Home |  ENGLISH |  Kontakt |  Impressum |  Anmelden |  KIT

Article524

Aus Aifbportal

Wechseln zu: Navigation, Suche

(This page contains COinS metadata)

Mining Frequent Patterns with Counting Inference


Yves Bastide, Rafik Taouil, Nicolas Pasquier, Gerd Stumme, Lotfi Lakhal



Veröffentlicht: 2000

Journal: SIGKDD Exploration Special Issue on Scalable Algorithms

Seiten: 71-80


Referierte Veröffentlichung
BibTeX




Kurzfassung
In this paper, we propose the algorithm Pascal which introduces a novel optimization of the well-known algorithm Apriori. This optimization is based on a new strategy called pattern counting inference that relies on the concept of key patterns. We show that the support of frequent non-key patterns can be inferred from frequent key patterns without accessing the database. Experiments comparing Pascal to the three algorithms Apriori, Close and Max-Miner, show that Pascal is among the most efficient algorithms for mining frequent patterns.

Download: Media:2000_524_Bastide_Mining_Frequent_1.pdf



Forschungsgruppe

Web Science und Wissensmanagement