
When to Use Which Neural Network?
Finding the Right Neural Network Architecture for a Research Problem

Michael Färber1 and Nicolas Weber2

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
2 Heidelberg University, Heidelberg, Germany

michael.faerber@kit.edu

Abstract

Considering the increasing rate of scientific papers published
in recent years, for researchers throughout all disciplines it
has become a challenge to keep track of which latest scientific
methods are suitable for which applications. In particular,
an unmanageable amount of neural network architectures
has been published. In this paper, we propose the task of
recommending neural network architectures based on textual
problem descriptions. We frame the recommendation as a text
classification task and develop appropriate text classification
models for this task. In experiments based on three data sets,
we find that an SVM classifier outperforms a more complex
model based on BERT. Overall, we give evidence that neural
network architecture recommendation is a nontrivial but
gainful research topic.

1 Introduction
A multitude of neural network architectures has been
proposed, with many more to come. The knowledge
graph Wikidata,1 for instance, models 66 variants of
neural network architectures. Machine learning researchers
and practitioners, such as data scientists and software
developers, are increasingly confronted with the question:
When to use which neural network architecture?2

So far, approaches to neural architecture search and search
engines for research data management have been proposed.
Neural architecture search (Elsken, Metzen, and Hutter
2019) is concerned with the task of automatically finding
the optimal neural network architecture design for a specific
task. However, neural architecture search approaches
usually restrict themselves to a specific architecture type
(e.g., RNN or CNN) and target finding the optimal
architecture, such as the number of network layers or
hyperparameters. Instead, the focus of this paper is on
a different level of granularity. The idea is to create
a model that finds the most suitable neural network
architecture for a research problem described in natural
language. Furthermore, neural network search engines and
ontologies, such as FAIRnets (Nguyen and Weller 2019;

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1See https://www.wikidata.org/.
2See https://datascience.stackexchange.com/questions/20222/

how-to-decide-neural-network-architecture.

Nguyen et al. 2020), differ from us because they allow
only keyword queries. Chen et al. (2019) found that real
information needs are most often formulated as phrases and
not as keywords. The latter case constitutes only 32% of
the investigated queries. In addition, such search systems
retrieve specific neural network instances instead of neural
network architectures.

In this paper, we propose the task of neural network
architecture recommendation. It differs from other
domain-specific text classification tasks in the fact that
research problem descriptions as input are largely not
available and first need to be created. To this end, we
propose two methods that extract the problem descriptions
from papers’ abstracts. In addition, the usage of neural
network architectures is highly imbalanced in the literature,
making the recommendation task a nontrivial challenge.
We train and evaluate two state-of-the-art machine
learning-based approaches for neural network architecture
recommendation, using the extracted research problem
descriptions and neural network architectures derived from
Wikidata. Our proposed approach can benefit students as
well as researchers of various domains. For researchers with
little expertise in the field of machine learning in particular,
our approach simplifies the process of selecting a suitable
neural network model and presumably yields a reduction in
time spent on preliminary research on appropriate neural
architectures.

To summarize, we make the following contributions:
1. We create evaluation data sets for neural network

architecture recommendation, consisting of 66 unique
architectures and 284,337 textual problem descriptions.

2. We train and evaluate several classifiers capable of
predicting neural network architectures based on textual
problem descriptions.3

The paper is structured as follows: In Section 2, we
describe the creation of the neural network architecture
set, as well as two data sets with scientific problem
descriptions. Section 3 discusses the methods to predict the
neural network architectures based on textual descriptions.
In Section 4, we present our experiments. We conclude in
Section 5 with a summary.

