Aus Aifbportal
Wechseln zu:Navigation, Suche

Evolutionary optimization under uncertainty in energy management systems

Evolutionary optimization under uncertainty in energy management systems

Veröffentlicht: 2016 Dezember
Erscheinungsort: Berlin
Journal: it - Information Technology

Verlag: de Gruyter
Volume: Special Issue - Recent Trends in Energy Informatics Research

Nicht-referierte Veröffentlichung


To support the utilization of renewable energies, an optimized operation of energy systems is important. In recent years, many different optimization methods have been used in this field, including exact solvers and metaheuristics. Quite often, evolutionary algorithms yield good optimization results and allow for a flexible formulation of the optimization problem. Nevertheless, most approaches do not respect the dynamic nature of energy systems with time-dependent properties and stochastic variations. In this work, typical uncertainties are categorized and appropriate measures that help handling uncertainties in energy systems are presented and evaluated using an implementation of a building energy management system that may be used in simulation and practical application.

DOI Link: 10.1515/itit-2016-0055


Helmholtz Storage and Cross-Linked Infrastructures


Effiziente Algorithmen