where VQ is the disjoint union
V = VQV] VQC] VQK of variable nodes (VQV), constant
nodes (VQC) and keyword nodes (VQK), where o ∈ VQK
is a user-defined keyword. For simplicity, in this work we
define a keyword node as “one word” occurring in an attribute
value. That is, a keyword is one element from a bag-of-words
representation of an attribute node. Corresponding to edge
types, `a, `r, and type, we distinguish three kinds of query
predicates: class predicates 〈s, type, o〉, s ∈ VQV , o ∈ VQC ,
relation predicates 〈s, r, o〉, s ∈ VQV , o ∈ VQC] VQV , r ∈ `r
and string predicates 〈s, a, o〉, s ∈ VQV , o ∈ VQK , a ∈ `a. Fig.
2 shows a query example. Note, a query may contain attribute
predicates with other value domains, e.g., numerical values.
In this work, however, we focus on string predicates.

3

nametype type name

p l

“Belgium““Audrey“

“Holiday“

Movie Person

starring bornInm
title

Fig. 2. Hybrid query: movies with title “Holiday” and starring “Audrey”.

Query semantics follow those for BGPs. That is, results
are subgraphs of the underlying data graph, which match all
query patterns. The only difference is due to keyword nodes:
a value node o ∈ VA matches a keyword w ∈ VQK , if the
bag-of-words from o contains word w. Thus, we say string
predicates have a contains semantic.

In the following, we outline two models that we employ as
selectivity estimation synopses:

Bayesian Networks. A Bayesian network (BN) is a directed
graphical model allowing for a compact representation of
joint distributions via its structure and parameters [14]. The
structure is a directed acyclic graph, where nodes stand for
random variables and edges represent dependencies. Given
parents Pa(Xi) = {Xj , . . . , Xk}, a random variable Xi is
dependent on Pa(Xi), but conditionally independent of all
non-descendant random variables.
Example 1. See Fig. 3-a for an BN. For instance, Xtitle

and Xmovie denote random variables. The edge Xmovie →
Xtitle refers to a dependency between the parent, Xmovie =
Pa(Xtitle), and the child Xtitle. Xtitle is, however, condition-
ally independent of all non-descendant variables, e.g., Xname.

BN parameters are given by conditional probability dis-
tributions (CPDs). That is, each random variable Xi is as-
sociated with a CPD capturing the conditional probability
P (Xi |Pa(Xi)). An extract of a CPD is shown in Fig. 3-
b. The joint distribution P (X1, . . . , Xn) can be estimated via
the chain rule: P (X1, . . . , Xn) ≈

∏
i P (Xi|Pa(Xi)) [14].

Topic Models. Topic models follow the intuition that doc-
uments are mixtures of “hidden” topics, with a topic being
a probability distribution over words. These topics constitute
abstract clusters of words categorized according to their co-
occurrence in documents. More formally, a document col-
lection can be represented by k topics T = {ti, . . . , tk},
where each t ∈ T is a multinomial distribution of words
P (w | t) = βtw and

∑
w∈W βtw = 1. Here, W represents the

vocabulary of individual words appearing in the corpus. This
way the entire corpus can be represented as k topics, which
leads to a low-dimensional representation of the contained text.
Example 2. Three topics are in Fig. 5-c. Every topic assigns
a probability (represented by vector βt) to each word in the
vocabulary, indicating the importance of the word within that
topic. For instance, “Belgium” is more important in the third
topic (probability βtw = 0.014), than for the other two topics.

Topic models, e.g., Latent Dirichlet allocation (LDA) [15],
are modeled as graphical models, e.g., as BN. They as-
sume a probabilistic procedure (generative model) by which
documents can be generated. To generate a document, one
chooses a distribution over topics. Then, for each word in
that document, one selects a topic at random according to
this distribution, and draws a word from that topic. Since the
topic distribution of the documents and the word probabilities
within the topics are initially unknown (hidden), this process
is inverted and standard learning techniques are used to learn
hidden variables and topic parameters, e.g., βtw.

Problem Definition. Given a hybrid query over an RDF
graph, we tackle the problem of effective and efficient selectiv-
ity estimation. We face challenges that we formally discuss in
a requirements analysis, Sect. III. In the following, we outline
them from an informal point of view.
• Efficiency Issues. A synopsis needs to capture correlations

among words occurring in vocabulary W , between words
and structured data, as well as among structured data el-
ements. However, synopses, e.g., PRMs [5], [6], [7], tend
to grow exponentially and become complex, in the size of
vocabulary W . Consider predicate 〈p, name,“Audrey”〉.
A synopsis may summarize the count of bindings for
variable p as 2 (Fig. 1). Given a second predicate,
e.g., 〈m, starring, p〉, correlations occur and a synopsis
would need store the count of the conjoined query. Thus,
it has to capture counts for all possible combinations
with other words (e.g., “Hepburn”) and structural ele-
ments (e.g., starring). Clearly, creating such a data
synopsis is infeasible for text-rich data, as vocabulary W
grows quickly with each added attribute triple. Further,
with increasing synopsis size, time required by selectiv-
ity estimation techniques, such as Bayesian inferencing,
commonly increases. For instance, more time is spend
on marginalization over larger CPDs. We argue that this
behavior is not desirable, and estimation time should be
independent of vocabulary W and the synopsis.

• Effectiveness Issues. Space and time efficiency should not
come at the expense of effectiveness. First, a vocabu-
lary W must be accurately represented within the data
synopsis. In particular, summarizing a vocabulary via a
string synopsis always introduces an information loss.
Such a loss occurs, e.g., due to eliminating “less impor-
tant” words (e.g., n-gram synopsis [10]) or by capturing
multiple words with one single string synopsis element
(e.g., histogram synopsis [9]). Second, a synopsis should
strive to capture query correlations as best as possible.
That is, for a given query, an approach must reflect each
query constraint. Otherwise, correlations among query
predicates are not recognized and can not be exploited
during estimation.

III. SELECTIVITY ESTIMATION FRAMEWORK

In this Section, we introduce a general framework for
selectivity estimation for hybrid queries over RDF.

Framework. Selectivity estimation strategies commonly
summarize an RDF graph G via a concise data synopsis, S,
and estimate the selectivity selG(Q) by using an estimation
function FS(Q) over this synopsis. In the presence of text-
rich data, a string synopsis function ν is defined as a mapping
from the union of words comprised in attribute text values
∈ VA (W) and query keyword nodes ∈ VQK to a common
representation space, denoted by C. This common space C has
the purpose to compactly describe the large set W] VQK ,
while still capturing “as much information” as possible. We
define the estimation framework as:

Definition 1 (Selectivity Estimation Framework). Given a
data graph G and a query Q, an instance of the selectivity
estimation framework selG(Q) is a tuple (S, FS(Q), ν), where
synopsis S represents a summary of graph G. The estimation

4

Xtitle

Xname

Xspouse

Xmotto

(a)

(b)

Xmovie

Xperson

XbornIn

Xcomment Xlocation

Xstarring

Fig. 3. (a) BN for example in Fig. 1. (b) Extract of CPD for Xstarring .

function FS(Q) approximates the selectivity of query Q using
S: selG(Q) ≈ FS(Q). ν represents a string synopsis function
defined as ν : W] VQK 7→ 2C .

Instantiations. The three framework components have been
instantiated differently by various approaches. For instance,
PRMs [5], [6], graph synopsis [4], or join samples [3] have
been proposed as a data synopsis S. Depending on the
synopsis type, different estimation functions were adopted. For
example, a function based on Bayesian inferencing [5], [6] or
graph matching [4]. Among the many instantiations for S are
PRMs [5], [6], [7] closest to our work.

For string synopsis function ν, approaches such as suffix
trees, Markov tables, clusters or n-grams can be used [8],
[9], [10]. For instance, a space C may comprise histogram
buckets. However, most appropriate for the contains semantic
of string predicates is recent work on n-gram synopses [10].
In particular, this approach does not limit the size of texts in
the data, which is a key feature for RDF.

Combining a PRM with n-gram string synopses results in
a representation space C comprising n-grams – resembling
our previous work [7]. Here, a random variable Xa, with a as
attribute, has all n-grams occurring in a’s text values as sample
space. Function FS(Q) can be realized by transforming query
predicates into random variables and calculating their joint
probability using BN inferencing [5]. An example for such a
PRM may be given as:
Example 3. See a BN in Fig. 3-a with three kinds of random
variables: class (green), relation (blue) and attribute (red)
variables. Class variables, Xc, capture whether or not an
entity has a particular class ∈ VC , e.g., Xmovie stands for
class Movie. Further, a relation variable, Xr, models the
event of two entities sharing a relation r. Consider, Xstarring

referring to the starring relation. Each relation random
variable has two parents, which correspond to the “source”
respectively “target” of that relation. Class and relation ran-
dom variables are binary: Ω(Xr) = Ω(Xc) = {T,F}. Last,
attribute assignments are captured via random variables Xa

with words as sample space. Xtitle, e.g., has words comprised
in movie titles as events, Fig. 3-b.

Requirements. Several requirements are needed for an
effective and efficient framework instantiation. A synopsis S
should summarize a data graph G in the “best way possible”. In
particular, S should capture correlations among words, but also
correlations between words and classes/relations, Req.1. The
synopsis size is highly important. In fact, a synopsis should
aim at a linear space complexity in the size of the string
synopsis, |C| (Req.2). Linear space complexity is required to
eliminate the exponential growth of a data synopsis w.r.t. its
string synopsis (representation space). Accordingly, the need
to drastically “reduce” the vocabulary W of words ∈ VA via
a string synopsis ν should not be necessary. This is crucial as
a more compact C always introduces an information loss. An
information loss, in turn, directly affects Req.1 (Req.3). Since
function FS is used at runtime, it should be highly efficient
(Req.4). Last, time complexity of FS needs to be independent
from size of synopsis S (Req.5).

Discussion. Closest to this paper are PRM-based ap-
proaches, e.g., [5], [6], [7]. Here, correlations are captured via
probabilities in CPDs respectively a BN structure. However,
when several values are assigned to the same query predicate
respectively random variable representing it, an aggregation
function must be applied [16]. Imagine a predicate name =
“Hepburn” in addition to name = “Audrey” in Fig. 2: an
aggregation would summarize both events as one single event,
e.g., based on frequency of the keywords in the data. This
results in one single random variable assignment. Thus, de-
pendency information can not be reflected completely leading
to misestimations, as we observed in our experiments and
previous work [7] (partially fulfilled Req.1).

Data synopsis size of a BN is exponential in the string
synopsis size, |C|. Let a CDP be given as P (Xi|Pa(Xi)),
and assume a new word is added to sample space of
Xj ∈ Pa(Xi). Then, the entire CPD grows with |Ω(Xi)| ·∏
Xz∈Pa(Xi),z 6=j |Ω(Xz)| entries.7 Thus, Req.2 is not ful-

filled. Further, there is the need to reduce the representation
space, as the size of synopsis S is strongly affected by the size
of C. This, in turn, leads to an information loss (not meeting
Req.3): in the case of an n-gram string synopsis, reducing
C means to select a subset of n-grams occurring in the text.
Note, discarded n-grams may only be estimated via heuristics
[10]. The probabilities computed from those heuristics may
not correspond to the actual probability of the keyword in the
query predicate. Our experiments show that these information
losses lead to significant estimation errors.

PRM synopses use BN inferencing for the estimation func-
tion FS [5], [6], [7]. However, inferencing is NP-hard [17].
Thus, “exact” computation of FS is not feasible – instead
approximation strategies, e.g., Markov Chain Monte Carlo
methods, are used to guarantee an polynomial time complexity
of FS [14] (partially fulfills Req.4). Last, PRMs require ex-
pensive computation at runtime. (1) An unrolling procedure is
needed [14], i.e., an “unrolled” BN is generated via marginal-
ization. (2) This BN is used for inferencing to compute the
query probability. For both steps, however, computation time
is driven by CPD sizes, and thus, synopsis size and complexity
of FS is directly coupled, Req.5 fails.

