Stage-oe-small.jpg

Michael Färber

Aus Aifbportal
Wechseln zu:Navigation, Suche
M Faerber 230px.jpg
  • Forschungsgruppe: Web Science
  • Sprechstunde nach Vereinbarung.

    Sekretariat (für Auslandsanerkennungen, Prüfungen etc.): Nicoletta Joanni
  • vCard



Michael Färber ist seit Oktober 2020 W3-Vertretungsprofessor des Lehrstuhls Web Science am KIT-Institut AIFB. Er ist zudem ein Helmholtz AI Associate.

News:


Persönliche Webseite



Forschung

Profil: Als stellvertretender W3-Professor bis 2025 leite ich die Forschungsgruppe „Web Science“ am Karlsruher Institut für Technologie (KIT). Gemeinsam mit meinem Team aus sieben Doktoranden und einem Postdoc arbeite ich an der Entwicklung und Anwendung von Methoden der Künstlichen Intelligenz (KI). Konkret liegt mein Fokus in den Bereichen Wissensrepräsentation, Machine Learning und Natural Language Processing. Seit meiner Postdoc-Phase ist es meine Vision, an Lösungen für die zunehmende wissenschaftliche Informationsflut und an neuen Wegen der wissenschaftlichen Kommunikation zu arbeiten. Zu diesem Zweck forsche ich zur Extraktion und Modellierung wissenschaftlichen Wissens explizit in Form von wissenschaftlichen Wissensgraphen und entwickle Such- und Empfehlungssysteme, die das explizit modellierte wissenschaftliche Wissen nutzen und gleichzeitig die Ergebnisse und Empfehlungen dem Benutzer erklären können. Ich habe mehr als 75 Publikationen auf renommierten internationalen Konferenzen (z. B. CIKM, ISWC, ECIR, NAACL) mit internationalen Forschern veröffentlicht. Darüber hinaus arbeite ich als PI bereits an mehreren Projekten (z. B. KD4RE, IIDI, ChemKB, KIGLIS, digilog@bw) und verfüge über ein großes Netzwerk zu nationalen und internationalen Forschern.


Publikationen

Forschungsinteressen

  • Natürliche Sprachverarbeitung (natural language processing),
  • Machinelles Lernen (machine learning) und
  • Wissensrepräsentation (z.B. Wissensgraphen).


Unter anderem betreibt Michael Färber Forschung zu wissenschaftlichem Data Mining (z. B. Quantifizierung des Impacts von Publikationen), Empfehlungssystemen für WissenschafterInnen (z. B. Empfehlung von Zitationen, Publikationen, Datensätzen und neuronalen Netzen) und wissenschaftlichen Wissensgraphen (z. B. Modellierung von Papieren, Autoren, Methoden und Datensätzen). Darüber hinaus entwicklt er KI-Lösungen für die Friedensmediation (siehe AI4Peace).

Michael Färber auf



Online-Demonstratoren

Kürzlich entwickelte und veröffentlichte Online-Demonstrationssysteme:

  • RefBee: http://refbee.org/
    • ...zeigt für einen Autor an, welche Publikationen in welchen bibliographischen Datenbanken gespeichert sind.
  • C-Rex: http://c-rex.org
    • ...empfiehlt Zitate für gegebene Texte.
  • PaperHunter: http://paperhunter.net
    • ...liefert u.a. die Sätze, in denen gesuchte Paper zitiert werden, sowie weitere Hintergrundinformationen.
  • ScholarSight: http://scholarsight.org
    • ...erlaubt die Exploration von Trends von wissenschaftlichen Konzepten.
  • Linked Crunchbase: http://linked-crunchbase.org
    • ... erlaubt die Abfrage von Informationen über Startups und innovative Firmen im Semantic Web-Format RDF.


Datensätze

Kürzlich entwickelte und veröffentlichte Datensätze:

  • DSKG: http://dskg.org
    • ...ein Wissensgraph über Datensätze.
  • unarXive: http://unarxive.org
    • ...enthält die Fließtexte aller Paper auf arXive.org mit weiteren Annotationen.
  • Microsoft Academic Knowledge Graph: https://makg.org
    • ...ein Wissensgraph mit Metadaten von annäherend allen Publikationen in allen wissenschaftlichen Disziplinen.
  • FAIRnets: https://doi.org/10.5281/zenodo.3885249
    • ...ein Wissensgraph mit Metadaten über neuronale Netze.


