Stage-oe-small.jpg

Thema4910

Aus Aifbportal
Version vom 24. Mai 2022, 10:27 Uhr von He9318 (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche



Performance Analysis of Graph Neural Diffusion via Fourier Decomposition




Informationen zur Arbeit

Abschlussarbeitstyp: Master, Diplom
Betreuer: Michael FärberChen Shao
Forschungsgruppe: Web Science

Archivierungsnummer: 4910
Abschlussarbeitsstatus: Offen
Beginn: 15. Juni 2022
Abgabe: unbekannt

Weitere Informationen

The goal of this work is to analyze the differences in performance between the new generation and the universal Graph Neural Network using traditional Fourier decomposition and to propose an upper bound on the approximation error. In addition, the Graph Neural Network's ability to characterize hierarchical data will be investigated and practically evaluated on a knowledge graph benchmarks. The contents of the master’s thesis are already well defined. Initial code and data will be provided to the student.

Further information can be found in the attached PDF.


Ausschreibung: Download (pdf)