7This growth factor is referring to the worst-case. For instance, a tree-
shaped CPD may reduce the additional space in some cases [14].

5

Person(p2)

spouse(p2,p3)starring(m1,p2)

z(p2,audrey) z(p2,hepburn) ...

b(p2)

b(m1) b(p3)
θ (p2)

w(p2,audrey) w(p2,hepburn) ...

...

... β

ωstarring ωspouse

λperson

... ...

Fig. 4. TRM BN extract for entity p2: observed variables (dark Grey),
hidden variables (light Grey) and TRM parameters (rectangles). Note, relation
bornIn is not shown for space reasons.

IV. TOPGUESS

TopGuess is a novel framework instantiation and adheres
to several design decisions that target the above requirements.
In fact, we will show that TopGuess matches all framework
requirements. In the following, we present a synopsis S in
Sect. IV-A, and an estimation function FS in Sect. IV-B.

A. Topic-based Data Synopsis
We exploit a relational topic model [11], [12], [13] as

synopsis S, which provides us with a single, uniform syn-
opsis for structured and unstructured data. More precisely, we
use Topical Relational Model (TRM) [13], as it is tailored
towards RDF data. Further, TRM parameters may be used for
calculating query predicate probabilities – as we will show.

Synopsis. A TRM summarizes texts via a small set of top-
ics, and finds correlations between those topics and structured
elements. That is, a TRM assumes that if entities exhibit
structural resemblances (have similar classes or relations),
their words and topics respectively, shall also be similar.
Vice versa, given specific words and topics respectively, some
structure elements are more probable to be observed than
others. For instance, one may observe that words like “Audrey”
highly correlate with classes Person or Movie, as well as
with other words such as “play” and “role” in the context
of a relation starring. Thus, a TRM constitutes a uniform
synopsis for textual as well as structural data, Req.1.

A TRM captures correlations between text and structure
via a set of k topics T = {ti, . . . , tk}. Each topic t ∈ T is
a multinomial distribution of words p(w|t) = βtw. As before,
W is a vocabulary derived from words in attribute values: for
each triple 〈s, p, o〉 ∈ EA we add all words in o to W . Most
importantly, we do not require a string synopsis to summarize
our vocabulary, i.e., we exploit the complete vocabulary W .
Thus, W equals the common representation space C, Req.1+3.
This can be achieved by an on-disk storage of the synopsis.
That is, as opposed to Bayesian inferencing implementations,
the TRM estimation function does not require an in-memory
synopsis (explained later).

In its learning process, a TRM is modeled as a BN based
on information from the underlying data graph:

Example 4. Fig. 4 depicts an extract of a TRM BN con-
structed for entity p2 from our example in Fig. 1. Ob-
served variables (dark Grey) consist of entity words (e.g.,
w(p2,“Audrey”), entity classes (e.g., Person(p2)) and en-
tity relations (e.g.,starring(m1, p2)). Dependencies among
observed variables are reflected by a set of hidden variables
(light Grey), which are initially unobserved, but inferred
during learning: the variable b(p2) is a topic vector indicating
the presence/absence of topics for entity p2. Note, a relation
variable also depends on a variable b, modeling the other
entity involved in the relation. This way b(p2) “controls”
topics selected for an entity according to structure information.
In addition, θ(p2) models the topic proportion according to
b(p2), whereas every variable z(p2, ∗) selects a particular
topic for each word by sampling over θ(p2).

A TRM is constructed using a generative process, which
is controlled via its three parameters: β, λ, and ω (shown in
rectangles in Fig. 4). Hidden variables as well as parameters
are inferred via a variational Bayesian learning technique as
an offline process. Further discussion on the construction is
unfortunately out of scope. For this work, we apply standard
TRM learning as presented in [13].

Important for selectivity estimation, however, are solely the
learned TRM parameters that specify the topics T and also
qualify the degree of dependency between structured data
elements and topics:
• Class-Topic Parameter λ. A TRM captures correlations

between classes ∈ VC and hidden topics ∈ T via a global
parameter λ. λ is represented as a |VC |×k matrix, where
each row λc (c ∈ VC) is a topic vector and each vector
element λct represents the weight between class c and
topic t.

• Relation-Topic Parameter ω. Given k topic ∈ T , the
probability of observing a relation r is captured in a
k × k matrix ωr. For any two entities s/o, such that
s is associated with topic tk and o with topic tl, the
weight of observing a relation r between these entities
〈s, r, o〉 is given by an entry (k, l) in matrix ωr (denoted
by ωrtktl). Note, a TRM provides a matrix ω for each
distinct relation in G.

Above TRM parameters are shared among all entities in the
data graph. See Fig. 5 for an example.

Now, let us formally show that TopGuess holds Req.2:

Theorem 1 (Synopsis Space Complexity). Given k topics and
a vocabulary W , a TRM requires a fixed-size space of the
order of O(|W | · k + |VC | · k + |`r| · k2).

Proof. For each topic, we store probabilities of every word
in W , so the complexity of K topics is O(|W | · K). λ can
be represented as a matrix |VC | ×K, associating classes with
topics ∈ O(|VC | ·K). Every relation is represented as a matrix
K×K, resulting in a total synopsis space complexity O(|W | ·
K + |VC | ·K + |`r| ·K2) �

Discussion. As a data synopsis S for selectivity estimation
a TRM offers unique characteristics: First, learned topics
provide a low-dimensional data summary. Depending on the
complexity of the structure and the amount of the textual
data, a small number of topics (e.g., 50) can easily capture
meaningful correlations from the data graph. Notice, while we
“manually” set the number of topics for our evaluation system,

6

3 0 1

t1 t2 t3

0 5 2

film

play

…

…

holiday

roman

…

hepburn

…

belgium

0.024

0.023

…

…

0.011

0.010

…

0.004

…

0.001

born

woman

…

audrey

hepburn

...

belgium

...

holiday

...

0.027

0.026

…

0.013

0.012

...

0.009

…

0.002

...

city

location

…

belgium

...

...

holiday

...

hepburn

...

0.025

0.024

…

0.014

...

...

0.004

…

0.002

...

λmovie

λperson

0 7 2

0 1 0

1 3 2

t1 t2 t3

t1

t2

t3

ωstarring

(a) (b)

β1 β2 β3

(c)
W W W

t1 t2 t3

Fig. 5. TRM parameters for three topics: (a) Unnormalized λmovie and
λperson parameters over three topics. (b) ω matrix for starring relation
(rows (columns) represent source (target) topics of the relation). (c) Selected
words in three topics with their corresponding probabilities. Note, data is
taken from the running example, cf. Fig. 1.

our approach could be extended to learn the optimal number
of topics via a non-parametric Bayesian model [18]. By means
of this low-dimensional summary, a TRM provides a synopsis
with linear space complexity w.r.t. the string synopsis (to be
precise, linear in vocabulary W), see Theorem 1, Req.2+3.

Second, each topic has a broad coverage, as every word
in the vocabulary is covered in each topic with distinct
probabilities, cf. βt in Fig. 5-c. Thus, in contrast to synopses
based on graphical models, e.g., PRMs [14], a TRM is not
restricted to small sample spaces. We exploit this coverage
later, as a query variable is conceived as a mixture of topics.
Thereby allowing fine-grained dependencies between words
and structure in a query to be captured, Req.1.

Maintenance. For a TRM-based synopsis dealing with
changes in the data is two-fold. First, in case of minor
variations, TRM parameters may be still allow for accurate
selectivity estimation. This is due to the fact that a TRM
captures dependencies between text and structured elements
via probability distributions over topics. We observed in our
experiments that such probability distribution are invariant
given small changes in the data. We learned TRMs from
different samples (sizes) of the underlying data, however, the
resulting selectivity estimations respectively topic distributions
hardly differed. Second, in case of major changes in the
data, TRM probability parameters must be recomputed. In our
experiments, TRM construction could be done in under 5h.
However, recent work on topic models [19] has shown that
this learning process can be parallelized, thereby guaranteeing
a scalable TRM construction even for large data graphs.
Furthermore, [20] introduced an algorithm for incremental
topic model learning over text streams. Both such directions
may be exploited in future work.

B. Selectivity Estimation Function
The estimation function FS(Q) can be decomposed as [5]:

FS(Q) = R(Q) · P(Q)

Let R be a function R : Q→ N providing an upper bound
cardinality for a result set for query Q. Further, let P be
a probabilistic component assigning a probability to Q that
models whether or not its result is non-empty. R(Q) can be
easily computed as product over “class cardinalities” of Q [5].
That is, for each variable v ∈ VQV we bound the number of

its bindings, R(v), as number of entities belonging v’s class:
|{s|〈s, type, c〉 ∈ E}|. If v has no class, we use the number
of all entities, |VE |, as bound. Then, R(Q) =

∏
v R(v).

For the probabilistic component P , we first outline the
construction of a query-specific BN, and afterwards show
estimation of P(Q) by means of this BN.

Query-Specific BN. A query-specific BN follows the same
intuition as an “unrolled” BN in a template-based graphical
model, e.g., a PRM [14]. In both cases, one constructs a small
BN at runtime for the current query by using probabilities
and dependency information from a query-independent data
synopsis. However, our query-specific BN differs: (1) Query
dependencies are modeled very fine-grained, as each query
variable is captured as a mixture of topics. (2) It follows
a simple, yet effective fixed structure (topical independence
assumption). In particular, our BN comprises one random
variable for each query predicate. Thus, multiple assignments
to a random variable can not occur – aggregations are not
needed. (3) Construction does not require marginalization,
instead TRM parameters can be used directly, Req.4.

Let us present the query-specific BN in more detail. We
capture every query predicate as a random variable: for a
class 〈s, type, c〉 and relation predicate 〈s, r, o〉, we introduce
a binary random variable Xc and Xr, respectively. Similarly,
for a string predicate 〈s, a, w〉, we introduce a binary random
variable Xw.8 Further, every query variable v ∈ VQV (e.g.,
m, p and l in Fig. 2) is considered as referring to a topic in
the TRM and introduced via a topical random variable, Xv .
However, instead of a “hard” assignment of variable Xv to a
topic, Xv has a multinomial distribution over the topics. Thus,
Xv captures query variable v’s “relatedness” to every topic:

Definition 2. For a set of topics T , a query Q and its variable
v ∈ VQV , the random variable Xv is a multinomial topical
random variable for v, with topics T as sample space.

Based on topical random variables, we perceive query
variables as topic mixtures. Then, we establish dependencies
between topical random variables and random variables for
class (Xc), relation (Xr) and string predicates (Xw). In order
to obtain a simple network structure, we employ a fixed
structure assumption:

Definition 3 (Topical Independence Asmp.). Given a query Q
and its variables VQV , the probability of every query predicate
random variable, Xi, i ∈ {w, c, r}, is independent from
any other predicate random variable, given its parent topical
random variable(s), Pa(Xi) ⊆ {Xv}v∈VQV .

The topical independence assumption lies at the core of
the TopGuess approach. It considers that query predicate
probabilities depend on (and governed by) the topics of
their corresponding query variables. In other words, during
selectivity estimation we are looking for a specific (“virtual”)
binding to each query variable, whose topic distribution is
represented in its corresponding topical random variable (ini-
tially unknown) and determined by query predicates. Further,
the assumption allows to model the probability P(Q) in a
simple query-specific BN (cf. Fig. 6). Here, the probability of

8Note, attribute label a is omitted in the notation, since topic models do
not distinguish attributes.

