Stage-oe-small.jpg

Article3069: Unterschied zwischen den Versionen

Aus Aifbportal
Wechseln zu:Navigation, Suche
K (Textersetzung - „Forschungsgruppe=Wissensmanagement“ durch „Forschungsgruppe=Web Science und Wissensmanagement“)
 
(Eine dazwischenliegende Version von einem anderen Benutzer wird nicht angezeigt)
Zeile 24: Zeile 24:
 
|Number=1-2
 
|Number=1-2
 
|Pages=1-57
 
|Pages=1-57
|Tags=Render,Test2
 
 
}}
 
}}
 
{{Publikation Details
 
{{Publikation Details
Zeile 31: Zeile 30:
 
|Link=http://www.tandfonline.com/doi/abs/10.1080/08839514.2012.636616
 
|Link=http://www.tandfonline.com/doi/abs/10.1080/08839514.2012.636616
 
|Projekt=ExpresST
 
|Projekt=ExpresST
|Forschungsgruppe=Wissensmanagement
+
|Forschungsgruppe=Web Science und Wissensmanagement
 
}}
 
}}
 
{{Forschungsgebiet Auswahl
 
{{Forschungsgebiet Auswahl

Aktuelle Version vom 15. Oktober 2015, 11:48 Uhr


Real-Time Complex Event Recognition and Reasoning – A Logic Programming Approach


Real-Time Complex Event Recognition and Reasoning – A Logic Programming Approach



Veröffentlicht: 2012 Februar

Journal: Applied Artificial Intelligence
Nummer: 1-2
Seiten: 1-57

Volume: 21


Referierte Veröffentlichung

BibTeX




Kurzfassung
Complex Event Processing (CEP) deals with the analysis of streams of continuously arriving events, with the goal of identifying instances of predefined meaningful patterns (complex events). Complex events are detected in order to trigger time-critical actions in many areas, including sensors networks, financial services, transaction management, business intelligence, etc. In existing approaches to CEP, a complex event is represented as a composition of more simple events satisfying certain temporal relationships. In this article, we advocate a knowledge-rich CEP, which, apart from events, also processes additional (contextual) knowledge (e.g., in order to prove semantic relations among matched events or to define more complex situations). In particular, we present a novel approach for realizing knowledge-rich CEP, including detection of semantic relations among events and reasoning. We present a rule-based language for pattern matching over event streams, with a precise syntax and the declarative semantics. We devise an execution model for the proposed formalism, and provide a prototype implementation. Extensive experiments have been conducted to demonstrate the efficiency and effectiveness of our approach.

ISSN: 0883-9514
Weitere Informationen unter: Link

Projekt

ExpresST



Forschungsgruppe

Web Science und Wissensmanagement


Forschungsgebiet

Logikprogrammierung, Complex Event Processing