Home |  DEUTSCH |  Contact |  Imprint |  Data Protection |  Login |  KIT

Inproceedings3733

Aus Aifbportal

Wechseln zu: Navigation, Suche


TECNE: Knowledge Based Text Classification Using Network Embeddings




Published: 2018 Dezember

Buchtitel: Proc. 21st International Conference on Knowledge Engineering and Knowledge Management 2018 (EKAW 2018)
Nummer: 2262
Seiten: 53-56
Verlag: CEUR Workshop Proceedings
Nicht-referierte Veröffentlichung

BibTeX

Kurzfassung
Text classification is an important and challenging task due news filtering. Several supervised learning approaches have been proposed for text classification. However, most of them require a significant amount of training data. Manually labeling such data can be very time-consuming and costly. To overcome the problem of labeled data, we demonstrate TECNE, a knowledge-based text classification method using network embeddings. The proposed system does not require any labeled training data to classify an arbitrary text. Instead, it relies on a set of predefined categories to determine a category which the given document belongs to.

Weitere Informationen unter: Link



Forschungsgruppe

Information Service Engineering