3All data and source code is available online at https://github.
com/michaelfaerber/NNARec.

https://www.wikidata.org/
https://datascience.stackexchange.com/questions/20222/how-to-decide-neural-network-architecture
https://datascience.stackexchange.com/questions/20222/how-to-decide-neural-network-architecture
https://github.com/michaelfaerber/NNARec
https://github.com/michaelfaerber/NNARec


Kernel Perceptron RNTN RoBERTa GCN
Multilayer Perceptron TDNN Neocognitron CNN
Restricted Boltzmann Machine Bcpnn Cresceptron GRU
winner-take-all MCDNN Modular NN SNN
Hopfield N HONN Deep NN DNC
Neural Abstraction Pyramid Elman N Feedforward NN PNN
Shift Invariant NN RecCC perceptron DBN
Spatial Transformer Network Jordan N Highway N GAN
Neural History Compressor ADALINE Transformer ESN
Kohonen NN LSTM AlexNet ELM
Radial Basis Function N CPPN Text-CNN VAE
Connectionist Expert System CMAC EntNet HTM
Boltzmann machine PCNN Hamming NN LSM
Bidirectional Associative Memory DRPNN LeNet-5 RNN
Neural Turing Machine NNPDA Stochastic NN DQN
Self-organizing Map MANN CapsNet
ResNet RecNN 3D-CNN

Table 1: Neural network architectures in Wikidata.

2 Data
2.1 Set of Neural Network Architectures
Our approach utilizes the knowledge graph Wikidata to
obtain a list of neural network architectures. The following
aspects are taken into consideration: (1) all subclasses of
artificial neural networks; (2) the hierarchical structure of
these subclasses; (3) aliases and abbreviations. Our query
returns 67 results, of which 66 (see Table 1) are appropriate
for the task at hand (the additional item returned is the
“artificial neural network” item itself).

2.2 Problem Descriptions
Our aim is to recommend neural network architectures based
on problem descriptions. However, problem descriptions
are, to the best of our knowledge, not available to a large
degree. However, we argue that parts of papers’ abstracts are
a good approximation of textual research problems. Thus,
we use the paper abstracts and metadata from the Microsoft
Academic Graph (MAG; Sinha, Shen et al. (2015)).

We only consider English abstracts in which neural
network architecture names are mentioned. After carefully
analyzing the resulting abstracts, an issue related to
the neural network architecture “transformer” is found.
Because the word “transformer” is polysemic, the bulk
of abstracts mentioning transformers are mostly concerned
with (electrical) engineering. To circumvent this problem,
these abstracts are filtered by a keyword list.4 After this,
284,337 abstracts remain.

The abstracts usually include both problem descriptions
and names of associated neural network architectures. To
extract these items, we propose the following methods.

Extraction by Abstract Splitting. The first approach of
creating a data set is based on the observation of Jiang
et al. (2012). The main idea is that abstracts can often be
conceptually split into an introduction and a solution part.
After manually checking 500 randomly selected papers from
four conferences (SIGIR, SIGKDD, RecSys, and CIKM),
the result indicates that 71% of the abstracts adhere to this
structure (Jiang et al. 2012).

4[BERT, GPT-2, GPT-3, natural language, self-attention]

Example Problem Description: The prediction of failures
in rotating machines is an important issue in industries to
improve safety, to reduce the cost of maintenance and to prevent
accidents.
Example Solution: In this paper a predictive maintenance
algorithm, based on the analysis of the orbits shape of the rotor
shaft is proposed. It is based on an autonomous image pattern
recognition algorithm, implemented by using a Convolutional
Neural Network (CNN).[...]
Example Target Label: CNN

Table 2: Example of extraction by abstract splitting (abstract
from Caponetto et al. (2019)).

We observe that the key phrases “in this paper” and “this
paper” play an important role in the transition between the
problem statement and solution parts (see Table 2). We
therefore check for each sentence in the abstracts whether
these key phrases occur. If there is a match, we mark the
sentence as the beginning of the solution part and all prior
sentences as the problem description part. Table 2 provides
an illustration of our abstract-splitting approach.

To evaluate the effectiveness of this method, we let
two experienced researchers classify 500 randomly selected
splits into the following categories: (1) the split is correct,
(2) the split is incorrect, but a correct split is possible, and
(3) the abstract cannot be split into an introduction part
and a solution part. The differences between the annotators
lie mostly in the annotators’ conceptions of where to set a
split, rather than whether a split is possible. Inter annotator
agreement can be reported by Cohen’s kappa of 0.7538,
which indicates a good agreement for this task. Overall,
based on our analysis, 88.6% of the randomly sampled splits
are evaluated as being correct.