7

observing a query predicate is solely dependent on the topics
of query variables, which enables us to handle dependencies
among query predicates in a simplistic manner (see following
paragraphs). Note, a generic query-specific BN is given in Fig.
6-a, while Fig. 6-b gives a BN for our running example.

The topical independence assumption leads to a valid BN,
as the following theorem holds:

Theorem 2. The query-specific BN constructed according to
the topical independence assumption is acyclic.

Proof Sketch. BN parts resembling class and string variables
form a forest of trees – each tree has depth one. Such trees
are combined via relation predicate variables, which have no
children (cf. Fig. 6-a). Thus, no cycle can be introduced �

By means of the query-specific BN, we may compute the
query probability P(Q) as:

P(Q) = P
(∧

Xw = T
∧

Xc = T
∧

Xr = T
)

(1a)

≈
CR

∏
〈v,a,w〉 ∈Q

P(Xw | Xv) ·
∏

〈v,type,c〉 ∈Q

P(Xc | Xv)

·
∏

〈v,r,y〉 ∈Q

P(Xr | Xv, Xy) (1b)

with Xw, Xc, Xr as sets of all string, class, and relation
random variables in Q. CR refers to the chain rule, [14].
To compute the above joint probability, we need the topic
distributions of topical variables Xv and Xy . However, as
these are hidden, we learn their distributions from observed
predicate variables, i.e., Xw, Xc, Xr.

We first discuss parameter learning for observed random
variables, given topical random variables, and subsequently
present learning of hidden topical random variables. It is
important to note that no inferencing is needed for estimating
P(Q), Req.4. This has the positive side-effect that a TRM
synopsis may be kept on disk.

Query Predicate Probabilities. Query predicates probabili-
ties are influenced by their associated topical random variables
and their probabilities from the TRM synopsis. Thus, we can
formulate the conditional probability for Xc, Xr and Xw

by incorporating topic distributions of query variables with
probabilities estimated using TRM parameters, i.e., β, λ and
ω. That is, probabilities are obtained as follows:

(1) Class Predicate Variables. Adhering to the topical
independence assumption, the probability of observing a class,
P (Xc = T), is only dependent on its topical variable Xv . We
use TRM parameter λ to obtain the weight λct, indicating
the correlation between topic t and class c. The probability of
observing class c is given by:

P (Xc = T | Xv,λ) =
∑
t∈T

P (Xv = t)
λct∑

t′∈T λct′

Example 5. Fig. 6-b illustrates two class variables, Xmovie

and Xperson, which are dependent on the random variables
Xm and Xp, respectively. For computing query probabilities,
P (Xmovie = T) and P (Xperson = T), the corresponding
TRM parameters λmovie and λperson (Fig. 5) are used. For
instance, given P (Xm = t1) = 0.6, P (Xm = t2) = 0.1, and
P (Xm = t3) = 0.3, we have: P (Xmovie = T) = 0.6 · 3/4 +
0.1 · 0/4 + 0.3 · 1/4 = 0.525.

(2) Relation Predicate Variables. Every relation predicate
〈v, r, y〉 connects two query variables, for which there are
corresponding topical variables Xv and Xy . The variable Xr

(representing the relation predicate) solely dependents on the
topics of Xv and Xy . The dependency “strength” between r
and topics of these two variables is given by TRM parameter
ωr. Using ωr, the probability of observing relation r is:

P (Xr = T | Xv, Xy, ωr) =
∑
t,t′∈T

P (Xv = t) ωrtt′ P (Xy = t′)∑
t′′t′′′∈T ωrt′′t′′′

Example 6. In Fig. 6-b, there are two relation predicate
variables: Xstarring and Xbornin. Each of them is depen-
dent on two topical variables, e.g., Xm and Xp condition
Xstarring . Probability P (Xstarring = T) is estimated via
matrix ωstarring, Fig. 5.

(3) String Predicate Variables. For each string predicate
〈v, a, w〉 ∈ Q, there is a random variable Xw. The TRM
parameter βtw represents the probability of observing word w
given topic t. Thus, the probability P (Xw = T) is calculated
as probability of observing w, given the topics of its topic
variable Xv and β1:k:

P (Xw = T | Xv, β1:K) =
∑
t∈T

P (Xv = t)
βtw∑

t′∈T βt′w

Example 7. Fig. 6-b depicts three string predicate variables,
needed for the string predicates comprised in our query
(Fig. 2). Given P (Xm) as in the example above, the prob-
ability of observing “holiday”, P (Xholiday = T), is:

P (Xholiday = T) = 0.6·0.011

0.017
+0.1·0.002

0.017
+0.3·0.004

0.017
= 0.47

Learning Topics of Query Variables. The core idea of
TopGuess is to find an optimal topic distribution for every
topic variable, so that the joint probability of the query-specific
BN is maximized, Eq. 1. Thus, as a final step, we learn pa-
rameters for our initially unobserved topical random variables,
based on observed predicate variables. For computing these
parameters, we first introduce a set of topic parameters θvt for
each topical random variable Xv . θ = {θvt|v ∈ VQV , t ∈ T }
denotes the set of parameters for all topical variables. As
before, Xw, Xc and Xr denote string, class and relation
predicate variables in a query-specific BN. Then, we find
parameters θ for topic variables, which maximize the log-
likelihood of Eq. 1. The optimization problem is:

arg max
θ

`(θ : Xw,Xc,Xr)

where `(θ : Xw,Xc,Xr) is the log-likelihood defined as:

`(θ : Xw,Xc,Xr) = P (Xw,Xc,Xr|θ,β,ω,λ)

=
∑
v

∑
Xw∈Xv

w

logP (Xw|Xv,β)

+
∑
v

∑
Xc∈Xv

c

logP (Xc|Xv,λ)

+
∑
v,y

∑
Xr∈Xv,y

r

logP (Xr|Xv, Xy,ω)

where Xv
w and Xv

c is the set of all string and class random vari-
ables with a parent Xv . Xv,y

r is the set of all relation random
variables with parents Xv and Xy . We use gradient ascent

8

Xm Xp Xl
(b)

Xw
v

Xv

Xw

Xc
v

Xc

Xr
v

Xr

Xy

…

… Xz
(a)

Xholiday Xmovie Xstarring Xaudrey Xperson XbornIn Xbelgium

Fig. 6. (a) Generic query-specific BN in plate notation. Notice, string predicate variables (Xw), class predicates variables (Xc), and relation predicate
variables (Xr) are only dependent on their topical random variable Xv , Xy . (b) A query-specific BN for query in Fig. 2 with 3 topical variables (e.g.,
Xm), 2 class predicate variables (e.g., Xmovie), 2 relation predicate variables (e.g., Xstarring) and 3 string predicate variables (e.g., Xholiday). Observed
variables (dark Grey) are independent from each other and only dependent on hidden topical random variables (light Grey) (cf. topical ind. asmp., Def. 3).

optimization to learn the parameters. First, we parametrize
each P (Xv = t) with θvt as P (Xv = t) = eθvt∑

t′∈T eθvt′

to obtain a proper probability distribution over the topics.
Obtaining the gradient requires dealing with the log of the
sum over the topics of each topical variable. Therefore, we
make use of theorem [14]:

Theorem 3. Given a BN and D = {o[1], . . . , o[M]} as a
partially observed dataset. Further, let X be a random variable
in that BN, and let Pa(X) denote its parents. Then:

∂`(θ : D)

∂P (x|pa)
=

1

P (x|pa)

M∑
m=1

P (x,pa|o[m],θ),

This provides the form of the gradient needed. Now, the
gradient of the log-likelihood w.r.t. parameter θvt is:

∂`(θ : Xw,Xc,Xr)

∂θvt
=
∂`(θ : Xw,Xc,Xr)

∂P (Xv = t)

∂P (Xv = t)

∂θvt

The first part of the gradient is obtained via Theorem 3:

∂`(θ : Xw,Xc,Xr)

∂P (Xv = t)
=

1

P (Xv = t)
· ∑

Xw∈Xv
w

P (Xv = t|Xw,β) +
∑

Xc∈Xv
w

P (Xv = t|Xc,λ)

+
∑
y

∑
Xr∈Xv,y

r

P (Xv = t|Xr, Xy,ω)


Using the Bayes rule we have:

∂`(θ : Xw,Xc,Xr)

∂P (Xv = t)
=∑

Xw∈Xv
w

P (Xv = t)P (Xw|β, t)∑
t′ P (Xv = t′)P (Xw|β, t′)

+

∑
Xc∈Xv

w

P (Xv = t)P (Xc|λ, t)∑
t′ P (Xv = t′)P (Xc|λ, t′)

+

∑
y

∑
Xr∈Xv,y

r

P (Xv = t)
∑
t′ P (Xr|Xy,ω, t

′)∑
t′′ P (Xv = t′′)

∑
t′′′ P (Xr|Xy,ω, t′′′)

Finally, the second part of the gradient is given by:

∂P (Xv = t)

∂θtv
=
eθtv

∑
t′−t e

θt′v

(
∑
t′ e

θt′v)2

Estimation Complexity. We give a complexity bound for
query probability estimation, Eq. 1, as:

Theorem 4 (Time Complexity of P(Q)). Given k topics and
a query Q, the time for computing P(Q) is in O(ψ · |Q| · k),
with ψ as number of iterations needed for optimization.
Proof. Complexity for P(Q) is comprised of (1) estimation
time for the joint probability of Q’s query-specific BN, and
(2) time necessary for learning optimal topic distributions.
Given topic distributions for each Xv , the former step requires
only a simple summing out of the variables Xv . Thus, its
time is ∈ O(|Q| · K), with |Q| and K as number of query
predicates and topics, respectively. For the latter step, let
an optimization algorithm require ψ iterations to reach an
optimum. Note, ψ is a constant only driven by the error
threshold of the optimization problem, thus, independent of
|Q|, K or synopsis size S. For each such iteration we require
an update of variables Xw, Xc, and Xr, as well as topic model
parameter θ. Note, while the number of random variables Xi,
i ∈ {w, c, r}, is bounded by |Q|, θ is bound by K. Thus,
we update O(K · |Q|) values – each in constant time, O(1).
Overall, the second task requires a complexity of O(ψ·K ·|Q|).
Therefore, step (1) and (2) combined take O(ψ ·K · |Q|) time
�

Note, ψ is determined by the specific algorithm used for
optimization. We use a gradient ascent approach, which is
known to have a tight bound of iterations ∈ O(ε2), with an
arbitrarily small ε > 0 [21]. Overall, complexity for P(Q) is
independent of the synopsis size S (Req.5).

V. EVALUATION

We conducted experiments to analyze the effectiveness
(Req.1+3) and the efficiency (Req.2+4+5) of selectivity es-
timation using TopGuess. By means of the former, we wish
to compare the quality of estimates. Previous work has shown
that estimation quality is of great importance for many use
cases, most notably for query optimization [6]. The latter
inspects the applicability towards real-world systems.

Overall, our results are very promising. In terms of effective-
ness, we could gain up to 93% more accuracy by TopGuess.
While TopGuess stored a very fine-grained synopsis on disk
and relied on a simplistic topic learning procedure, it still
achieved similar runtime performances as the baselines. In
fact, we expect drastic improvements can be done as future
work. In general, we noted that TopGuess runtime behavior
was much less influenced by query respectively synopsis size
than for baseline approaches. Further, memory consumption
was negligible for TopGuess, in contrast to the baselines.

A. Evaluation Setting
Systems. We compare TopGuess with two kinds of base-

lines. First, string predicates are combined with structured

9

predicates via an independence assumption, ind. More pre-
cisely, the selectivity of string and structured predicates is
estimated using a string synopsis and histograms based on
[22], respectively. Obtained probabilities were combined in a
greedy fashion assuming independence.

