Stage-oe-small.jpg

Inproceedings3475

Aus Aifbportal
Version vom 18. September 2015, 13:48 Uhr von Yt2652 (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Publikation Erster Autor |ErsterAutorNachname=Acosta |ErsterAutorVorname=Maribel }} {{Publikation Author |Rank=2 |Author=Elena Simperl }} {{Publikation Author |…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche


HARE: A Hybrid SPARQL Engine to Enhance Query Answers via Crowdsourcing


HARE: A Hybrid SPARQL Engine to Enhance Query Answers via Crowdsourcing



Published: 2015 Oktober

Buchtitel: K-CAP2015, The 8th International Conference on Knowledge Capture
Verlag: ACM
Organisation: International Conference on Knowledge Capture

Referierte Veröffentlichung

BibTeX

Kurzfassung
Due to the semi-structured nature of RDF data, missing values affect answer completeness of queries that are posed against RDF. To overcome this limitation, we present HARE, a novel hybrid query processing engine that brings together machine and human computation to execute SPARQL queries. We propose a model that exploits the characteristics of RDF in order to estimate the complete- ness of portions of a data set. The completeness model complemented by crowd knowledge is used by the HARE query engine to on-the-fly decide which parts of a query should be executed against the data set or via crowd computing. To evaluate HARE, we created and executed a collection of 50 SPARQL queries against the DBpedia data set. Experimental results clearly show that our solution accurately enhances answer completeness.



Forschungsgruppe

Wissensmanagement


Forschungsgebiet