Once the abstracts have been split, only parts of the
abstracts with mentions of neural network architectures in
their respective solution part are included in the data set,
with the introduction parts as problem descriptions and the
neural network architectures as the labels. We will refer to
the resulting data set as the Abstract Splitting (AS) data set.

Extraction by Key Phrase Templates. The
aforementioned method has the drawback that the neural
network mentioned in the solution part of an abstract is
directly related to the problem description outlined in the
first part of this abstract. However, problem descriptions in
other parts of the abstract are ignored. To combat this issue,
we create a method of identifying problem descriptions
more precisely.

In a first step, we analyze the abstracts that contain neural
network architecture mentions to obtain an understanding
of recurring phrases in problem descriptions. From these
phrases, we then create templates to extract problem
descriptions in all abstracts. Table 3 illustrates an example
of a template and a match. Overall, we came up with 44
templates that are based on regular expressions.

As we can see in Table 3, this method generally results in
shorter problem descriptions than the plain abstract splitting
method proposed above. As only the problem descriptions



Template we use(d) <METHOD> for/to <PROBLEM>

Matches Specifically, we use a simple yet powerful
architecture, consisting of only one CNN and a
single resolution input, combined with a new loss
function for pixel-wise fixation prediction during
free viewing of natural scenes.

Table 3: Example for problem extraction by keyphrase
templates.

and the neural network architecture names are of interest
and not the long method descriptions, we additionally
identify the neural network architecture names mentioned in
METHOD (in the example in Table 3: CNN) given our list of
neural network architecture names. To minimize redundancy
for extractions made in the same abstract, if one string is a
substring of the other, the longer one is chosen and the other
one is dismissed.

A last step to reduce noise is to filter out common
phrases in the texts that carry no information (e.g., “solve
this problem” given the template “we use METHOD to
solve this PROBLEM”). While the quality of the extracted
problem descriptions is overall satisfying, from 284,337
abstracts mentioning neural network architectures, only
35,829 problem descriptions remain based on this method.
The resulting data set is designated the Key Phrase
Extraction (KE) data set.

2.3 Neural Network Architecture Mentions
Due to the differences in the data set creation, the
distribution of neural network architectures differs in our AS
and KE data sets. To make them comparable, we take two
steps. First, to avoid losing all instances of sparse classes, the
hierarchical structure of some neural network architectures
allows for the inclusion of some sparse classes into their
parent classes (e.g., GRU is integrated into RNN). We
perform this step for all classes with less than 200 instances,
given there is a hierarchy to exploit. Second, because some
architectures are rarely mentioned, only classes with at least
200 instances in both data sets are considered. This leads to
both data sets containing the same classes. From the initial
66 neural network architectures retrieved from Wikidata,
only 15, which are listed in Figure 1, remain.

2.4 Preparing AGENDA as Test Set
The Abstract GENeration data set (AGENDA;
Koncel-Kedziorski et al. (2019)) has been used for
automatic text generation based on knowledge graphs and
consists of knowledge graphs paired with paper titles and
paper abstracts from the AI domain. As mentions of tasks
and methods are also labeled in these paper abstracts, we
can use this data set for an additional, complementary
evaluation, particularly as an additional test data set
considering its size.

It is important to note that the text spans labeled as
problem descriptions in this data set are rather short
to be more compatible with knowledge graph entities.

0 50 100 150 200 250 300
CNN

Deep NN
RNN

LSTM
MLP

Perceptron
Autoencoder

Deep Belief N
Feedforward NN

SOM
GAN
PNN

Spiking NN
RBF
ELM

Figure 1: Neural network architecture counts in the modified
AGENDA data set.

We therefore increased the context by considering whole
sentences as problem descriptions. The resulting, modified
data set, designated mod-AGENDA, has 1,327 instances,
distributed over 15 classes, as Figure 1 shows.