Second, multiple query predicates are combined relying on a
BN, bn. That is, we reuse our work on PRMs for text-rich data
graphs [7]. See Ex. 3 for such a PRM. bn handles the problem
of multiple value assignments to a single random variable via
aggregation functions. We use a stochastic mode aggregation,
which essentially uses all assignments, but weights each one
with its frequency [16].

As string synopsis function ν we exploit n-gram synopses
[10]. Such a synopsis reduces a vocabulary by using a pre-
defined criterion to dictate which n-grams to in-/exclude.
A simplistic strategy is to choose random n-gram samples
from the data. Another approach is to construct a top-k n-
gram synopsis. For this, n-grams are extracted from the data
together with their counts. Then, the k most frequent n-grams
are included in the synopsis. Further, a stratified bloom filter
synopsis has been proposed [10], which uses bloom filters
as a heuristic map that projects n-grams to their counts. We
use these three types of synopses in our experiments. Thus, a
synopsis represents a subset of all possible n-grams occurring
in the data. Note, we refer to excluded n-grams as “missing”.
The probability for missing n-grams cannot be estimated with
a probabilistic framework, as such strings are not included
in a sample space. To deal with this case, a string predicate
featuring a missing n-gram is assumed to be independent
from the remainder of the query. Then, its probability can
be estimated based on various heuristics. We employ the
leftbackoff strategy, which finds the longest known n-gram that
is the pre- or postfix of the missing keyword and estimates its
probability based on the statistics for that pre- and postfix [10].

Combining string synopses with our two categories of
baselines results in six different systems: indsample, indtop-k
and indsbf rely on the independence assumption, bnsample,
bntop-k and bnsbf represent BN approaches.

Data. We employ two real-world RDF datasets for evalua-
tion: DBLP9 and IMDB [23]. For both datasets, we could ex-
tract large vocabularies containing 25, 540, 172 and 7, 841, 347
1-grams from DBLP and IMDB, respectively. See also Table
I for an overview. Notice, while IMDB as well as DBLP both
feature text-rich attributes like name, label or info, they
differ in their overall amount of text: IMDB comprises large
texts, e.g., associated via info, DBLP, however, holds much
less text. On average an attribute in DBLP contains only 2.6
1-grams with a variance of 2.1, in contrast to IMDB with
5.1 1-grams, given a variance 95.6. Further, also the attribute
with the most text associated is larger, having 28.3 1-grams,
for IMDB, than for DBLP with 8.1 1-grams (cf. Table I).

Our hypothesis is that these differences will be reflected in
different degrees of correlations between text and structured
data. Moreover, we are interested in comparing performance of
bn and TopGuess w.r.t. varying amounts of texts. In particular,
as TopGuess uses a topic model synopsis, we wish to analyze
its effectiveness in such settings.

Queries. As queries we reuse existing work on keyword

9http://knoesis.wright.edu/library/ontologies/swetodblp/

TABLE I
DATASET STATISTICS

IMDB DBLP
Triples 7, 310, 190 11, 014, 618
Resources 1, 673, 097 2, 395, 467
Total 1-grams 7, 841, 347 25, 540, 172
Avg. 1-grams Mean 5.1 2.6
Avg. 1-grams Variance 95.6 2.1
Max. attr. # avg. 1-grams 28.3 8.1
Attributes 10 20
Relations 8 18
Classes 6 18

TABLE II
STORAGE SPACE (MBYTE)

IMDB DBLP
Data

Disk 1600 5800
Data Synopsis

bn & ind TopGuess bn & ind TopGuess
Mem. {2, 4, 20, 40} ≤ 0.1 {2, 4, 20, 40} ≤ 0.1
Disk 0 281.7 0 229.9

search evaluation [23], [24]. We form queries adhering to our
model by constructing graph patterns, comprising string, class,
and relation predicates that correspond to the given query
keywords and their structured results. We generated 54 DBLP
queries based on “seed” queries reported in [24]. That is,
for each query in [24], we replaced its keyword constants
with variables, evaluated such seed queries, and generated
new queries by replacing a keyword variable with one of
its randomly selected bindings. Additionally, 46 queries were
constructed for IMDB based on queries taken from [23]. We
omitted 4 queries in [23], as they could not be translated to
conjunctive queries. Overall, our load features queries with
[2, 11] predicates in total: [0, 4] relation, [1, 7] string, and [1, 4]
class predicates. As our query model allows solely single
keywords to be used, we treat string predicates with phrases
as several predicates. Query statistics and a complete query
listing are given in the appendix, Sect. VIII.

As hypothesis, we expect queries with a larger number
of predicates to be more “difficult” in terms effectiveness
and efficiency. Further, we expect correlations between query
predicates to have a strong influence on effectiveness. Note,
we observe during structure learning of the bn baseline
systems different degrees of correlations in DBLP and IMDB.
More precisely, we noticed that there are more correlated
predicates in IMDB, e.g., name (class Actor) and title
(class Movie), than in DBLP.

Synopsis Size. Using the same configurations as in [7], we
employ different synopsis sizes for our baselines ind and bn.
The factor driving the overall synopses size for ind and bn
is their string synopsis size, i.e., the size of their common
representation space |C|. This effect is due to C determining
the size of the (conditional) probability distribution in ind∗
(bn∗). CPDs are very costly in terms of space, while other
statistics, e.g., the BN structure, are negligible. We varied
the number of 1-grams captured by the top-k and sample
synopsis ∈ {0.5K, 1K, 5K, 10K}. For the sbf string synopsis,
we captured up to {2.5K, 5K, 25K, 50K} of the most frequent
1-grams for each attribute and varied the bloom filter sizes,
resulting in similar memory requirements. Note, sbf systems
featured all 1-grams occurring in our query load.

Except for TopGuess, all systems load the synopsis into

http://knoesis.wright.edu/library/ontologies/swetodblp/

10

main memory. To be more precise, only bn∗ approaches
require the synopsis to be in-memory for inferencing. For com-
parison, however, we also load statistics for ind∗ approaches.
Different string synopses (sizes) translate to approaches con-
suming {2, 4, 20, 40} MByte of memory, Table II. In contrast
to bn∗ and ind∗, TopGuess keeps a large topic model at
disk, and constructs a small, query-specific BN in memory
at runtime (memory consumption ≤ 100 KBytes on average).
Thus, all query-independent statistics remain on the hard-disk.
The large disk size ∈ [220−280] MByte for TopGuess comes
from the use of all 1-grams in the data. Table II shows an
overview of the main memory and disk usage required by the
different systems.

We expect TopGuess’s fine-grained model to enable very
accurate estimations. At the same time, such a disk-based,
extensive synopsis may come with runtime problems. That is,
in the following we aim to empirically validate our estimation
time complexity bounds.

Implementation and Offline Learning. For baselines bn∗
and ind∗, we started by constructing string synopses. Each
synopsis, including sbf-based synopses, was learned in ≤ 1h.
As bn∗ and ind∗ use the same probability distributions (BN
parameters), parameters were trained together. For bn∗ we
use a PRM construction as done in [7]. That is, we cap-
ture un-/structured data elements using random variables and
learn correlations between them, thereby forming a network
structure. For efficient selectivity estimation the network is
reduced to a “lightweight” model, capturing solely the most
important correlations. Then, we calculate model parameters
(CPDs) based on frequency counts. For ind∗ systems, we do
not need the model structure and merely keep the marginalized
parameters. Structure and parameter learning combined took
in the worst case up to three hours. The structure and the
parameters are stored in a key-value store outside the database
system – both were loaded at start-up. Depending on the
synopsis size, loading the model into memory took up to 3s.
The inferencing needed by the bn∗ systems for selectivity
estimation is done using a Junction tree algorithm [7].

TopGuess exploits an “off-the-shelf” TRM from [13]. That
is, standard TRM learning was employed over a data sample.
We sampled up to 30K entities per class from each dataset, to
ensure that all classes and relations are equally represented.
The number of TRM topics is an important factor, determining
which correlations are discovered. Thus, a sufficient number
of topics is needed to correlate text with a heterogeneous set
of classes and predicates. Note, a TRM is a supervised topic
model, which handles the sparseness of these topics correlated
to structure information. In other words, some topics can
be correlated with many structure elements, whereas others
are not. We experimented with a varying number of topics
∈ [10 − 100] and found that, for datasets employed in our
evaluation, 50 topics are enough to capture all important cor-
relations. Notice, a TRM may easily be extended to determine
the number of topics based on the data in an unsupervised
fashion, by using a non-parametric Bayesian model [18].
The TRM learning took up to 5h, and the resulting models
were stored in an inverted index on hard disk, Table II. At
query time, we employed a greedy gradient ascent algorithm
for learning the topic variable distributions. To avoid local
maxima, we used up to 10 random restarts.

We implemented all systems in Java 6. Experiments were
run on a Linux server with two Intel Xeon CPUs at 2.33GHz,
48 GB RAM (with JVM using 16 GB), and a RAID10 with
IBM SAS 10k rpm disks. Before each query execution, OS
caches were cleared. Values are averages over five runs.

B. Selectivity Estimation Effectiveness
We employ the multiplicative error metric (me) [25] for

measuring effectiveness:

me(Q) =
max(sel(Q), sel(Q))

min(sel(Q), sel(Q))

with sel(Q) and sel(Q) as exact and approximated selec-
tivity for Q, respectively. Intuitively, me gives the factor to
which sel(Q) under- or overestimates sel(Q).

Overall Results. Fig. 7-a, -b (-e, -f) show the multiplicative
error vs. synopsis size (number of predicates) for DBLP and
IMDB, respectively. As expected, baseline system effective-
ness strongly depends on the synopsis size. That is, for small
synopses ≤ 20 MByte, ind∗ and bn∗ performed poorly.
We explain this with the information loss, due to omitted
1-grams in the common representation space (Req.3). That
is, the employed string synopsis traded space for accuracy,
and heuristics had to used for probability estimation. In fact,
in case of bn∗, the information loss is aggravated as missed
keyword can not be added to an unrolled BN, instead one must
assume independence between such a string predicate and the
remainder of the query.

TopGuess, on the other hand, did not suffer from this issue,
as all query-independent statistics could be stored at disk, and
solely the query-specific BN was loaded at runtime. Thus,
TopGuess could exploit very fine-grained probabilities, and
omitted any kind of heuristics. We observed that, on average,
TopGuess could reduce the error of the best performing bnsbf
by 93% (33%), and the best system using the independence
assumption, indsbf, by 99% (35%) on IMDB (DBLP). Further,
we noted TopGuess to be less driven by the overall data
correlations. That is, while bn systems were strongly affected
by the little correlations in DBLP, TopGuess outperformed
the best baseline by 33%. Overall, this confirms our initial
expectation that the query-specific BN and the TRM synopsis
are well-suited for modeling fine query/data dependencies.

As in previous work [7], different string synopses in ind∗
and bn∗, yielded different estimation effectiveness results.
Sampling-based systems were outperformed by systems using
top-k n-grams synopses, which in turn, performed worse than
sbf-based approaches. These drastic misestimates come from
query keywords being “missed” in the string synopsis. Thus,
we can see estimation quality being strongly influenced by
accurate string probabilities. We argue that such results clearly
show the need for a data synopsis differing from current
approaches – allowing for on-disk storage of statistics, Req.2.

Synopsis Size. Fig. 7-a/-e shows estimation errors w.r.t.
in-memory synopsis size. An important observation is that
synopsis size is a key factor for estimation effectiveness.
Top-k and especially sample-based n-gram systems were
strongly affected by the (string) synopsis size. With increasing
size, more relevant query keywords were capture in the data
synopsis, leading to less inaccurate heuristics being applied.
Further, we noted performance of sbf-based approaches to be

11

1E+1

1E+2

1E+3

[2,4] [5,6] [7,11]

Ti
m

e
 (

m
s)

Num. of Predicates 1E+1

1E+2

1E+3

0.5 2 4 20 40

Ti
m

e
 (

m
s)

Synopsis Size (MByte)

1E+1

1E+2

1E+3

1E+4

[2,4] [5,6] [7,11]

M
u

lt
ip

li
. E

rr
.

