Home |  DEUTSCH |  Contact |  Imprint |  Login |  KIT


Aus Aifbportal

Wechseln zu: Navigation, Suche

(This page contains COinS metadata)

Outlining Ensemble K-Nearest Neighbors Approach for Low-Voltage Power Demand Forecasting

Oleg Valgaev, Friederich Kupzog, Hartmut Schmeck

Published: 2017 Mai

Buchtitel: e-Energy '17 Proceedings of the Eighth International Conference on Future Energy Systems
Seiten: 268-270
Verlag: ACM
Erscheinungsort: New York
Organisation: ACM
Nicht-referierte Veröffentlichung

Following the ongoing transformation of the European power system, in the future, it will be necessary to locally balance the increasing share of decentralized renewable energy supply. Therefore, a reliable short-term load forecast down to the level of single low-voltage end-consumers might be required. In this work, we outline how to improve the K-Nearest Neighbors forecaster that we have proposed earlier for the low voltage load forecasting. We motivate the usage of the, so called, Ensemble K-Nearest Neighbors indicating a significant improvement by combining the forecasts obtained using different numbers of nearest neighbors.

ISBN: 978-1-4503-5036-5

DOI Link: 10.1145/3077839.3081681


Effiziente Algorithmen