Home |  ENGLISH |  Kontakt |  Impressum |  Anmelden |  KIT


Aus Aifbportal

Wechseln zu: Navigation, Suche

(This page contains COinS metadata)

Knowledge Guided Attention and Inference for Describing Images Containing Unseen Objects

Aditya Mogadala, Umanga Bista, Lexing Xie, Achim Rettinger

Published: 2018 Juni

Buchtitel: The Semantic Web. Latest Advances and New Domains. 15th Extended Semantic Web Conference (ESWC), Crete, Greece.
Verlag: Springer International Publishing.
Nicht-referierte Veröffentlichung

Images on the Web encapsulate diverse knowledge about var- ied abstract concepts. They cannot be sufficiently described with models learned from image-caption pairs that mention only a small number of visual object categories. In contrast, large-scale knowledge graphs contain many more concepts that can be detected by image recognition models. Hence, to assist description generation for those images which contain visual objects unseen in image-caption pairs, we propose a two-step process by leveraging large-scale knowledge graphs. In the first step, a multi-entity recognition model is built to annotate images with concepts not mentioned in any caption. In the second step, those annotations are leveraged as external semantic attention and constrained inference in the image description generation model. Evaluations show that our models outperform most of the prior work on out-of-domain MSCOCO image description generation and also scales better to broad domains with more unseen objects.


Web Science