Stage-oe-small.jpg

Inproceedings3792

Aus Aifbportal
Version vom 31. März 2020, 18:32 Uhr von He9318 (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Publikation Erster Autor |ErsterAutorNachname=Färber |ErsterAutorVorname=Michael }} {{Publikation Author |Rank=2 |Author=Timo Klein }} {{Publikation Author…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche


Neural Citation Recommendation: A Reproducibility Study




Published: 2020

Buchtitel: Proceedings of the 10th International Workshop on Bibliometric-enhanced Information Retrieval (BIR'20)
Verlag: CEUR

Referierte Veröffentlichung

BibTeX

Kurzfassung
Context-aware citation recommendation is used to overcome the process of manually searching for relevant citations by automatically recommending suitable papers as citations for a specified input text. In this paper, we examine the reproducibility of a state-of-the-art approach to context-aware citation recommendation, namely the neural citation network (NCN) by Ebesu and Fang. We re-implement the network and run evaluations on both RefSeer, the originally used data set, and arXiv CS, as an additional data set. We provide insights on how the different hyperparameters of the neural network affect the model performance of the NCN and thus can be used to improve the model's performance. In this way, we contribute to making citation recommendation approaches and their evaluations more transparent and creating more effective neural network-based models in the future.

Download: Media:CiteRec_Repro_BIR2020.pdf



Forschungsgruppe

Web Science


Forschungsgebiet

Information Retrieval, Maschinelles Lernen, Informationsextraktion, Digitale Bibliotheken