Num. of Predicates 1E+1

1E+2

1E+3

1E+4

1E+5

0.5 2 4 20 40

M
u

lt
ip

li
. E

rr
.

Synopsis Size (MByte) 1E+01

1E+02

1E+03

1E+04

0.5 2 4 20 40

M
u

lt
ip

li
. E

rr
.

Synopsis Size (MByte) 1E+1

1E+2

1E+3

1E+4

[2,3] [4,5] [6,7]

M
u

lt
ip

li
. E

rr
.

Num. of Predicates

1E+2

1E+3

2 4 20 40

Ti
m

e
 (

m
s)

Synopsis Size (MByte) 1E+2

1E+3

[2,3] [4,5] [6,7]

Ti
m

e
 (

m
s)

Num. of Predicates

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7. Effectiveness: (a)+(b) for DBLP, and (e)+(f) for IMDB. Efficiency: (c)+(d) for DBLP, and (g)+(h) for IMDB. Y-axes are given in logarithmic scale.

fairly stable. This is due to sbf being able to capture all query
keywords, thus, no heuristics were necessary. However, while
sbf-based approaches proofed to be an effective strategy, they
also inherently suffer from limited (in-memory) space, and
thus must eventually discard words in the vocabulary.

In contrast, TopGuess memory usage is a small constant
≤ 0.1 MByte. Yet, TopGuess resolves the issue of missing
n-grams completely: the query-independent TRM stored on
disk captures statistics for all n-grams. At runtime, TopGuess
retrieves the necessary n-grams for a particular query, and
constructs its query-specific BN (Req.3). This extremely com-
pact BN can be explained with TopGuess only using random
variables that either are binary or have a sample space bound
by the number of topics, k. Note, both such factors are constant
in the overall data synopsis size, Req.4.

Correlations and Amount of Text. Following our initial
hypothesis, we found performances for IMDB and DBLP to
vary. Given IMDB, TopGuess and bnsbf could reduce errors
of the indsbf approach by 93% and 99%, respectively. On
the other hand, for DBLP improvements were much smaller.
These differences are due to the varying degree of correlations
in our two datasets. While learning the BNs for bn, we ob-
served significantly less correlations in DBLP than in IMDB.
More importantly, many of the DBLP queries include string
predicates such as name and label, for which we could not
observe any correlations. For such queries, the probabilities
obtained by bn∗ were close to the ones computed by ind∗.

Further, we noted that the degree of correlation between un-
/structured data, is greatly influenced by the number/length of
texts. Essentially, we noted that given attributes with more text
values, more correlations among them and/or structured data
tend to occur. For instance, given queries involving attribute
name in DBLP, with only 2.4 1-grams (variance: 2.1 1-grams,
cf. Table I), with measured over 30% less correlations than for
queries on IMDB with attribute info.

However, compared to bn∗, TopGuess relies on a fine-
grained BN: while bn∗ exploits correlations observed in the
data graph before query time, TopGuess utilizes all query pred-
icate correlations via a query-specific BN at runtime. Thus, a

TopGuess BN is able to capture even “minor” correlations,
which may have been discarded by bn∗ in favor of a compact
structure. Note that previous works on PRMs for selectivity
estimation [6], [7], aim at a “lightweight” model structure, i.e.,
dependency informations is traded for efficient storage and
inferencing. Such trade-offs, however, are not necessary for
TopGuess. Thus, even for the less correlated dataset DBLP,
TopGuess outperforms the baseline indsbf and bnsbf by
35% and 33%. We argue that this result also confirms the
general applicability of TopGuess. Even for “little” text data,
TopGuess was able to capture meaningful topics, leading to
accurate probability estimates for query-specific BNs, Req.1.

Query Size. In Fig. 7-b/-f we depict multiplicative error
(average over synopsis sizes) vs. number of query predicates.
As expected, estimation errors increase for all systems in the
number of query predicates. For our baselines, we explain this
behavior via: (1) given a higher number of predicates chances
of “missing” a keyword increase, and (2) when missing an n-
grams, the error is propagated to the estimate for the remainder
of the query (which might have been fine otherwise). However,
while the TopGuess approach also led to more misestimates
for larger queries, the degree of this increase was smaller.
In particular, considering highly correlated queries for IMDB
with size ∈ [7− 11], we can observe (Fig. 7 -f) TopGuess to
perform much more stable than bn∗ or ind∗.

As in [7], we also noticed misestimates of bn due to
inaccurate stochastic value aggregation. This effect led to
ind∗ outperforming bn∗ for some queries. TopGuess does
not suffer from such a problem, because its random variables
are “predicate-specific”, i.e., we construct one single random
variable for each query predicate at runtime, Req.1. Overall,
compared to bn∗ respectively ind∗, TopGuess yielded the
most accurate and stable performance.

C. Selectivity Estimation Efficiency
We now analyze the estimation efficiency for varying syn-

opses sizes, Fig. 7-c/-g, and query complexities, Fig. 7-d/-h.
For TopGuess, its estimation times comprise loading and BN
construction as well as topic learning. For bn and ind, the

12

reported times represent solely the inference task, i.e., time
for model construction and loading have been omitted.

Overall Results. As noted in [7], we also observed that
for bn/ind not BN inferencing, but the string synopsis was
driving the performance. Intuitively, the more n-gram were
missed, the “simpler” and the more efficient these systems be-
came. However, such performance gains come at the expense
of estimation effectiveness – the fastest baseline system relied
on sample-based synopses. In fact, the very same systems
performed worst in terms of effectiveness. This strengthens
our believe that state-of-the-art systems exhibit a strong trade-
off between estimation time and quality – contradicting Req.1.

Comparing the two systems with best effectiveness, i.e.,
TopGuess and bnsbf, TopGuess led to a better performance
by 29%. However, in comparison to top-k systems, TopGuess
resulted in a performance decrease of 28%. We explain these
performance drawbacks with the time-consuming disk I/O,
which was needed for loading the necessary statistics.

However, TopGuess performance results are still promising:
(1) Its efficiency it is not driven by the overall synopsis size.
That is, while bn and ind clearly outperform TopGuess,
given small synopses ≤ 4 MByte, TopGuess results are better
respectively comparable for synopses ≥ 20 MByte. We expect
such effects to be even more drastic for “very large” bn (ind)
synopses � 100 MByte. (2) Memory space consumption was
very low, ≤ 1 MByte, for TopGuess. This is a clear benefit
for systems with limited resources. (3) As we will discuss
below, we also found that TopGuess performance was much
less driven by query size. Considering both aspects, TopGuess
guarantees a much more “stable” behavior, Req.5.

Synopsis Size. Fig. 7-c/-g shows selectivity estimation time
vs. synopsis size. For baseline systems we can see a strong
dependency between synopsis size and their runtime behavior:
Req.5 fails. While bn and ind reach high efficiency for
synopses ≤ 4 MByte, there performance decreases rapidly
with synopses ≥ 20 MByte. Note, sbf-based approaches, are
an exception, as there computational costs are determined
by bloom filters and not their overall number of 1-grams.
TopGuess, does not suffer from this issue. As our approach
does not require any marginalization or inferencing, construct-
ing a query-specific BN and computing its joint probability is
independent from the size of the TRM, Req.5.

Regarding memory consumption, we observed drastic dif-
ferences when comparing bn or ind with TopGuess. Our
system required overall ≤ 1 MByte of memory, as only its
query-specific BN was loaded during runtime. Every other
statistic was kept on hard disk. Further, in contrast to an
unrolled BN, TopGuess’s BN only features binary random
variables and variables with topics as sample space. Baselines,
however, inherently needed much more space. For instance,
capturing 5K 1-grams per attribute resulted in ≈ 20 MByte.
This is because their random variables had actual 1-grams as
sample space. Note, ind systems may actually be also kept
on-disk. We loaded their statistics for comparison with bn.

Query Size. For all systems estimation times increase with
query size, cf. Fig. 7-d/-h. However, as TopGuess exploits an
extremely compact query-specific BN, we expected it’s perfor-
mance to be much less influenced by query size. To confirm
this we compared the standard deviation of the estimation time
between TopGuess and bn∗ w.r.t. different sizes. The standard

deviations was 82, 48 ms and 213, 48 ms for TopGuess and
bn∗, respectively. The low deviation for TopGuess indicates
that the required I/O and probability estimations times varied
little w.r.t. query size. For bn∗, however, its high variance
suggests that the performance is strongly affected.

VI. RELATED WORK
For selectivity estimation on structured data, works exploit

table-level data synopses, which capture attributes within the
same table, e.g., [2]. Other approaches focus on schema-level
synopses, which are not restricted to a single table, but capture
attributes and relations: graph synopses [4], join samples [3],
and graphical models [5], [6], [7].

In contrast to TopGuess, such approaches do not summarize
correlations in text. In fact, in [7] we loosely integrated BN
and string synopses. However, [7] does not provide an uniform
framework. Further, it suffers from the same problems as
previous PRM-based solution [5], [6]. We discussed their
drawbacks in depth throughout the paper, Sect. III + V.

For estimating string predicates selectivity, language models
and other machine learning techniques have been utilized [8],
[9], [26], [10]. Some works aim at substring or fuzzy string
matching [8], [26], while other approaches target “extraction”
operators, e.g., dictionary-based operators [10].

However, these approaches do not consider dependencies
among various string predicates and/or with query predicates
for structured data. In contrast, we present a holistic approach
for hybrid queries.

VII. CONCLUSION

We provided a framework for selectivity estimation on
hybrid queries, and analyzed state-of-the-art solutions. Driven
by our findings, we proposed a novel, holistic estimation of
hybrid queries, TopGuess. We gave space and time complexity
bounds for TopGuess, by means of a theoretical analysis.
We conducted extensive empirical studies on real-world data.
TopGuess achieved strong effectiveness improvements, while
not requiring additional runtime. We are confident, however,
that TopGuess may allow for runtime improvements in the
future, using sophisticated topic learning or caching.

REFERENCES

[1] A. Maier and D. E. Simmen, “Db2 optimization in support of full text
search,” IEEE Data Eng. Bull., vol. 24, no. 4, pp. 3–6, 2001.

[2] V. Poosala, P. Haas, Y. Ioannidis, and E. Shekita, “Improved histograms
for selectivity estimation of range predicates,” SIGMOD, 1996.

[3] S. Acharya, P. Gibbons, V. Poosala, and S. Ramaswamy, “Join synopses
for approximate query answering,” in SIGMOD, 1999.

[4] J. Spiegel and N. Polyzotis, “Graph-based synopses for relational
selectivity estimation,” in SIGMOD, 2006.

[5] L. Getoor, B. Taskar, and D. Koller, “Selectivity estimation using
probabilistic models,” in SIGMOD, 2001.

[6] K. Tzoumas, A. Deshpande, and C. S. Jensen, “Lightweight graphical
models for selectivity estimation without independence assumptions,”
PVLDB, 2011.

[7] A. Wagner, V. Bicer, and T. D. Tran, “Selectivity estimation for hybrid
queries over text-rich data graphs,” in EDBT, 2013.

[8] S. Chaudhuri, V. Ganti, and L. Gravano, “Selectivity estimation for string
predicates: Overcoming the underestimation problem,” in ICDE, 2004.

[9] L. Jin and C. Li, “Selectivity estimation for fuzzy string predicates in
large data sets,” in VLDB, 2005.