3 Methods

The task in this paper falls into the realm of supervised
classification. The overwhelming majority of instances in
each of our our data sets has only a single label. Thus, in the
following evaluation, we consider the task as a multiclass,
single-label classification task. For this paper, we consider
the following widely used text classification approaches.

TF-IDF + SVM. One approach is based on SVM, using
TF-IDF for representing the text as vectors. As this can lead
to very high dimensional sparse vectors, it makes sense to
filter out stopwords for the vector representation.

BERT + Classification Layer. As our second approach,
we use a fine-tuned BERT-model with an additional
classification layer.

4 Experiments

4.1 Evaluation Settings

We use a train-test split of 80:20 for the AS and KE data sets.
Each of the methods is trained and tested on either the AS
data set or the KE data set. In addition, the models trained
on the KE and AS data sets are evaluated on the modified
AGENDA data set to evaluate the generalizability of the
approaches.

We considered the following methods: (1) SVM. We used
scikit-learn’s TfidfVectorizer for numeric representations
and an SVM implemented via a one-vs-rest classification
scheme. (2) Fine-tuned SciBERT. We use SciBERT
(Beltagy, Lo, and Cohan 2019), a scientific domain-specific,
pretrained BERT-model, and fine-tune it on the classification
task with Adam optimizer (Kingma and Ba 2014). (3) Most
frequent class (MFC). We consider the MFC as a baseline.



Training Data Test Data Method Precision (Macro) Recall (Macro) F1 (Macro) Accuracy
KE KE MFC 0.0246 0.0667 0.0359 0.3688
KE KE SVM 0.5280 0.4242 0.4629 0.5908
KE KE SciBERT 0.2198 0.2404 0.1793 0.2576

AS AS MFC 0.0219 0.0667 0.0330 0.3284
AS AS SVM 0.5973 0.3893 0.4355 0.5711
AS AS SciBERT 0.3423 0.4178 0.3391 0.4009

– mod-AGENDA MFC 0.0034 0.0667 0.0064 0.0505
KE mod-AGENDA SVM 0.1304 0.1030 0.0694 0.0980
KE mod-AGENDA SciBERT 0.0812 0.0757 0.0481 0.0663
AS mod-AGENDA SVM 0.1186 0.0880 0.0755 0.1017
AS mod-AGENDA SciBERT 0.0569 0.0850 0.0576 0.0950

Table 4: Results of most frequenct class (MFC), SVM, and fine-tuned SciBERT.

4.2 Evaluation Results

Precision, recall, F1-score5 (all macro-averaged), and
accuracy for the MFC baseline, SVM, and fine-tuned
SciBERT are reported in Table 4. The results show that the
SVM classifier trained and tested on the KE data set is most
successful with respect to recall, F1 score, and accuracy.
It beats the more complex SciBERT classifier by more
than 100 % in accuracy (0.5908 vs 0.2576) and F1-score
(0.4629 vs 0.1793). However, we note that accuracy is not
an excellent metric for unbalanced data sets.

Regarding the classifiers trained and tested on the AS data
set, the SVM also beats the SciBERT model with respect to
precision, F1 score, and accuracy, but with less significance.
Here, the accuracy of the SVM is 0.17, and the F1-score is
0.1 higher than that of SciBERT.

SVM and SciBERT trained on the AS and KE data
sets perform superior in most cases compared to the MFC
baseline. Notably, MFC achieves a higher accuracy than
SciBERT on the KE data set.

When evaluating the approaches on the mod-AGENDA
data, the results drop significantly. Nonetheless, the SVM
classifier still achieves the best results, with only little
difference between the AS and KE data sets as training data
sets. SciBERT still outperforms the MFC baseline.

The methods trained on the AS data set generalize better
to some degree than the methods trained on the KE data set,
despite the simple creation process of the AS data set. A
likely reason for this phenomenon is that the AS data set is
more similar to the AGENDA data set than the KE data set.
In particular, the research problem descriptions in the KE
data set are much shorter than in the AS data set.

