Stage-oe-small.jpg

Inproceedings3504: Unterschied zwischen den Versionen

Aus Aifbportal
Wechseln zu:Navigation, Suche
Zeile 16: Zeile 16:
 
|Year=2016
 
|Year=2016
 
|Month=Juni
 
|Month=Juni
|Booktitle=ICWE 2016
+
|Booktitle=Web Engineering, 16th International Conference, ICWE 2016, Lugano, Switzerland, June 6-9, 2016. Proceedings
|Publisher=Springer
+
|Pages=244-261
 +
|Publisher=Springer International Publishing
 +
|Address=Cham
 +
|Editor=Bozzon, Alessandro and Cudré-Mauroux, Philippe and Pautasso, Cesare
 
|Note=to appear
 
|Note=to appear
 
}}
 
}}
Zeile 30: Zeile 33:
  
 
In this paper we introduce LinkSUM, a lightweight link-based approach for the relevance-oriented summarization of knowledge graph entities. LinkSUM optimizes the combination of the PageRank algorithm with an adaption of the Backlink method together with new approaches for predicate selection. Both, quantitative and qualitative evaluations have been conducted to study the performance of the method in comparison to an existing entity summarization approach. The results show a significant improvement over the state of the art and lead us to conclude that prioritizing the selection of related resources leads to better summaries.
 
In this paper we introduce LinkSUM, a lightweight link-based approach for the relevance-oriented summarization of knowledge graph entities. LinkSUM optimizes the combination of the PageRank algorithm with an adaption of the Backlink method together with new approaches for predicate selection. Both, quantitative and qualitative evaluations have been conducted to study the performance of the method in comparison to an existing entity summarization approach. The results show a significant improvement over the state of the art and lead us to conclude that prioritizing the selection of related resources leads to better summaries.
 +
|ISBN=978-3-319-38791-8
 
|Download=LinkSUM.pdf,
 
|Download=LinkSUM.pdf,
 +
|DOI Name=10.1007/978-3-319-38791-8_14
 
|Projekt=SumOn, XLiMe
 
|Projekt=SumOn, XLiMe
 
|Forschungsgruppe=Web Science und Wissensmanagement
 
|Forschungsgruppe=Web Science und Wissensmanagement

Version vom 25. Mai 2016, 15:10 Uhr


LinkSUM: Using Link Analysis to Summarize Entity Data


LinkSUM: Using Link Analysis to Summarize Entity Data



Published: 2016 Juni
Herausgeber: Bozzon, Alessandro and Cudré-Mauroux, Philippe and Pautasso, Cesare
Buchtitel: Web Engineering, 16th International Conference, ICWE 2016, Lugano, Switzerland, June 6-9, 2016. Proceedings
Seiten: 244-261
Verlag: Springer International Publishing
Erscheinungsort: Cham

Referierte VeröffentlichungNote: to appear

BibTeX




Kurzfassung
The amount of structured data published on the Web is constantly growing. A significant part of this data is published in accordance to the Linked Data principles. The explicit graph structure enables machines and humans to retrieve descriptions of entities and discover information about relations to other entities. In many cases, descriptions of single entities include thousands of statements and for human users it becomes difficult to comprehend the data unless a selection of the most relevant facts is provided.

In this paper we introduce LinkSUM, a lightweight link-based approach for the relevance-oriented summarization of knowledge graph entities. LinkSUM optimizes the combination of the PageRank algorithm with an adaption of the Backlink method together with new approaches for predicate selection. Both, quantitative and qualitative evaluations have been conducted to study the performance of the method in comparison to an existing entity summarization approach. The results show a significant improvement over the state of the art and lead us to conclude that prioritizing the selection of related resources leads to better summaries.

ISBN: 978-3-319-38791-8
Download: Media:LinkSUM.pdf
DOI Link: 10.1007/978-3-319-38791-8_14

Projekt

SumOnXLiMe


Verknüpfte Tools

LinkSUM


Verknüpfte Datasets

DBpedia PageRank


Forschungsgruppe

Web Science und Wissensmanagement


Forschungsgebiet

Vernetzte Daten, Semantische Suche, Maschinelles Lernen, Entitätszusammenfassung