[10] D. Z. Wang, L. Wei, Y. Li, F. Reiss, and S. Vaithyanathan, “Selectivity
estimation for extraction operators over text data,” in ICDE, 2011.

[11] J. Chang and D. Blei, “Relational topic models for document networks,”
in AIStats, 2009.

[12] J. Zeng, W. K. Cheung, C.-h. Li, and J. Liu, “Multirelational topic
models,” in ICDM, 2009.

13

[13] V. Bicer, T. Tran, Y. Ma, and R. Studer, “Trm - learning dependencies
between text and structure with topical relational models,” in ISWC,
2013.

[14] D. Koller and N. Friedman, Probabilistic graphical models. MIT press,
2009.

[15] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
JMLR, vol. 3, pp. 993–1022, 2003.

[16] B. Taskar, E. Segal, and D. Koller, “Probabilistic classification and
clustering in relational data,” in IJCAI, 2001.

[17] G. F. Cooper, “The computational complexity of probabilistic inference
using bayesian belief networks,” Artif. Intell., vol. 42, no. 2-3, pp. 393–
405, 1990.

[18] F. Doshi, K. Miller, J. V. Gael, and Y. W. Teh, “Variational inference
for the indian buffet process,” JMLR, vol. 5, pp. 137–144, 2009.

[19] A. Smola and S. Narayanamurthy, “An architecture for parallel topic
models,” VLDB, 2010.

[20] A. Banerjee and S. Basu, “Topic models over text streams: A study of
batch and online unsupervised learning,” in SDM, 2007.

[21] C. Cartis, N. I. M. Gould, and P. L. Toint, “On the complexity of steepest
descent, newton’s and regularized newton’s methods for nonconvex
unconstrained optimization problems,” SIAM, vol. 20, no. 6, pp. 2833–
2852, 2010.

[22] H. Huang and C. Liu, “Estimating selectivity for joined rdf triple
patterns,” in CIKM, 2011.

[23] J. Coffman and A. C. Weaver, “A framework for evaluating database
keyword search strategies,” in CIKM, 2010.

[24] Y. Luo, W. Wang, X. Lin, X. Zhou, J. Wang, and K. Li, “Spark2: Top-
k keyword query in relational databases,” TKDE, vol. 23, no. 12, pp.
1763–1780, 2011.

[25] A. Deshpande, M. N. Garofalakis, and R. Rastogi, “Independence
is good: Dependency-based histogram synopses for high-dimensional
data,” in SIGMOD, 2001.

[26] H. Lee, R. T. Ng, and K. Shim, “Extending q-grams to estimate
selectivity of string matching with low edit distance,” in VLDB, 2007.

VIII. APPENDIX

Below, we present statistics as well as a complete listing
of queries used during our experiments. Note, queries for the
DBLP dataset are based on [24], while IMDB queries are taken
from [23]. All queries are given in RDF N310 notation.

TABLE III
QUERY STATISTICS

Predicates: #Relation #String
0 1 [2, 4] [1, 2] 3 [4, 7]

Queries 33 44 23 28 35 26
Predicates: #Class #Total

1 2 [3, 4] [2, 3] [4, 6] [7, 11]
Queries 49 30 21 28 31 41

Listing 1. Queries for DBLP [24]

@p r e f i x dc :
h t t p : / / p u r l . o rg / dc / e l e m e n t s /1 .1 / > .
@p r e f i x f o a f :
<h t t p : / / xmlns . com / f o a f /0 . 1 / > .
@p r e f i x r d f :
<h t t p : / / www. w3 . org /1999/02/22− r d f−syn t ax−ns#> .
@p r e f i x r d f s :
<h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema#> .
@p r e f i x db lp :
<h t t p : / / l s d i s . c s . uga . edu / p r o j e c t s / semdis / opus#> .

q1
? x r d f s : l a b e l ” c l i q u e ” .
? x db lp : l a s t m o d i f i e d d a t e ”2002−12−09” .
? x r d f : t y p e db lp : A r t i c l e i n P r o c e e d i n g s .

10http://www.w3.org/TeamSubmission/n3/

? x db lp : a u t h o r ? y .
? y r d f : t y p e f o a f : P e r so n .
? y f o a f : name ” n i k o s ” .

q2
? y r d f : t y p e f o a f : P e r so n .
? y f o a f : name ” n i k o s ” .
? y f o a f : name ” z o t o s ” .

q3
? x r d f s : l a b e l ” c o n s t r a i n t ” .
? x db lp : l a s t m o d i f i e d d a t e ”2005−02−25” .
? x r d f : t y p e db lp : A r t i c l e i n P r o c e e d i n g s .
? x db lp : a u t h o r ? y .
? y r d f : t y p e f o a f : P e r so n .
? y f o a f : name ” chuang ” .

q4
? x r d f s : l a b e l ” mining ” .
? x r d f s : l a b e l ” c l u s t e r i n g ” .
? x db lp : y e a r ” 2005 ” .
? x r d f : t y p e db lp : A r t i c l e .
? x db lp : a u t h o r ? y .
? y r d f : t y p e f o a f : P e r so n .
? y f o a f : name ” n i k o s ” .

q5
? x r d f s : l a b e l ” s p a t i a l ” .
? x db lp : l a s t m o d i f i e d d a t e ”2006−03−31” .
? x r d f : t y p e db lp : A r t i c l e i n P r o c e e d i n g s .
? x db lp : a u t h o r ? y .
? y r d f : t y p e f o a f : P e r so n .
? y f o a f : name ” p a t e l ” .

q6
? x r d f : t y p e db lp : A r t i c l e .
? x r d f s : l a b e l ” midd leware ” .
? x db lp : a u t h o r ? y .
? y r d f : t y p e f o a f : P e r so n .
? y f o a f : name ” zhang ” .

q7
? x r d f : t y p e db lp : A r t i c l e i n P r o c e e d i n g s .
? x r d f s : l a b e l ” midd leware ” .
? x r d f s : l a b e l ” o p t i m a l ” .
? x db lp : a u t h o r ? y .
? y r d f : t y p e f o a f : P e r so n .
? y f o a f : name ” r o n a l d ” .

q8
? x r d f : t y p e db lp : A r t i c l e i n P r o c e e d i n g s .
? x r d f s : l a b e l ” p a r t i t i o n ” .
? x r d f s : l a b e l ” r e l a t i o n a l ” .
? x r d f s : l a b e l ” que ry ” .

q9
? x r d f : t y p e db lp : A r t i c l e i n P r o c e e d i n g s .
? x r d f s : l a b e l ” p a r t i t i o n ” .
? x db lp : a u t h o r ? y .
? y r d f : t y p e f o a f : P e r so n .
? y f o a f : name ” p a t e l ” .

q10
? x r d f : t y p e db lp : P r o c e e d i n g s .
? x r d f s : l a b e l ” r e c o g n i t i o n ” .
? x r d f s : l a b e l ” sp ee ch ” .
? x r d f s : l a b e l ” s o f t w a r e ” .
? x dc : p u b l i s h e r ? p .

q11
? x r d f : t y p e db lp : P r o c e e d i n g s .

http://www.w3.org/TeamSubmission/n3/

14

? x r d f s : l a b e l ” d a t a ” .
? x r d f s : l a b e l ” mining ” .
? x dc : p u b l i s h e r <h t t p : / / www. s p r i n g e r . de /> .

q12
? x r d f : t y p e db lp : P r o c e e d i n g s .
? x r d f s : l a b e l ” a u s t r a l i a ” .
? x r d f s : l a b e l ” s t r e a m ” .
? x dc : p u b l i s h e r <h t t p : / / www. s p r i n g e r . de /> .

q13
? x db lp : y e a r ” 2002 ” .
? x r d f : t y p e db lp : P r o c e e d i n g s .
? x r d f s : l a b e l ” i n d u s t r i a l ” .
? x r d f s : l a b e l ” d a t a b a s e ” .
? x dc : p u b l i s h e r ? p .

q14
? x r d f : t y p e db lp : A r t i c l e i n P r o c e e d i n g s .
? x db lp : l a s t m o d i f i e d d a t e ”2006−03−09” .
? x db lp : a u t h o r ? y .
? y r d f : t y p e f o a f : Pe r so n .
? y f o a f : name ” j i g n e s h ” .

q15
? x r d f : t y p e db lp : A r t i c l e i n P r o c e e d i n g s .
? x r d f s : l a b e l ” a l g o r i t h m ” .
? x r d f s : l a b e l ” i n c o m p l e t e ” .
? x r d f s : l a b e l ” s e a r c h ” .

q16
? x db lp : j o u r n a l n a m e ”SIGMOD” .
? x r d f : t y p e db lp : A r t i c l e .
? x r d f s : l a b e l ”web” .
? x r d f s : l a b e l ” s e a r c h ” .

q17
? x r d f : t y p e db lp : A r t i c l e i n P r o c e e d i n g s .
? x r d f s : l a b e l ” s e m i s t r u c t u r e d ” .
? x r d f s : l a b e l ” s e a r c h ” .
? x db lp : a u t h o r ? y .
? y r d f : t y p e f o a f : Pe r so n .
? y f o a f : name ” goldman ” .

q18
? x r d f : t y p e db lp : A r t i c l e i n P r o c e e d i n g s .
? x r d f s : l a b e l ” que ry ” .
? x r d f s : l a b e l ” c o s t ” .
? x r d f s : l a b e l ” o p t i m i z a t i o n ” .
? x db lp : a u t h o r ? y .
? y r d f : t y p e f o a f : Pe r so n .
? y f o a f : name ” a r v i n d ” .

q19
? x db lp : y e a r ” 2007 ” .
? x r d f s : l a b e l ” s o f t w a r e ” .
? x r d f s : l a b e l ” t ime ” .
? x r d f : t y p e db lp : A r t i c l e .
? x db lp : a u t h o r ? y .
? y r d f : t y p e f o a f : Pe r so n .
? y f o a f : name ” zhu ” .

q20
? y r d f : t y p e f o a f : Pe r so n .
? y f o a f : name ” zhu ” .
? y f o a f : name ” y un t a o ” .

q21
? x db lp : y e a r ” 2003 ” .
? x r d f s : l a b e l ” d a t a ” .
? x r d f s : l a b e l ” c o n t e n t ” .