Overall, given 0.59 and 0.57 as the best accuracy scores
and 0.46 and 0.44 as the top F1 scores, we come to the
conclusion that neural network recommendation based on
textual task descriptions is a nontrivial task (motivating
our paper), while it indicates that users (e.g., early-career
researchers) might find such recommender systems helpful.

5The F1-score is calculated as the arithmetic mean over the
individual F1 scores (Opitz and Burst 2019).

5 Conclusion
This paper introduced the task of recommending neural
network architectures based on textual problem descriptions.
To this end, we created two data sets of labeled
problem descriptions. The first splits abstracts by means
of signaling phrases and labels the problem parts by
matching neural network-architecture names. The second
method uses recurring phrases to extract shorter and more
precise problem descriptions via regular expressions. We
used both data sets to train and evaluate classifiers. We
identified the SVM-based approach as a promising method,
outperforming a BERT-based approach.

In the future, we will extend our recommender system to
machine learning methods in general and combine it with
the recommendation of other scholarly entities, such as data
sets (Färber and Leisinger 2021). Furthermore, we plan to
provide a running system for neural network architecture
recommendation accompanied with a user study.

References
Beltagy, I.; Lo, K.; and Cohan, A. 2019. SciBERT: A
pretrained language model for scientific text. arXiv preprint
arXiv:1903.10676.
Caponetto, R.; Rizzo, F.; Russotti, L.; and Xibilia, M.
2019. Deep lLarning Algorithm for Predictive Maintenance
of Rotating Machines Through the Analysis of the Orbits
Shape of the Rotor Shaft. In Proceedings of the 1st
International Conference on Smart Innovation, Ergonomics
and Applied Human Factors, SEAHF’19, 245–250.
Chen, J.; et al. 2019. Towards More Usable Dataset Search:
From Query Characterization to Snippet Generation.
In Proceedings of 28th ACM International Conference
on Information and Knowledge Management, CIKM’19,
2445–2448.
Elsken, T.; Metzen, J. H.; and Hutter, F. 2019. Neural
Architecture Search: A Survey. J. Mach. Learn. Res., 20:
55:1–55:21.
Färber, M.; and Leisinger, A. 2021. Recommending
Datasets for Scientific Problem Descriptions. In
Proceedings of the The 30th ACM International Conference



on Information and Knowledge Management, CIKM’21,
3014–3018.
Jiang, Y.; Jia, A.; Feng, Y.; and Zhao, D. 2012.
Recommending Academic Papers via Users’ Reading
Purposes. In Proceedings of the Sixth ACM Conference on
Recommender Systems, RecSys’12, 241–244.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Koncel-Kedziorski, R.; Bekal, D.; Luan, Y.; Lapata, M.; and
Hajishirzi, H. 2019. Text generation from knowledge graphs
with graph transformers. arXiv preprint arXiv:1904.02342.
Nguyen, A.; and Weller, T. 2019. FAIRnets Search - A
Prototype Search Service to Find Neural Networks. In
Proceedings of the International Conference on Semantic
Systems, SEMANTiCS’19.
Nguyen, A.; Weller, T.; Färber, M.; and Sure-Vetter, Y. 2020.
Making Neural Networks FAIR. In Proceedings of the
Second Iberoamerican Conference and First Indo-American
Conference, volume 1232 of KGSWC’20, 29–44. Springer.
Opitz, J.; and Burst, S. 2019. Macro F1 and Macro F1.
CoRR, abs/1911.03347.
Sinha, A.; Shen, Z.; et al. 2015. An Overview of Microsoft
Academic Service (MAS) and Applications. In Proceedings
of the 24th International Conference on World Wide Web
Companion, WWW’15, 243–246.


	Introduction
	Data
	Set of Neural Network Architectures
	Problem Descriptions
	Neural Network Architecture Mentions
	Preparing AGENDA as Test Set

	Methods
	Experiments
	Evaluation Settings
	Evaluation Results

	Conclusion