Code, Daten und Präsentationen

  • Die Implementierungen sind in den jeweiligen Publikationen verlinkt und i.d.R. auf GitHub zu finden.
  • Erstellte Datensätze sind in den jeweiligen Publikationen verlinkt und i.d.R. auf Zenodo zu finden.
  • Präsentationen sind auf YouTube zu finden.



Offene Stellen & Abschlussarbeiten

Offene Hiwi-Stellen

  • im Bereich Machine Learning, Natural Language Processing, und/oder Semantic Web Technologies: [1].
  • im Bereich Semantic MediaWiki oder PHP: [2].
  • im Bereich Wissensgraph-basierte Methoden zur Erklärung von Empfehlungsssytemen: [3].
  • im Bereich Wissensgraph-basiertes Technologie-Forecasting und Technologie- und Innovationsmanagement (TIM).


Offene, ausgeschriebene Abschlussarbeitsthemen

 Titel
Thema4977Knowledge Graphs for Robots’ Situational Awareness
Thema4939Chronik 2050: Automatische Extraktion von erwarteten Ereignissen aus Webseiten
Thema4864Quantum Computing for Natural Language Processing
Thema4420Wie fair sind Forscher? Eine Analyse von Zerrungen bzgl. Zitaten in wissenschaftlichen Publikationen
Thema4909Scalable Graph Neural Networks on Knowledge Graphs
Thema4910Performance Analysis of Graph Neural Diffusion via Fourier Decomposition
Thema4648Creating a Large Knowledge Graph about Scientific Publications for Innovation Forecast
Thema4837Alles nur Show? Ein automatischer Vergleich von Nachrichten vor der Bundestagswahl mit dem Koalitionsvertrag mittels Natural Language Processing
Thema4574Deep Learning + Knowledge Graphs
Thema4772GPT-3, BERT & Co.: When to use which language model?
Thema4423Automatically Recommending Citations for Texts Using Neural Networks


Ich habe bereits mehr als 50 Abschlussarbeiten betreut.
Anfragen zu weiteren Abschlussarbeitsthemen zu Themen wie

  • Natural Language Processing (NLP) / Text Mining
  • Angewandtes Machine Learning
  • Semantic Web / Linked Data
  • Big Data
  • Data Science

gerne willkommen.

Abschlussarbeiten im Ausland

Viele der Abschlussarbeitsthemen können auch an einer Partnerinstitution im Ausland (z.B. Japan, Italien, Frankreich) geschrieben und vom DAAD großzügig gefördert werden, sofern die Bewerbung 7 Monate vorher stattfindet. Gerne unverbindlich anfragen! In der Vergangenheit wurden bereits Abschlussarbeiten im Ausland unter der Betreuung von Dr. Färber gefördert. Mehr Informationen unter Web_Science/DAAD-Stipendium.


Publikationen
Publikationen


Abschlussarbeiten
Abschlussarbeiten


Tools

FAIRnets, KB-Statistics, Linked Crunchbase, Novel Triple Extraction


Datasets

AWARE Ontology, CrunchBase Knowledge Graph, KORE 50^DYWC, Microsoft Academic Knowledge Graph, NewsBias2020, UnarXive, XLiD-Lexica


Aktive Projekte
Mediating-machines.png

AI in Peacemaking
Externer Link: https://mediatingmachines.com/

Transparent.png

ChemKB

Digilog-logo.png

digilog@bw
Externer Link: https://digilog-bw.de

IIDI Logo.png

IIDI

Transparent.png

KD4RE

Kiglis logo.png

KIGLIS
Externer Link: http://www.kiglis.de/





Forschungsgebiete
Semantische Suche, Wissensrepräsentation, Maschinelles Lernen, Text Mining, Semantische Annotation, Informationsextraktion, Natürliche Sprachverarbeitung, Digitale Bibliotheken, Knowledge Discovery, Data Mining, Künstliche Intelligenz, Data Science, Semantic Web, Trustworthy AI