? x r d f : t y p e db lp : A r t i c l e i n P r o c e e d i n g s .
? x db lp : a u t h o r ? y .
? y r d f : t y p e f o a f : P e r so n .
? y f o a f : name ” n i k o s ” .

q22
? x r d f s : l a b e l ” s p a t i a l ” .
? x r d f : t y p e db lp : A r t i c l e i n P r o c e e d i n g s .
? x db lp : a u t h o r ? y .
? y r d f : t y p e f o a f : P e r so n .
? y f o a f : name ” j i g n e s h ” .

q23
? x r d f s : l a b e l ” a l g o r i t h m s ” .
? x r d f s : l a b e l ” p a r a l l e l ” .
? x r d f s : l a b e l ” s p a t i a l ” .
? x r d f : t y p e db lp : A r t i c l e i n P r o c e e d i n g s .
? x db lp : a u t h o r ? y .
? x dc : r e l a t i o n ” con f ” .
? y r d f : t y p e f o a f : P e r so n .
? y f o a f : name ” p a t e l ” .

q24
? x r d f s : l a b e l ” i m p l e m e n t a t i o n ” .
? x r d f s : l a b e l ” e v a l u a t i o n ” .
? x r d f : t y p e db lp : A r t i c l e i n P r o c e e d i n g s .
? x db lp : l a s t m o d i f i e d d a t e ”2006−03−31” .
? x db lp : c i t e s ? c .
? x db lp : a u t h o r ? y .
? y r d f : t y p e f o a f : P e r so n .
? y f o a f : name ” p a t e l ” .

q25
? x r d f s : l a b e l ” o p t i m i z a t i o n ” .
? x r d f s : l a b e l ” que ry ” .
? x r d f : t y p e db lp : A r t i c l e i n P r o c e e d i n g s .
? x db lp : a u t h o r ? y .
? x db lp : y e a r ” 2003 ” .
? y r d f : t y p e f o a f : P e r so n .
? y f o a f : name ? n .

q26
? x r d f s : l a b e l ” xml ” .
? x r d f s : l a b e l ” t o o l ” .
? x r d f : t y p e db lp : A r t i c l e i n P r o c e e d i n g s .
? x db lp : y e a r ” 2004 ” .
? x db lp : a u t h o r ? y .
? y r d f : t y p e f o a f : P e r so n .
? y f o a f : name ” p a t e l ” .

q27
? x r d f : t y p e db lp : A r t i c l e i n P r o c e e d i n g s .
? x r d f s : l a b e l ” a r c h i t e c t u r e ” .
? x r d f s : l a b e l ”web” .
? x db lp : l a s t m o d i f i e d d a t e ”2005−09−05” .
? x db lp : a u t h o r ? y .
? y r d f : t y p e f o a f : P e r so n .
? y f o a f : name ”wu” .

q28
? x r d f : t y p e db lp : A r t i c l e i n P r o c e e d i n g s .
? x r d f s : l a b e l ” l a n g u a g e ” .
? x r d f s : l a b e l ” s o f t w a r e ” .
? x r d f s : l a b e l ” sys tem ” .
? x db lp : y e a r ” 2001 ” .
? x db lp : a u t h o r ? y .
? y r d f : t y p e f o a f : P e r so n .
? y f o a f : name ” r o l a n d ” .

q29
? x r d f : t y p e db lp : A r t i c l e i n P r o c e e d i n g s .

15

? x r d f s : l a b e l ” midd leware ” .
? x db lp : l a s t m o d i f i e d d a t e ”2006−01−17” .
? x db lp : a u t h o r ? y .
? y r d f : t y p e f o a f : Pe r so n .
? y f o a f : name ” s i h v o n e n ” .

q30
? x r d f : t y p e db lp : A r t i c l e i n P r o c e e d i n g s .
? x r d f s : l a b e l ” midd leware ” .
? x r d f s : l a b e l ” v i r t u a l ” .
? x db lp : y e a r ” 2001 ” .
? x db lp : a u t h o r ? y .
? y r d f : t y p e f o a f : Pe r so n .
? y f o a f : name ” kwang ” .

q31
? x r d f : t y p e db lp : A r t i c l e .
? x r d f s : l a b e l ” j a v a ” .
? x r d f s : l a b e l ” code ” .
? x r d f s : l a b e l ” program ” .
? x db lp : a u t h o r ? y .
? y r d f : t y p e f o a f : Pe r so n .
? y f o a f : name ” r o l a n d ” .

q32
? x r d f : t y p e db lp : A r t i c l e .
? x r d f s : l a b e l ” s i g n a l ” .
? x r d f s : l a b e l ” s p a c e ” .
? x db lp : a u t h o r ? y .
? y r d f : t y p e f o a f : Pe r so n .
? y f o a f : name ” zheng ” .

q33
? x db lp : a u t h o r ? y .
? y r d f : t y p e f o a f : Pe r so n .
? y f o a f : name ” f a g i n ” .
? y f o a f : name ” r o l a n d ” .

q34
? x db lp : a u t h o r ? y .
? y r d f : t y p e f o a f : Pe r so n .
? y f o a f : name ” zheng ” .
? y f o a f : name ” q u i ” .

q35
? x r d f : t y p e db lp : A r t i c l e i n P r o c e e d i n g s .
? x r d f s : l a b e l ” p r o c e s s i n g ” .
? x r d f s : l a b e l ” que ry ” .

q36
? x r d f : t y p e db lp : A r t i c l e i n P r o c e e d i n g s .
? x r d f s : l a b e l ” xml ” .
? x r d f s : l a b e l ” p r o c e s s i n g ” .

q37
? x r d f : t y p e db lp : A r t i c l e i n P r o c e e d i n g s .
? x r d f s : l a b e l ” b i o l o g i c a l ” .
? x r d f s : l a b e l ” s e q u e n c e ” .
? x db lp : l a s t m o d i f i e d d a t e ”2007−08−21” .
? x db lp : a u t h o r ? y .
? y r d f : t y p e f o a f : Pe r so n .
? y f o a f : name ” j i g n e s h ” .

q38
? x r d f : t y p e db lp : Book .
? x r d f s : l a b e l ” d e c i s i o n ” .
? x r d f s : l a b e l ” i n t e l l i g e n t ” .
? x r d f s : l a b e l ” making ” .
? x dc : p u b l i s h e r <h t t p : / / www. s p r i n g e r . de /> .

q39

? x r d f : t y p e db lp : P r o c e e d i n g s .
? x r d f s : l a b e l ” d a t a b a s e s ” .
? x r d f s : l a b e l ” b i o l o g i c a l ” .
? x dc : p u b l i s h e r <h t t p : / / www. s p r i n g e r . de /> .

q40
? x r d f : t y p e db lp : Book .
? x r d f s : l a b e l ” mining ” .
? x r d f s : l a b e l ” d a t a ” .

q41
? x r d f : t y p e db lp : Book .
? x r d f s : l a b e l ” mining ” .
? x r d f s : l a b e l ” d a t a ” .
? x dc : p u b l i s h e r <h t t p : / / www. s p r i n g e r . de /> .
? x dc : r e l a t i o n ” t r i e r . de ” .
? x dc : r e l a t i o n ” books ” .

q42
? x r d f : t y p e db lp : Book .
? x r d f s : l a b e l ” i n t e l l i g e n c e ” .
? x r d f s : l a b e l ” c o m p u t a t i o n a l ” .
? x dc : p u b l i s h e r <h t t p : / / www. s p r i n g e r . de /> .
? x dc : r e l a t i o n ” t r i e r . de ” .
? x db lp : y e a r ” 2007 ” .

q43
? x r d f : t y p e db lp : Book .
? x r d f s : l a b e l ” b i o l o g i c a l l y ” .
? x r d f s : l a b e l ” i n s p i r e d ” .
? x r d f s : l a b e l ” methods ” .

q44
? x r d f : t y p e db lp : Book .
? x r d f s : l a b e l ” n e t w o r k s ” .
? x r d f s : l a b e l ” n e u r a l ” .

q45
? x r d f : t y p e db lp : Book .
? x r d f s : l a b e l ” l e a r n i n g ” .
? x r d f s : l a b e l ” machine ” .
? x dc : p u b l i s h e r <h t t p : / / www. s p r i n g e r . de /> .

q46
? x r d f : t y p e db lp : Book .
? x r d f s : l a b e l ” s o f t w a r e ” .
? x r d f s : l a b e l ” sys tem ” .
? x dc : p u b l i s h e r <h t t p : / / www. s p r i n g e r . de /> .

q47
? x r d f : t y p e db lp : Book .
? x r d f s : l a b e l ” a r c h i t e c t u r e ” .
? x r d f s : l a b e l ” computer ” .

q48
? x r d f : t y p e db lp : Book .
? x r d f s : l a b e l ”web” .
? x db lp : y e a r ” 2006 ” .
? x dc : p u b l i s h e r ? p .
? x db lp : e d i t o r ? e .
? e f o a f : name ” k a n d e l ” .
? e f o a f : name ” abraham ” .

q49
? x r d f : t y p e db lp : Book .
? x r d f s : l a b e l ” t h e o r e t i c a l ” .
? x r d f s : l a b e l ” s c i e n c e ” .
? x dc : p u b l i s h e r <h t t p : / / www. e l s e v i e r . n l /> .

q50
? x r d f : t y p e db lp : Book Chapter .

16

? x r d f s : l a b e l ” s e a r c h ” .
? x r d f s : l a b e l ” s e m a n t i c ” .

q51
? x r d f : t y p e db lp : A r t i c l e .
? x r d f s : l a b e l ” s e a r c h ” .
? x r d f s : l a b e l ” c o n c e p t ” .
? x r d f s : l a b e l ” based ” .

q52
? x db lp : j o u r n a l n a m e ” sigmod ” .
? x r d f : t y p e db lp : A r t i c l e .
? x r d f s : l a b e l ” model ” .
? x r d f s : l a b e l ” i n f o r m a t i o n ” .

q53
? x db lp : j o u r n a l n a m e ” sigmod ” .
? x r d f : t y p e db lp : A r t i c l e .
? x r d f s : l a b e l ” dynamic ” .
? x r d f s : l a b e l ” n e t w o r k s ” .

q54
? x r d f : t y p e db lp : A r t i c l e i n P r o c e e d i n g s .
? x r d f s : l a b e l ” s t o r a g e ” .
? x r d f s : l a b e l ” a d a p t i v e ” .
? x db lp : a u t h o r ? y .
? x db lp : y e a r ” 2003 ” .
? y r d f : t y p e f o a f : Pe r so n .
? y f o a f : name ” j i g n e s h ” .

Listing 2. Queries for IMDB [23]

@p r e f i x imdb :
<h t t p : / / imdb / p r e d i c a t e /> .
@p r e f i x i m d b c l a s s :
<h t t p : / / imdb / c l a s s /> .
@p r e f i x r d f :
<h t t p : / / www. w3 . org /1999/02/22− r d f−syn t ax−ns#> .

q1
? x r d f : t y p e i m d b c l a s s : name .
? x imdb : name ” w a s h i n g t o n ” .
? x imdb : name ” d e n z e l ” .

q2
? x r d f : t y p e i m d b c l a s s : name .
? x imdb : name ” eas twood ” .
? x imdb : name ” c l i n t ” .

q3
? x r d f : t y p e i m d b c l a s s : name .
? x imdb : name ” john ” .
? x imdb : name ” wayne ” .

q4
? x r d f : t y p e i m d b c l a s s : name .
? x imdb : name ” s m i t h ” .
? x imdb : name ” w i l l ” .

q5
? x r d f : t y p e i m d b c l a s s : name .
? x imdb : name ” f o r d ” .
? x imdb : name ” h a r r i s o n ” .

q6
? x r d f : t y p e i m d b c l a s s : name .
? x imdb : name ” j u l i a ” .
? x imdb : name ” r o b e r t s ” .

q7

? x r d f : t y p e i m d b c l a s s : name .
? x imdb : name ” tom ” .
? x imdb : name ” hanks ” .

q8
? x r d f : t y p e i m d b c l a s s : name .
? x imdb : name ” johnny ” .
? x imdb : name ” depp ” .

q9
? x r d f : t y p e i m d b c l a s s : name .
? x imdb : name ” a n g e l i n a ” .
? x imdb : name ” j o l i e ” .

q10
? x r d f : t y p e i m d b c l a s s : name .
? x imdb : name ” f reeman ” .
? x imdb : name ” morgan ” .

q11
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : t i t l e ” gone ” .
? x imdb : t i t l e ” wi th ” .
? x imdb : t i t l e ” t h e ” .
? x imdb : t i t l e ” wind ” .

q12
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : t i t l e ” wars ” .
? x imdb : t i t l e ” s t a r ” .

q13
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : t i t l e ” c a s a b l a n c a ” .

q14
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : t i t l e ” t h e ” .
? x imdb : t i t l e ” l o r d ” .
? x imdb : t i t l e ” r i n g s ” .

q15
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : t i t l e ” t h e ” .
? x imdb : t i t l e ” sound ” .
? x imdb : t i t l e ” music ” .

q16
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : t i t l e ” wi za rd ” .
? x imdb : t i t l e ” oz ” .

q17
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : t i t l e ” t h e ” .
? x imdb : t i t l e ” no tebook ” .

q18
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : t i t l e ” f o r r e s t ” .
? x imdb : t i t l e ”gump” .

q19
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : t i t l e ” t h e ” .
? x imdb : t i t l e ” p r i n c e s s ” .
? x imdb : t i t l e ” b r i d e ” .

q20
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : t i t l e ” t h e ” .

