Home |  ENGLISH |  Kontakt |  Impressum |  Anmelden |  KIT

Inproceedings3093

Aus Aifbportal

Wechseln zu: Navigation, Suche

(This page contains COinS metadata)

XCS Revisited: A Novel Discovery Component for the eXtended Classifier System




Published: 2010 Dezember
Herausgeber: Kalyanmoy Deb and others
Buchtitel: Proceedings of the 8th International Conference on Simulated Evolution And Learning (SEAL-2010)
Ausgabe: 6457
Reihe: LNCS
Seiten: 289-298
Verlag: Springer
Erscheinungsort: Berlin Heidelberg
Referierte Veröffentlichung
BibTeX

Kurzfassung
The eXtended Classifier System (XCS) is a rule-based evolutionary on-line learning system. Originally proposed by Wilson, XCS combines techniques from reinforcement learning and evolutionary optimization to learn a population of maximally general, but accurate condition-action rules. This paper focuses on the discovery component of XCS that is responsible for the creation and deletion of rules. A novel rule combining mechanism is proposed that infers maximally general rules from the existing population. Rule combining is evaluated for single- and multi-step learning problems using the well-known multiplexer, Woods, and Maze environments. Results indicate that the novel mechanism allows for faster learning rates and a reduced population size compared to the original XCS implementation.

ISBN: 978-3-642-17297-7
DOI Link: 10.1007/978-3-642-17298-4_30

Projekt

OCCS (Phase III)



Forschungsgruppe

Effiziente Algorithmen


Forschungsgebiet
Maschinelles Lernen, Organic Computing


-->