17

? x imdb : t i t l e ” g o d f a t h e r ” .

q21
? x imdb : t i t l e ? t .
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : c a s t i n f o ? z .
? r r d f : t y p e i m d b c l a s s : char name .
? r imdb : name ” f i n c h ” .
? r imdb : name ” a t t i c u s ” .
? z r d f : t y p e i m d b c l a s s : c a s t i n f o .
? z imdb : r o l e ? r .

q22
? x imdb : t i t l e ? t .
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : c a s t i n f o ? z .
? z r d f : t y p e i m d b c l a s s : c a s t i n f o .
? r imdb : name ” i n d i a n a ” .
? r imdb : name ” j o n e s ” .
? z imdb : r o l e ? r .
? r r d f : t y p e i m d b c l a s s : char name .

q23
? x imdb : t i t l e ? t .
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : c a s t i n f o ? z .
? z r d f : t y p e i m d b c l a s s : c a s t i n f o .
? z imdb : r o l e ? r .
? r r d f : t y p e i m d b c l a s s : char name .
? r imdb : name ” james ” .
? r imdb : name ” bond ” .

q24
? x imdb : t i t l e ? t .
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : c a s t i n f o ? z .
? z r d f : t y p e i m d b c l a s s : c a s t i n f o .
? z imdb : r o l e ? r .
? r r d f : t y p e i m d b c l a s s : char name .
? r imdb : name ” r i c k ” .
? r imdb : name ” b l a i n e ” .

q25
? x imdb : t i t l e ? t .
? x imdb : c a s t i n f o ? z .
? z r d f : t y p e i m d b c l a s s : c a s t i n f o .
? z imdb : r o l e ? r .
? r r d f : t y p e i m d b c l a s s : char name .
? r imdb : name ” k a i n e ” .
? r imdb : name ” w i l l ” .

q26
? x imdb : t i t l e ? t .
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : c a s t i n f o ? z .
? z r d f : t y p e i m d b c l a s s : c a s t i n f o .
? z imdb : r o l e ? r .
? r r d f : t y p e i m d b c l a s s : char name .
? r imdb : name ” dr . ” .
? r imdb : name ” h a n n i b a l ” .
? r imdb : name ” l e c t e r ” .

q27
? x imdb : t i t l e ? t .
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : c a s t i n f o ? z .
? z r d f : t y p e i m d b c l a s s : c a s t i n f o .
? z imdb : r o l e ? r .
? r r d f : t y p e i m d b c l a s s : char name .
? r imdb : name ” norman ” .
? r imdb : name ” b a t e s ” .

q28
? x imdb : t i t l e ? t .
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : c a s t i n f o ? z .
? z r d f : t y p e i m d b c l a s s : c a s t i n f o .
? z imdb : r o l e ? r .
? r r d f : t y p e i m d b c l a s s : char name .
? r imdb : name ” d a r t h ” .
? r imdb : name ” v a d e r ” .

q29
? x imdb : t i t l e ? t .
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : c a s t i n f o ? z .
? z r d f : t y p e i m d b c l a s s : c a s t i n f o .
? z imdb : r o l e ? r .
? r r d f : t y p e i m d b c l a s s : char name .
? r imdb : name ” t h e ” .
? r imdb : name ” wicked ” .
? r imdb : name ” w i t c h ” .
? r imdb : name ” t h e ” .
? r imdb : name ” wes t ” .

q30
? x imdb : t i t l e ? t .
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : c a s t i n f o ? z .
? z r d f : t y p e i m d b c l a s s : c a s t i n f o .
? z imdb : r o l e ? r .
? r r d f : t y p e i m d b c l a s s : char name .
? r imdb : name ” n u r s e ” .
? r imdb : name ” r a t c h e d ” .

q31
? x imdb : t i t l e ? t .
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : m o v i e i n f o ? i .
? i r d f : t y p e i m d b c l a s s : m o v i e i n f o .
? i imdb : i n f o ” f r a n k l y ” .
? i imdb : i n f o ” d e a r ” .
? i imdb : i n f o ” don ’ t ” .
? i imdb : i n f o ” g i v e ” .
? i imdb : i n f o ”damn” .

q32
? x imdb : t i t l e ? t .
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : m o v i e i n f o ? i .
? i r d f : t y p e i m d b c l a s s : m o v i e i n f o .
? i imdb : i n f o ” go ing ” .
? i imdb : i n f o ”make” .
? i imdb : i n f o ” o f f e r ” .
? i imdb : i n f o ” can ’ t ” .
? i imdb : i n f o ” r e f u s e ” .

q33
? x imdb : t i t l e ? t .
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : m o v i e i n f o ? i .
? i r d f : t y p e i m d b c l a s s : m o v i e i n f o .
? i imdb : i n f o ” u n d e r s t a n d ” .
? i imdb : i n f o ” c l a s s ” .
? i imdb : i n f o ” c o n t e n d e r ” .
? i imdb : i n f o ” c o u l d a ” .
? i imdb : i n f o ” somebody ” .
? i imdb : i n f o ” i n s t e a d ” .
? i imdb : i n f o ”bum” .

q34
? x imdb : t i t l e ? t .

18

? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : m o v i e i n f o ? i .
? i r d f : t y p e i m d b c l a s s : m o v i e i n f o .
? i imdb : i n f o ” t o t o ” .
? i imdb : i n f o ” f e e l i n g ” .
? i imdb : i n f o ” n o t ” .
? i imdb : i n f o ” k a n s a s ” .
? i imdb : i n f o ” anymore ” .

q35
? x imdb : t i t l e ? t .
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : m o v i e i n f o ? i .
? i r d f : t y p e i m d b c l a s s : m o v i e i n f o .
? i imdb : i n f o ” here ’ s ” .
? i imdb : i n f o ” l o o k i n g ” .
? i imdb : i n f o ” k i d ” .

q36
? x r d f : t y p e i m d b c l a s s : t i t l e .
? c r d f : t y p e i m d b c l a s s : c a s t i n f o .
? x imdb : c a s t i n f o ? c .
? c imdb : r o l e ? r .
? r r d f : t y p e i m d b c l a s s : char name .
? r imdb : name ” s k y w a l k e r ” .
? c imdb : p e r s o n ? p .
? p r d f : t y p e i m d b c l a s s : name .
? p imdb : name ” h a m i l l ” .

q37
? x imdb : y e a r ” 2004 ” .
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : t i t l e ? t .
? x imdb : c a s t i n f o ? c .
? c r d f : t y p e i m d b c l a s s : c a s t i n f o .
? c imdb : p e r s o n ? p .
? p r d f : t y p e i m d b c l a s s : name .
? p imdb : name ” hanks ” .

q38
? r imdb : name ? rn .
? r r d f : t y p e i m d b c l a s s : char name .
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : t i t l e ” y o u r s ” .
? x imdb : t i t l e ” mine ” .
? x imdb : t i t l e ” o u r s ” .
? x imdb : c a s t i n f o ? c .
? c r d f : t y p e i m d b c l a s s : c a s t i n f o .
? c imdb : r o l e ? r .
? c imdb : p e r s o n ? p .
? p r d f : t y p e i m d b c l a s s : name .
? p imdb : name ” henry ” .
? p imdb : name ” fonda ” .

q39
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : t i t l e ” g l a d i a t o r ” .
? x imdb : c a s t i n f o ? c .
? c r d f : t y p e i m d b c l a s s : c a s t i n f o .
? c imdb : r o l e ? r .
? r imdb : name ? rn .
? r r d f : t y p e i m d b c l a s s : char name .
? c imdb : p e r s o n ? p .
? p r d f : t y p e i m d b c l a s s : name .
? p imdb : name ” r u s s e l l ” .
? p imdb : name ” crowe ” .

q40
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : t i t l e ” s t a r ” .
? x imdb : t i t l e ” t r e k ” .

? x imdb : c a s t i n f o ? c .
? r r d f : t y p e i m d b c l a s s : char name .
? r imdb : name ? rn .
? c r d f : t y p e i m d b c l a s s : c a s t i n f o .
? c imdb : r o l e ? r .
? c imdb : p e r s o n ? p .
? p r d f : t y p e i m d b c l a s s : name .
? p imdb : name ” s p i n e r ” .
? p imdb : name ” b r e n t ” .

q41
? x imdb : y e a r ” 1951 ” .
? x imdb : t i t l e ? t .
? x r d f : t y p e i m d b c l a s s : t i t l e .
? x imdb : c a s t i n f o ? c .
? c r d f : t y p e i m d b c l a s s : c a s t i n f o .
? c imdb : p e r s o n ? p .
? p r d f : t y p e i m d b c l a s s : name .
? p imdb : name ” au d r ey ” .
? p imdb : name ” hepburn ” .

q42
? p r d f : t y p e i m d b c l a s s : name .
? p imdb : name ? n .
? c imdb : p e r s o n ? p .
? c r d f : t y p e i m d b c l a s s : c a s t i n f o .
? c imdb : r o l e ? r .
? r r d f : t y p e i m d b c l a s s : char name .
? r imdb : name ” j a c q u e s ” .
? r imdb : name ” c l o u s e a u ” .

q43
? p r d f : t y p e i m d b c l a s s : name .
? p imdb : name ? n .
? c imdb : p e r s o n ? p .
? c r d f : t y p e i m d b c l a s s : c a s t i n f o .
? c imdb : r o l e ? r .
? r r d f : t y p e i m d b c l a s s : char name .
? r imdb : name ” j a c k ” .
? r imdb : name ” ryan ” .

q44
? p r d f : t y p e i m d b c l a s s : name .
? p imdb : name ” s t a l l o n e ” .
? c imdb : p e r s o n ? p .
? c r d f : t y p e i m d b c l a s s : c a s t i n f o .
? c imdb : r o l e ? r .
? r r d f : t y p e i m d b c l a s s : char name .
? r imdb : name ” rocky ” .

q45
? p r d f : t y p e i m d b c l a s s : name .
? p imdb : name ? n .
? c imdb : p e r s o n ? p .
? c r d f : t y p e i m d b c l a s s : c a s t i n f o .
? c imdb : r o l e ? r .
? r r d f : t y p e i m d b c l a s s : char name .
? r imdb : name ” t e r m i n a t o r ” .

o m i t t e d q46 t o q49

q50
? a r d f : t y p e i m d b c l a s s : t i t l e .
? a imdb : t i t l e ” l o s t ” .
? a imdb : t i t l e ” a r k ” .
? a imdb : c a s t i n f o ? ca .
? ca r d f : t y p e i m d b c l a s s : c a s t i n f o .
? ca imdb : p e r s o n ? p .
? p r d f : t y p e i m d b c l a s s : name .
? p imdb : name ? n .
? c i r d f : t y p e i m d b c l a s s : c a s t i n f o .

19

? c i imdb : p e r s o n ? p .
? i r d f : t y p e i m d b c l a s s : t i t l e .
? i imdb : c a s t i n f o ? c i .
? i imdb : t i t l e ” i n d i a n a ” .
? i imdb : t i t l e ” j o n e s ” .
? i imdb : t i t l e ” l a s t ” .
? i imdb : t i t l e ” c r u s a d e ” .

	Introduction
	Preliminaries
	Selectivity Estimation Framework
	TopGuess
	Topic-based Data Synopsis
	Selectivity Estimation Function

	Evaluation
	Evaluation Setting
	Selectivity Estimation Effectiveness
	Selectivity Estimation Efficiency

	Related Work
	Conclusion
	References
	Appendix

